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ABSTRACT

Recently, symbolic program analysis techniques have been ex-

tended to quantitative analyses using model counting constraint

solvers. Given a constraint and a bound, a model counting con-

straint solver computes the number of solutions for the constraint

within the bound. We present a parameterized model counting con-

straint solver for string and numeric constraints. We first construct

a multi-track deterministic finite state automaton that accepts all so-

lutions to the given constraint. We limit the numeric constraints to

linear integer arithmetic, and for non-regular string constraints we

over-approximate the solution set. Counting the number of accept-

ing paths in the generated automaton solves the model counting

problem. Our approach is parameterized in the sense that, we do not

assume a finite domain size during automata construction, resulting

in a potentially infinite set of solutions, and our model counting

approach works for arbitrarily large bounds. We experimentally

demonstrate the effectiveness of our approach on a large set of

string and numeric constraints extracted from software applica-

tions. We experimentally compare our tool to five existing model

counting constraint solvers for string and numeric constraints and

demonstrate that our tool is as efficient and as or more precise than
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other solvers. Moreover, our tool can handle mixed constraints with

string and integer variables that no other tool can.
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1 INTRODUCTION

Quantitative program analysis arises in many contexts such as prob-

abilistic analysis [11, 17], reliability analysis [15] and quantitative

information flow [5, 8, 29, 30, 34]. Quantitative program analyses

require efficient model counting constraint solvers to handle com-

plex and diverse constraints generated during program analyses. A

model counting constraint solver computes the number of solutions

for a given constraint within a given bound [4, 7, 12ś14, 27].

In this paper, we present a model counting constraint solver that

can handle both numeric and string constraints and their combina-

tions. Given a constraint, we construct a multi-track deterministic

finite automaton (DFA) that accepts tuples of values that correspond

to the solutions of the given constraint. For numeric constraints, we

focus on linear integer arithmetic constraints, and the constructed

automaton accepts a binary encoding of the numbers that satisfy

the given numeric constraint. Since some string constraints can

have non-regular solution sets, our automata construction approach

over-approximates the solution set in such cases. Hence, our model
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counting constraint solver provides a sound upper-bound for the

number of solutions for a given constraint.

Since we use multi-track DFA, we can represent relational con-

straints that specify relationships among variables. Moreover, our

approach handles interactions between numeric and string con-

straints in the presence of operations such as string length which

can be used together with numeric variables in a constraint.

Automata-based constraint solving reduces the model counting

problem to path counting. To count the number of values that satisfy

the given constraint within a given domain bound, we count the

number of accepting paths in the automaton within the path length

bound that corresponds to said domain bound. We use techniques

from algebraic graph theory to solve the path counting problem.

We implemented the techniques we present in this paper in

a tool called Multi-Track Automata Based model Counter (MT-

ABC). We experimented on a large set of constraints generated

during symbolic execution of Java and JavaScript programs and

compared MT-ABC with five existing model counting constraint

solvers [4, 7, 14, 27, 38]. Our experiments demonstrate that MT-

ABC is as efficient and as or more precise than existing tools. More

importantly, MT-ABC is the only tool can handle the union of all

constraints that existing tools can handle, and MT-ABC is the only

tool that can handle mixed numeric and string constraints that

contain both string and integer variables.

Our novel contributions in this paper are: 1) an extended con-

straint language that is more expressive than constraint languages

supported by other model counting constraint solvers (Section 2), 2)

handling of relational string constraints using multi-track automata

(Section 3), 3) handling of mixed string and integer constraints us-

ing multiple automata (Section 3), 4) model counting for tuples

of variables (Section 4), 5) heuristics for constraint simplification

(Section 5), and 6) an extensive experimental evaluation (Section 6).

AMotivating Example. Let us give an example demonstrating

the use of model counting constraint solvers for quantitative infor-

mation flow analysis, and how this type of analysis can be used to

quantify information leakage through side-channels. This example

is based on a security vulnerability known as łCompression Ratio

Info-leak Made Easyž (CRIME) [21, 32]. Many web server requests

are compressed and encrypted for efficiency and security before

transmission as a network packet. Despite the encryption, a mali-

cious attacker who can observe network packet sizes can use the

compression size to learn secret web-session information. Assume

an attacker can inject and concatenate his own text with the secret

text prior to compression. The smaller the resulting packet, the

more compression must have occurred prior to encryption, and so

the attacker-controlled input must contain substrings which match

substrings of the secret text. In the CRIME attack, encryption does

not significantly change the size of the packet, as many encryption

protocols are size-preserving. Thus, by carefully crafting injected

inputs, an attacker can incrementally reveal the secret text.

For instance, suppose the secret is the text: łsessionkey:21620ž

If the attacker is able to inject the text string: łsessionkey:12345ž

he will observe less compression than if he injects:

łsessionkey:21600ž because there is a longer prefix match be-

tween the attacker string and the secret string. In this way, the

attacker is able to make repeated guesses and incrementally learn

more information about prefixes of the secret.

Consider a simple method for compressing the concatenation of

two strings. For strings s and t , we compress their concatenation,

s · t , by checking if t is a prefix of s , and if so, encoding their

concatenation as s ; [k] where k is the length of t . If t is not a prefix

of s they are simply concatenated. The notation s ; [k] is interpreted

as a pointer which indexes into s , indicating how many characters

of s to expand in order to recover t . For example, if s is the string

łHello, World!ž and t is the string łHellož, s · t is encoded as łHello,

World!;[5]ž. The following is a simple Java function for performing

this combined concatenation and compression:
public String compress(String s, String t) {

if(s.startsWith(t)) return s + ";[" + t.\length() + "]";

else return s + t; }

This function results in an exploitable vulnerability similar to

the CRIME attack. Suppose that s is a secret string of 5 numeric

characters, and a malicious adversary has control over t . If the

adversary is able to observe the size of the resulting compression,

he can learn information about s by varying t .

We will assume that the alphabet for s and t is the set of nu-

meric characters: ‘1’, . . . , ‘9’. By performing symbolic execution of

compress(s,t), we can determine path constraints which lead to

different possible observations on the size of the result. For example,

(using the constraint language we define in Section 2) we can see

that if (length(s ) = 5) ∧ (begins(s, t ) ∨ length(t ) = 4) then the

length of the resulting string is 9. One may verify that there are

10, 005 possible pairs of strings (s, t ) that satisfy this constraint. If

¬begins(s, t ) ∧ length(s ) = 5 ∧ length(t ) = 5 then the resulting

string will have length 10, and there are 99, 999 possible (s, t ) which

satisfy this constraint. Assuming that s is uniformly distributed, we

can compute the probability of each observation by dividing the

number of solutions by the total domain size.

Prior work in quantitative information flow has proposed using

entropy as a measure of information leakage [5, 8, 29, 30, 34]. Given

a probability distribution over program observables, the Shannon

entropy of the distribution is defined as H (p) = −
∑n
i=1 pi logpi .

Applying this to the probabilities computed using a model counting

constraint solver, we can quantify the amount of information leaked

for our example as 0.52 bits. Note that, in addition to a standard

symbolic execution tool, all we need in order to be able to perform

this kind of quantitative information flow analysis is a model count-

ing constraint solver, and for this particular example, we need a

model counting constraint solver that can handle string constraints

and numeric constraints together.

2 CONSTRAINT LANGUAGE

We define our constraint language using the grammar shown in

Fig. 1, where φ denotes a formula, β denotes a numeric term, γ

denotes a string term, φZ denotes a numeric constraint (an atomic

formula) constructed from terms and expressions, φS denotes a

string constraint (an atomic formula) constructed from terms and

expressions, ρ denotes a constant regular expression, n denotes an

integer constant, ⊤ and ⊥ denote constants true and false, and vi
and vs denote integer and string variables, respectively. We use α

to denote φ, φZ, φS, β , or γ .

Given alphabet Σ, s ∈ Σ∗ denotes a string value and ε denotes

the empty string. A character is a string that has length one. The

string operations ł·", łp", and ł∗" correspond to regular expression
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φ −→ φ ∧ φ | φ ∨ φ | ¬φ | φZ | φS | ⊤ | ⊥

φZ −→ β = β | β < β | β > β

φS −→ γ = γ | γ < γ | γ > γ |match(γ , ρ ) | contains(γ , γ )
| begins(γ , γ ) | ends(γ , γ )

β −→ vi | n | β + β | β − β | β × n
| length(γ ) | toint(γ ) | indexof (γ , γ ) | lastindexof (γ , γ )

γ −→ vs | ρ | γ · γ | reverse(γ ) | tostring(β ) |charat(γ , β ) |
| substring(γ , β, β ) | replacefirst(γ , γ , γ ) | replacelast(γ , γ , γ )
| replaceall(γ , γ , γ )

ρ −→ ε | s | ρ · ρ | ρ p ρ | ρ∗

Figure 1: Constraint language grammar

operations concatenation, alternation, and Kleene closure, respec-

tively. Comparators ł<ž and ł>ž on string terms correspond to

lexicographical comparisons. An atomic constraint refers to a for-

mula without any boolean connectives. Notice that an integer term

produced from the production rule β may contain string terms γ

and vice versa; a constraint produced in this way is called a mixed

constraint. The constraint language from Fig. 1 is rich enough to

capture common constraints that appear in Java and PHP programs.

Formal semantics of this constraint language is described in [3].

The set of variables present in φ is given byV (φ). Amodel for φ

is an assignment of all variables inV (φ) where φ evaluates to true.

The truth set of a formula φ, denoted JφK, is the set of all models of

φ. The goal of model counting is to determine the size of JφK.

3 CONSTRAINT SOLVING VIA AUTOMATA

A multi-track DFA A is a 5-tuple (Q, Σ⃗,δ ,q0, F ), where Q is the set

of states, Σ⃗ = (Σ ∪ {λ})k is the k-track input alphabet where Σ is

the set of alphabet symbols for one track, λ < Σ is a padding symbol

that appears only at the end of a string in each track, δ : Q × Σ⃗→ Q

is the transition relation, q0 ∈ Q is the initial state, and F ⊆ Q

is the set of accepting states. Multi-track DFA are closed under

intersection, union and complement [42]. With each track of A, we

associate a unique identifier vi , which we refer to as the variable

for track i . The set of track variables for A is denotedV (A). The

language of all strings recognized by A is denoted L (A) where

L (A) ⊆ Σ⃗∗. Given a wordw ∈ L (A), we usew[vi ] ∈ Σ
∗ to denote

the value of track i . Hence, w ∈ L (A) denotes a tuple of values

(w[v1],w[v2], . . . ,w[vk ]), one value for each variable inV (A).

Given a formula φ, our goal is to construct an automatonA, such

that L (A) = JφK, where the tracks of A correspond to the variables

of φ. We call this DFA the solution automaton for φ. Some mixed

constraints and some pure string constraints have non-regular truth

sets [42]. For such constraints we provide a sound over approxima-

tion by constructing an automaton A such that JφK ⊆ L (A).
During our construction, in addition to having one track for each

variable of the formula in the multi-track automaton, we also create

one track for each string term (shown asγ in Figure 1) and one track

for each numeric term (shown as β in Figure 1). Actually, for the

terms that correspond to addition, subtraction and multiplication

with a constant we do not create separate tracks as we discuss in

Section 3.3. Given a term γ or β , we use t(γ ) and t(β ) to denote

the tracks that those terms are associated with.

We define a projection operation π such that, given an automaton

A and a variable set V , π (A,V ) is an automaton A′ whereV (A′) =

Algorithm 1 Solve(A,α )

Procedure operates on an automaton A which is passed by reference and

has a track for each variable and term in α .

α is one of the following: a conjunction of numeric and string constraints,

a string constraint, a numeric constraint, a string term, or a numeric term.

⋆ ∈ {=, ,, <, ≤, >, ≥, match, ¬match, contains, ¬contains,

begins, ¬begins, ends, ¬ends}

⊙ ∈ {−, +, ×, length, toint, indexof, lastindexof, reverse, tostring,

charat, substring, replacefirst, replacelast, replaceall}

1: if α ≡ α1 ∧ α2 then
2: Solve(A, α1 ); Solve(A, α2 );
3: Propagate(A, α1 ); Propagate(A, α2 );
4: else if α ≡ α1 ⋆α2 then
5: Solve(A, α1 ); Solve(A, α2 );
6: Refine(A, ⋆, t(α1 ), t(α2 )) ▷ modifies tracks t(α1 ) and t(α2 )
7: Propagate(A, α1 ); Propagate(A, α2 );
8: else if α ≡ ⊙(α1, . . . , αn ) then
9: for all αi ∈ {α1, . . . , αn } do
10: Solve(A, αi );
11: end for
12: Restrict(A, t(α ), ⊙, t(α1 ), . . . , t(αn )); ▷ modifies track t(α )
13: end if

Algorithm 2 Propagate(A,φ)

Procedure operates on an automaton A which is passed by reference and

has a track for each variable and term in φ .

⊙ ∈ {−, +, ×, length, toint, indexof, lastindexof, reverse, tostring,

charat, substring, replacefirst, replacelast, replaceall}

1: if φ ≡ ⊙(α1, . . . , αn ) then
2: Refine(A, t(α ), ⊙, t(α1 ), . . . , t(αn )); ▷ modifies tracks t(α1 ) to t(αn )
3: for all αi ∈ {α1, . . . , αn } do
4: Propagate(A, αi );
5: end for
6: else if φ ≡ φ1 ∧ φ2 then
7: Propagate(A, φ1 ); Propagate(A, φ2 );
8: else if φ ≡ φ1 ∨ φ2 then
9: Aφ1 = A ∩ Aφ1 ; Aφ2 = A ∩ Aφ2 ;

10: Propagate(Aφ1, φ1 ); Propagate(Aφ2, φ2 );

11: end if

V . Let x1, . . . ,xn ∈ V \V (A) be the variables inV but not inV (A)

and y1, . . . ,ym ∈ V (A) \ V be the variables in V (A) but not in

V . That is, we wish to add new unconstrained xi tracks to A and

removeyj tracks fromA. Then, we define π (A,V ) to be amulti-track

DFA A′ withV (A′) = V such that:

w ′ ∈ L (A′) ⇔ ∃w ∈ L (A), ∀v ∈ V (A′) ∩ V (A), w[v] = w ′[v].

3.1 Automata Construction

Since the negation operator is non-monotonic and since we some-

times over-approximate the solution sets of subformulas, before the

automata construction, we convert the input formula to negation

normal form by pushing negations to atomic formulas.

We first describe our automata construction algorithm for con-

straints which are conjunctions of numeric and string constraints

(i.e., φZ and φS in Fig. 1, respectively). We describe how we handle

combinations of conjunctions and disjunctions later.

Let φ be a formula which is a conjunction of numeric and string

constraints. The automata construction procedure Solve (Algo-

rithm 1) recursively constructs a multi-track automaton A such

that, whenA is projected to the variables of φ (i.e.,V (φ)), it accepts

an over approximation ofφ solutions set, i.e., JφK ⊆ L (π (A,V (φ))).
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Procedure Solve passes the automaton A by reference, so there

is a single automaton A that is being modified. Before the first call

to the Solve procedure, A is initialized so that all tracks accept all

strings, i.e., initially, L (A) = Σ⃗∗.

The procedure Solve uses three other procedures during the

construction of automaton A: Restrict, Refine and Propagate.

Again, the automaton A is passed by reference, so all these proce-

dures modify the same automaton A during construction.

The procedure Restrict is used to compute the result of a string

or numeric operator. Note that, there is a track in A for each term

in φ, so the result of each string or numeric operator has a track

reserved for the corresponding term. Let us denote the string or

numeric operator with the symbol ⊙, where α ≡ ⊙(α1, . . . ,αn ).

Then, Restrict(A, t(α ), ⊙, t(α1), . . . , t(αn )) restricts the track in

A that corresponds to the term ⊙(α1, . . . ,αn ) based on the tracks of

the arguments α1, . . . ,αn in A. For this to work, we need to make

sure that the arguments’ tracks are processed first, and this is done

in the for loop before Restrict is called.

For example, consider the term charat(v, i ). Restrict(A,

t(charat(v, i )),charat, t(v ), t(i )) restricts track t(charat(v, i )) in

A to string values that correspond to characters that can appear at

location i of stringv , where possible values forv and i are specified

by the values recognized by tracks t(v ) and t(i ), respectively.

The procedure Refine is used to reflect the constraint imposed

by a string or numeric predicate or its negation to its arguments.

Let us denote the string or numeric predicate with the symbol ⋆,

where α1⋆α2 and α1 and α2 are string or numeric terms. Then,

Refine(A,⋆, t(α1), t(α2)) reflects the constraint imposed by the

predicate α1⋆α2 to the tracks t(α1) and t(α2). Before Refine is

called arguments of the predicate ⋆ are processed.

For example, for the equality predicate charat(v, i ) = "a",

Refine(A,=, t(charat(v, i )), t("a")) restricts the set of values for

track t(charat(v, i )), to the string "a". Note that, since "a" is a

constant, we do not actually need a track for it, but for simplicity

of presentation, let us assume that constants are also assigned a

track which accept just the value that corresponds to the constant.

After Refine is called, the set of strings recognized by the argu-

ments’ tracks may have changed and must be propagated to the

other tracks (as arguments can be terms constructed from other

arguments). This is done using the Propagate procedure. For exam-

ple, once we refine the set of values for track charat(v, i ) based on

the predicate charat(v, i ) = "a" we have to propagate this change

to the arguments of the operatorcharat and refine the values for

t(v ) and t(i ). We call Propagate(A,charat(v, i )) to do this.

In general, we use the Propagate procedure when the result

of a string or numeric operator is refined due to a string or nu-

meric predicate, and this refinement has to be propagated to the

arguments of the operator. As shown in Algorithm 2, Propagate(A,

⊙(α1, . . . ,αn )) first callsRefine(A, t(α ), ⊙, t(α1), . . . t(αn ))which

refines the tracks for the arguments of the operator ⊙ based on the

track for the ⊙ term. After this refinement, it recursively calls the

procedure Propagate on the arguments of the ⊙ term to further

propagate the refinement.

As shown in Algorithm 3, we extend the Solve procedure to

combinations of conjunctions and disjunctions. For conjunctions

we use a single automaton. After a conjunction is solved, it is

Algorithm 3 Solve(A,φ)

Procedure operates on an automaton A which is passed by reference.

Disjunctions create a separate automaton for each disjunct.

Conjunctions use a single automaton for all conjuncts.

1: if φ ≡ φ1 ∨ φ2 then
2: Solve(Aφ1, φ1 ); Solve(Aφ2, φ2 ) ;
3: A = Aφ1 ∪ Aφ2 ▷ Union computed using automata product

4: else if φ ≡ φ1 ∧ φ2 then
5: Solve(A, φ1 ); Solve(A, φ2 );
6: Propagate(A, φ1 ); Propagate(A, φ2 );
7: Solve(A, φ1 ); Solve(A, φ2 );
8: end if

0 1 2
(0, 1)

(1, 0)
(1, 1)

(0, 1)

(0, 0)

(0, 0)(i, j )

0 1 2
b

a, b

a
a, bv

Figure 2: Automata constructed for Example 1

necessary to propagate the result to the children of the conjunction.

After propagation, the conjunction is solved again so that the final

automaton captures all the refinements.

For disjunctions, each disjunct has its own automaton. Then, the

automaton for the disjunction corresponds to the automaton that

accepts the union of sets accepted by each disjunct automaton. We

compute the union automaton using automata product.

Let us consider the following example constraint:

charat(v, i ) = "a" ∧ i = 2 × j (1)

We show the resulting automata in Figure 2. Note that, to make

the example more readable, we split the automaton to two, one

for string variables and one for integer variables. In fact, in our

implementation we also split the automata to multiple automata

based on the dependencies among variables, which we discuss later

with other heuristics.

3.2 String Constraint Solving

We now discuss how Algorithm 1 handles atomic constraints α ≡

α1⋆α2, when α is a φS term, ⋆ is a string predicate, and α1 and α2
are string terms (γ ). In particular, we will focus on the Restrict

and Refine procedures on string terms and string predicates, and

discuss a representative subset of string terms and string predicates.

Let us use the notation introduced in Figure 1 where β denotes

integer terms, γ denotes string terms, and ρ denotes regular expres-

sion terms. Given an automaton A, function t(α ) represents the

possible values of the term α that is encoded as a track in the given

automaton. Let t′(α ) represent the result of a Restrict or Refine

procedure call on the corresponding track. The prefixes : Σ∗ → Σ∗

function computes the set of prefixes for a given set of strings and

the suffixes : Σ∗ → Σ∗ function computes the set of suffixes for

a given set of strings. Both functions can be implemented using

projection, determinization, and minimization operations on DFAs.

Let us consider the operations length, indexof , substring,charat,

and ł·ž (string concatenation) operations.
Restrict(A, t(length(γ )), length, t(γ )):

t′(length(γ )) = {i | ∃s ∈ t(γ ) : i = |s | ∧ i ∈ t(length(γ )) }
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Restrict(A, t(indexof (γ1, γ2)), indexof, t(γ1), t(γ2)):

t
′(indexof (γ1, γ2)) = {i | ∃s ∈ prefixes(t(γ1)), u ∈ t(γ2),

v ∈ Σ∗ : suv ∈ t(γ1) ∧ ∄s1 ∈ suffixes(prefixes(s )) :

s1 = u ∧ i = |s | ∧ i ∈ t(indexof (γ1, γ2)) }

Restrict(A, t(substring(γ , β1, β2)), substring, t(γ ), t(β1), t(β1)):

t
′(substring(γ , β1, β2)) = {s | ∃t ∈ t(γ ) : ∃t1 ∈ prefixes(t ),

t2 ∈ Σ
∗ : t = t1t2 ∧ |t1 | ∈ t(β1) ∧ ∃v ∈ prefixes(t2) :

|v | ∈ t(β2) ∧ s = v ∧ s ∈ t(substring(γ , β1, β2)) }

Restrict(A, t(γ1 · γ2), ·, γ1, γ2):

t
′(γ1 · γ2) = {s | ∃s1 ∈ t(γ1), s2 ∈ t(γ2) : s = s1s2 ∧ s ∈ t(γ1 · γ2) }

Note thatcharat operation can be rewritten as substring(γ , β, 1)

where the last parameter is the length of the substring, hence the

Restrict and Refine forcharat can be computed using correspond-

ing operations for substring.

Let us now discuss the Refine procedure. Consider the string

predicates =, match, and contains. Predicate operations create a

boolean relation between the input tracks. We define the relation

with tuples of strings that correspond to values from input tracks.

Refine(A, =, t(γ1), t(γ2)) : {(s, t ) | s ∈ t(γ1) ∧ t ∈ t(γ2) ∧ s = t }

We can implement the semantics of the equality predicate using the

multi-track DFAs precisely. Procedure Propagate must be called

when tracks represent terms that include string term operations.
Refine(A, match, t(γ ), t(ρ )): {s | s ∈ t(γ ) ∧ s ∈ t(ρ ) }

Note that match operation takes a constant regular expression as

an argument. We do not need to create a relation between a string

term and a constant regular expression constant. Hence, we only

refine the string term in the match predicate.

Refine(A, contains, t(γ1), t(γ2)): {(s, t ) | s ∈ t(γ1) ∧ t ∈ t(γ2) ∧ s ∈

Σ∗t(φ2)Σ
∗ ∧ t ∈ suffixes(prefixes(t(γ1)) }

Here, semantics of the contains operation does not enforce the rela-

tion between the input tracks’ values. In other words, if one of the

tracks is updated by another operation, we need to propagate that

update back to the contains operation. The Propagate procedure

calls after conjunctions make sure that refinement for the contains

operation is executed again once there is an update.

Next, we define the Refine semantics for the string term oper-

ations. Let us consider the operations length, indexof , substring,

charat, and ł·ž again.
Refine(A, t(length(γ )), length, t(γ )):

t
′(γ ) = {s | ∃t ∈ t(length(γ )) : |s | = t ∧ s ∈ t(γ ) }

Refine(A, t(indexof (γ1, γ2)), indexof, t(γ1), t(γ2)):

t
′(γ1) = {s | ∃t, u, v ∈ Σ

∗ : |t | ∈ t(indexof (γ1, γ2)) ∧

u ∈ t(γ2) ∧ s = tuv ∧ s ∈ t(γ1) } ∧

t
′(γ2) = {s | ∃t, v ∈ Σ

∗ : t ∈ t(indexof (γ1, γ2)) ∧

tsv ∈ t(γ1) ∧ s ∈ t(γ2) }

Refine(A, t(substring(γ , β1, β2)), substring, t(γ ), t(β1), t(β1)):

t
′(γ ) = {s | ∃t, u ∈ Σ∗, v ∈ t(substring(γ , β1, β2)) :

|t | ∈ t(β1) ∧ |v | ∈ t(β2) ∧ s = tvu ∧ s ∈ t(γ ) } ∧

t
′(β1) = {i | ∃t, u ∈ Σ

∗
, s ∈ t(γ ), v ∈ t(substring(γ , β1, β2)) :

|v | ∈ t(β2) ∧ s = tvu ∧ i = |t | ∧ i ∈ t(β1) } ∧

t
′(β2) = {i | ∃t, u ∈ Σ

∗
, s ∈ t(γ ), v ∈ t(substring(γ , β1, β2)) :

|t | ∈ t(β1) ∧ s = tvu ∧ i = |v | ∧ i ∈ t(β2) }

0

1

2 3

(0, 0)
(0, 1)

(0, 0)

(0, 1)

(1, 0)
(1, 1)

(1, 0)

(1, 1)

(i, j )

Figure 3: Automaton built for the constraint φ1 ≡ i = 2 × j

Refine(A, t(γ1 · γ2), ·, t(γ1), t(γ2)):

t
′(γ1) = {s | ∃t ∈ t(γ1 · γ2), v ∈ t(γ2) : t = sv ∧ s ∈ t(γ1) } ∧

t
′(γ2) = {s | ∃t ∈ t(γ1 · γ2), v ∈ t(γ1) : t = vs ∧ s ∈ t(γ2) }

The algorithms for the Restrict and Refine procedures are

based on pre- and post-image computation in string analysis similar

to the ones used in [2, 39, 40].

Let us consider the string constraint example charat(v, i ) =

"a" again. Initially t(v ) and t(i ) are unconstrained. Based on the

semantics, Restrict(A, t(charat(v, i )), Σ∗, Σ∗) computes the set

for t′(charat(v, i )) as Σ∗. Next, the Refine(A,=, Σ∗,"a") refines

t(charat(v, i )) as {"a"}. Note that, we are not able keep the relation

between charat(v, i ), v , and i once they are computed. As equality

predicate updates the t(charat(v, i )), we need to propagate the re-

sult back tov and i . In the final step,Refine(A, {"a"},charat, Σ∗, Σ∗)

is called to refine v and i . The final refinement sets the t(v ) as

Σ∗"a"Σ∗ and t(i ) as {i | i >= 0}.

3.3 Integer Constraint Solving

We now focus out attention to the branch of Algorithm 1 for α ≡

α1⋆α2, when α is a φZ term, ⋆ is an integer term comparison

operator, and α1 and α2 are linear combinations of atomic integer

terms. Any such integer term constraint can be rewritten bymoving

all terms to one side of ⋆ and decomposing it into a semantically

equivalent conjunction of constraints in which⋆ is ≤. Thus, without

loss of generality, we focus on integer term constraints of the form

φZ ≡ 0 ≤

n∑

i=1

ciβi (2)

where ci denotes an integer constant coefficient and βi is an atomic

integer term.

Algorithm 1 is written in a way that it would process each binary

+ term separately. However, in the case of integer constraints of

the form in expression 2, we construct a DFA for all terms of φZ
at once. That is, when we call Refine(A, ≤, t(β1), . . . , t(βn )) we

use an automaton construction that updates all βi tracks simultane-

ously. This automata construction method is based on algorithms

that construct a binary adder state machine [9]. Given φZ as in

expression 2, we use those algorithms to directly construct a multi-

track automaton A over the binary alphabet {0, 1} such that each

track corresponds a βi , and L (A) is the set of tuples of satisfy-

ing assignments for (β1, . . . , βn ), encoded as binary integers in 2’s

complement form, reads from least to most significant bit.

For instance, consider the constraint i = 2×j for integer variables

i and j. The binary DFA for this constraint is depicted in Figure 3.

One possible accepting sequence of states is 0, 2, 3, 0, 1. By taking

the right-hand concatenation (as the DFA reads least significant bits

first) of the pairs of bits along the corresponding transitions, we get
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(0110, 0011) in binary which is (6, 3) in decimal. The DFA captures

all possible integer solutions in this way, with leading 1’s indicating

negative numbers in the standard 2’s complement encoding.

3.4 Binary and Unary Encodings

A string term can have integer sub-terms and a integer terms can

contain string sub-terms. As described in the earlier discussion of

Algorithm 1, we call Propagate, Refine, and Restrict to update

the relationship between the string and integer variables. However,

our binary integer arithmetic representation is not directly compat-

ible with automaton operations over standard string automata.

As just described, we can precisely solve multi-variable linear

integer arithmetic constraints by constructing a multi-track binary

integer automaton that recognizes tuples of solutions. However,

integer variable solutions can be related to string variables through

operations that have both string and integer parameters such as

length or indexof . Given the DFA representing the solutions for

integer variables, we must propagate the constraints imposed by

the integer solutions to each related string variable. We do so by

first converting the binary DFA solution representation A for an

integer variable i to a set comprehension representation S .

Our conversion from binary integer DFA A to a set compre-

hension S uses algorithms from [23, 24, 41], which show how

to construct a description of a semilinear set from a binary DFA,

which we now describe at a high level. A linear set Li is given by

{a0 + a1k1 + . . . ankn : kj ∈ Z} where the aj constant integers are

called the periods of the linear set. A semilinear set S is a finite union

of linear sets, S = ∪iLi . For any binary integer DFA A constructed

from linear integer arithmetic constraints, the accepted integers for

each track of A form a semilinear set. Furthermore, for any track

(which corresponds to an integer term), we can recover a set com-

prehension for the semilinear set S that it represents [23, 24, 41].

Intuitively, this works by examining the periods of the loops in

the strongly connected components of the binary DFA in order to

find the periods for a linear set Li ⊆ L (A). A DFA representing

the set Li is then subtracted from A using DFA complement and

intersection, and we iterate this procedure until L (A) = ∅.

Once we have S , for a single track of the binary DFA A, which

corresponds to a single integer terms, we then convert S into a unary

DFAA′, which for any integerm ∈ S accepts all strings of lengthm.

The unary DFAA′ is then compatible with string automata and can

be used to restrict or refine the set of string models. For example, if

S = {2 + 5k1 + 4k2} the corresponding unary DFA is shown below,

which has an initial segment of length 2 and two interleaved loops

of periods 4 and 5.

0 1 2 3 4 5 6
Σ Σ Σ Σ Σ Σ

Σ

Σ

We described how to propagate solutions from binary integer

DFA to string DFA. In order to propagate solutions from string

DFA to binary integer DFA, we reverse this process by converting

a string DFA into a unary length DFA, extracting the semilinear set,

and constructing the corresponding binary integer DFA.

Consider the following example constraint:

i = 2 × j ∧ length(v ) = i (3)

0 1 2
(0, 0, 1)

(1, 1, 0)
(1, 1, 1)

(0, 0, 1)

(0, 0, 0)

(0, 0, 0)(vl , i, j )

0 1

a, b

a, b

v

Figure 4: Final automata constructed for Example 3

Example 3 is a conjunction of an atomic integer constraints φ1 ≡

i = 2 × j and φ2 ≡ length(v ) = i . The constraint φ2 is also a mixed

constraint as it contains both a string and an integer variable.

Figure 4 shows the final automata constructed for the input

formula φ ≡ i = 2 × j ∧ length(v ) = i . The auxiliary variable vl
represents bitwise encodings of the lengths of the strings that are

represented with the variable v .

4 MODEL COUNTING

In this section, we describe how to perform parameterized model

counting by making use of the automata constructed by our con-

straint solving procedure. The model counting problem is to deter-

mine the size of JφK, which we denote #JφK. While a formula can

have infinitely many models, we can count the number of models

in an infinite space of solutions restricted to a finite range for the

free variables. Hence, we perform parameterized model counting for

string and integer constraints, where #JφK(bS,bZ) is a function over
parameters bS, which bounds the length of string solutions, and bZ,

which bounds the bit-length representation of integer solutions.

The constraint solving procedure produces a final DFA, A, that

contains multi-track solution sub-automata AS and AZ. The sep-

aration of string and integer automata may lose some relational

information between string and integer variables; we can multiply

the model counts for each automaton in order to give a sound upper

bound on the number of models for tuples of integer and string

variables. We use functions #FAS (k ) and #fAZ (k ) to count string

and integer models respectively.

We rely on the observation that counting the number of strings

of length k in a regular language, L, is equivalent to counting the

number of accepting paths of length k in the DFA that accepts L.

That is, by using a DFA representation, we reduce the parameterized

model counting problem to counting the number of paths of a given

length in a graph. In a DFA, there is exactly one accepting path for

every recognized string. Thus, if we are interested in computing

only string models or only integer models, there is no loss of preci-

sion due to the the model counting procedure; any loss of precision

for strings comes from the over-approximations of non-regular

constraints in the solving phase, and for pure integer constraints,

the model counting procedure is precise because integer solution

automata construction is precise.

Given a string automaton AS, computation of #fAS (k ), the num-

ber of accepted strings of length k, can be done by constructing

the transfer matrix of the automaton based on its transition rela-

tion [31, 35]. LetAS be a DFA with n states. The transfer matrixT of

A is a matrix where Ti, j is the number of transitions from state i to

state j . The number of paths of length k that start in state i and end

in state j is given by (T k )i, j . Then the number of strings of length

k accepted by A can be computed using matrix multiplication. We

compute uT kv , where u is the row vector such that ui = 1 if and
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φ ∧ φ → φ φ ∨ φ → φ φ ∨ ⊤ → ⊤
φ ∧ ⊤ → φ φ ∨ ⊥ → φ φ ∧ ⊥ → ⊥
0 × β → 0 1 × β → β β + 0→ β
β − 0→ β β = β → ⊤ i , j → ⊤
−(−β ) → β ¬(¬β ) → β β , β → ⊥
i = j → ⊥ |ϵ | → 0 |vs1 .vs2 | → |vs1 | + |vs2 |
γ .ϵ → γ ϵ .γ → γ match(γ , t ) → γ = t

γ = γ → ⊤ γ1 .t = γ2 .v → ⊥ contains(γ2 .γ1 .γ3, γ1 ) → ⊤
γ , γ → ⊥ γ1 .t , γ2 .v → ⊤ begins(γ1 .γ2, γ1 ) → ⊤
t = v → ⊥ t .γ1 = v .γ2 → ⊥ ends(γ2 .γ1, γ1 ) → ⊤
t , v → ⊤ t .γ1 , v .γ2 → ⊤ t .γ1 = t .γ2 → γ1 = γ2
t1 .t2 → t1t2 γ1 .t = γ2 .t → γ1 = γ2

Figure 5: Term reduction rules

only if i is the start state and 0 otherwise, andv is the column vector

where vi = 1 if and only if i is an accepting state and 0 otherwise.

Note that for relational string constraints, the transition alphabet is

over tuples of characters and the method described here will count

the number of tuples of solutions of a given length. Our counting

method is parameterized in the following sense: after a constraint

is solved, we can count the number of solutions of any desired size

k by computing uT kv , without re-solving the constraint.

The method described above computes #fAS (k ), the number of

string solutions of length exactly k . It is of interest to compute

#FAS (k ), the number of solutions within a given bound. This is

accomplished easily using a known łtrickž often used to simplify

graph algorithms. We add an artificial accepting state sn+1 to AS,

resulting in a new DFA A′
S
, with λ-transitions from each accepting

state to sn+1, and a λ-cycle on sn+1. Then one can see that #FAS (k ) =

#fA′
S
(k + 1), and so we apply the transfer matrix method on A′

S
.

The method for counting strings of a given length allows us to

perform model counting for linear constraints as well. However, we

must interpret the bound k in a slightly different manner. A solution

DFA AZ for a set of integer tuples encodes the solutions as bit-

strings. Thus, paths of length k in an integer automaton correspond

to bit string of length k . Since we are using a 2’s complement

representation with leading sign bits, bit strings of exactly length k

correspond to integers in the range [−2k−1, 2k−1). Thus, the transfer

matrix method allows us to perform model counting over integer

domains parameterized by intervals of this form by computing

#fAZ (k ). To count models for arbitrary intervals (a,b), we intersect

AZ with the DFA representing a ≤ xi ≤ b for any variable xi , and

then count paths in the resulting DFA.

The methods described above allow us to compute #FAS (k )

and #fAZ (k ) independently. Now, we can compute #φ (bS ,bZ) =

#FAS (bS ) · #fAZ (bZ).

5 CONSTRAINT SIMPLIFICATION

Weuse several heuristics to simplify the constraints before automata-

construction and model counting steps.

Term Re-Write Rules: All terms are first reduced with respect

to a re-write system based on a set of rules (Fig. 5). These rules

include both term normalization rules and tautological simplifica-

tions of atomic constraints. Here, i, j are distinct integer constants,

t ,v are distinct string constants and γ1,γ2,γ3 are (not necessarily

distinct) string terms.

Dependency Analysis: To reduce the amount of work required

to solve a constraint, we note that not all variables of a constraint

γ1 .begins(γ2 ) → |γ1 | ≥ |γ2 | γ1 .contains(γ2 ) → |γ1 | ≥ |γ2 |
γ1 .ends(γ2 ) → |γ1 | ≥ |γ2 | ¬γ .ends(t ) → γ , t

¬γ .contains(t ) → ¬γ .begins(t )
γ1 .γ2 = γ3 .γ4 → |γ1 | + |γ2 | = |γ3 | + |γ4 |

γ1 .γ2 = γ3 → |γ1 | + |γ2 | = |γ3 | ∧ γ3 .begins(γ1 )

Figure 6: Implication rules

need be counted together. We define the constraint graph of a for-

mula φ to be the graph defined on the set of variables of φ where

an edge exists between any two variables if they appear in the

same clause of φ. This constraint graph can be decomposed into a

finite set of connected components. A connected component C is

a maximal subgraph such that if u,v ∈ C then there exists a path

between u and v in C . Constraints on any given variable depend

only on variables within its connected component. This allows us

to decompose a formula based on connected components, solve and

count each component individually, and then take the product of

the results to obtain accurate counts for tuples of variables. This

results in smaller automata and faster computation.

Equivalence Classes: When no disjunctions are present, the

variables of a formula φ can be partitioned into equivalence classes

so that any pair of given variables x ,y are in the same equivalence

class only if they have the same solution set. In our implementation,

we construct these equivalence classes based on equality clauses.

Every term, variable or otherwise, begins in its own equivalence

class and for every equality clause, the equivalence classes of the

left and right sides are merged. From each equivalence class a rep-

resentative is chosen. Each variable in the equivalence class is then

replaced by this representative in the formula φ. This optimization

can result in the elimination of variables from φ, and hence tracks

from its DFA, without any loss of precision in counting.

Term Elimination via Substitution: Constraints generated

from symbolic execution in the presence of loops result in the ad-

dition of many intermediate variables and terms, usually due by

loop unrolling. These intermediate terms form a continuous link

between the state of variables before and after the loop body, rep-

resented as conjunctions between word equations. If the variables

do not appear elsewhere in the constraint formula, we collapse this

chain into a single word equality.

Implication Rules: As noted previously, our automata con-

struction for some constraints can be imprecise. Precision can be

improved for some of these constraints by augmenting the original

formula φ with clauses implied by φ. We present a set of implication

rules which define the augmenting clauses added to φ in the pres-

ence of certain imprecise constraints in Fig. 6. We only add a clause

to φ if we can solve it precisely and if it can potentially improve the

precision for another constraint. Implications on string variables

appearing in multiple word equations under the same conjunction

are combined into a single implication whenever possible.

6 IMPLEMENTATION AND EXPERIMENTS

We implemented the techniques we presented in this paper in

a tool called Multi-Track Automata Based model Counter (MT-

ABC)1 by extending an existing tool called Automata Based Model

Counter (ABC). We evaluated the precision and performance of MT-

ABC using three types of constraints: constraints solely on string

1available at https://github.com/vlab-cs-ucsb/ABC
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variables, constraints solely on integer variables, and constraints

that contain both string and integer variables.

We experimentally compared MT-ABC with five existing model

counting constraint solvers: (1) ABC [4], a single-track automata-

based model counter for strings, (2) S3# [38], a model counter for

strings with some capability of handling relations between strings

and integers, (3) SMC [27], a string model counter, (4) LattE [7, 26],

a model counter for linear arithmetic constraints, and (5) SMTAp-

proxMC [14], an approximate model counter for the theory of

fixed-width words.

Our experiments show: 1) MT-ABC is as or more precise with

comparable efficiency than existing string model counters. 2) Multi-

track automata enables MT-ABC to capture relations between vari-

ables more precisely than single-track automata used in ABC. 3)

Parameterized model counting enables MT-ABC to compute mul-

tiple length bounds for the same formula efficiently without re-

solving. 4) MT-ABC and S3# are the only tools that support mixed

constraints with string and integer variables. MT-ABC is as or more

precise than S3# for model counting constraints involving relations

between string and integer variables, MT-ABC can handle a richer

set of constraints than S3#, and S3# produces unsound results.

All experiments, other than those involving S3#, were done on

an Ubuntu 16.04 machine with Intel i5 3.5GHz X4 processors and

32GB of memory. We were unable to run S3# on Ubuntu 16.04; all

experiments involving S3# were done on the same machine but

within an Ubuntu 14.04 virtual machine with 8 GB of memory.

6.1 String Constraints

Security Benchmark: Constraints in this benchmark are taken

from various security contexts [27, 38]. For example, two constraints

extracted from string manipulation utilities within the BUSYBOXY

v.1.21.1 package (wc and grep), and one constraint extracted from a

utility in the COREUTILS v.8.21 package (csplit) are used to quantify

information leakage for homomorphically encrypted inputs.

Table 1 shows the results of MT-ABC, ABC, S3#, SMC for the

security benchmark. Second column shows the string length value

used for model counting (i.e., the tools count the number of solution

strings with the specified length), last column indicates scale for

larger lengths. Both MT-ABC and ABC report an upper bound on

the number of solutions, while both SMC and S3# give both lower

and upper bounds (S3# reports an exact count when the bounds are

the same). Both MT-ABC and S3# generate bounds which are as or

more precise than those reported by SMC. In all cases, MT-ABC is as

or more precise than ABC. The bounds generated by both MT-ABC

and S3# agree for all constraints except ghttpd and ghttpd_ wo_len,

where ghttpd_ wo_len is derived from ghttpd by removing the part

of the constraint that uses the string length function. For solution

strings of length 620, the two solvers give different counts. We could

not confirm the model count for these constraints as they are too

complex to manually count. However, while experimenting with

variations of these constraints, we found out that S3# computes an

erroneous count for a simplified version of these constraints. So,

we believe that the count that S3# reports is erroneous.

The running times for all four model counters are comparable

for small constraints (obscure, strstr, regex, contains). For large con-

straints (ghttpd, wc, csplit, nullhttpd), ABC either times out after

20 minutes or runs out of memory, while both MT-ABC and S3#

produce results faster than SMC. When the input constraint con-

tains a high concrete value for the string length (ghttpd, wc, grep),

MT-ABC generates a large automaton, which leads to a higher run-

ning time, whereas without the length constraint (ghttpd_wo_len),

both MT-ABC and ABC produce results quickly.

Simplified Kaluza Benchmark: Simplified Kaluza benchmark

is a set of satisfiable constraints generated via symbolic execution of

JavaScript and originally solved with the Kaluza string solver [33].

The authors of SMC simplified the Kaluza benchmark by replacing

integer variables with constants and by removing disjunctions,

since SMC cannot handle integer variables and loses precision for

disjunctive constraints. Then, they translated these constraints into

their input format and separated them into two sets: SMCSmall and

SMCBig. We translated them from SMC format to MT-ABC input

format. The SMCSmall set contains 17544 constraints and SMCBig

contains 1342 constraints. Each constraint contains a query variable

tomodel count on.We compared the performance and upper bounds

produced by MT-ABC, ABC, and SMC using this benchmark.

Table 2 compares MT-ABC to ABC and MT-ABC to SMC for

solution strings less than or equal to 50. We did not include S3# in

this comparison since S3# can only model count solution strings

having length exactly equal to the given given length.

For SMCSmall constraints ABC takes 0.0036s per constraint,

SMC takes 0.42s per constraint, and MT-ABC takes 0.011s per con-

straint, on average. For SMCBig constraints ABC takes 6.09s per

constraint, SMC takes 4.08s per constraint, and MT-ABC takes 1.35s

per constraint, on average. For SMCSmall constraints, MT-ABC

generates a more precise count than ABC for 6% of the constraints,

and MT-ABC generates a more precise count than SMC for 0.9%

of the constraints. For SMCBig constraints, MT-ABC generates a

more precise count than ABC for 78% of the constraints, and MT-

ABC generates a more precise count than SMC for 75.9% of the

constraints. MT-ABC reported a higher count than SMC for one

constraint; we manually determined MT-ABC reports the exact

count in this case and concluded that the count reported by SMC is

erroneous. In summary, for small constraints the performance of

all three solvers are comparable, but for big constraints, MT-ABC

is more efficient than ABC and SMC and produces more precise

counts than ABC and SMC for more than 75% of the big constraints.

6.2 Integer Constraints

Comparison with LattE: We compare the performance of MT-

ABC with LattE for model counting linear arithmetic constraints on

benchmarks containing constraints generated during reliability [15]

and side-channel analyses of Java programs using the symbolic ex-

ecution tool SPF [6, 8]. We extended the reliability benchmark by

adding Merge sort, Quick sort, and Binary search functions. Pass-

word, LawDB, and CRIME come from side-channel analysis [6, 8].

Password, LawDB and Binary have 7,8, and 13 constraints respec-

tively; the others range from 600-2000 constraints each.

Some of the constraints (e.g., the constraints coming from the

sorting functions) require a data structure with a certain size in

order to enable symbolic execution. We fixed the size of such struc-

tures to 6. We counted solutions to the path constraints given bit-

lengths 4, 8, 16, and 32. MT-ABC and LattE return identical counts
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Table 1: Experiments with MT-ABC, ABC, S3#, and SMC on security benchmark. Unsound results are highlighted.

Program Len
SMC ABC MT-ABC S3#

Lower/Upper Bound Time Upper-Bound Time Upper-Bound Time Exact Count Time Count Scale

ghttpd
620 [10626.2;1031904473.2] 26.07 ś ś 1031904473 21.69 1031904472.8 0.54 × 101465

11 [256;767] 0.49 767 0.56 767 0.029 767 0.49

ghttpd wo_len
620 [10626.2;1031904473.2] 25.99 1031904473 0.55 1031904473 0.14 1031904472.8 0.52 × 101465

11 [256;767] 0.49 767 0.57 767 0.069 767 0.49

nullhttpd 500 [2.9;1369.8] 9.78 ś ś 0 0.032 0 0.47 × 101129

csplit 629 [5.9 ∗ 101460 ;3.1 ∗ 101481] 98.01 ś ś 0 0.024 0 0.54

grep 629 [0.7 ∗ 101408 ;0.1 ∗ 101435] 150.97 2.0 ∗ 101473 5.1 0 3.94 0 0.56

wc 629 [0.979;8.0] 153.93 ś ś 0.979 9.05 0.979 3.35 × 101289

obscure1 10 [11.2;11.6] 0.45 11.2 0.013 11.2 0.023 11.2 0.46 × 1023

obscure2 6 [2.8;2.8] 0.47 2.8 0.075 2.8 0.077 2.8 0.46 × 1014

strstr1 5 [196608;196608] 0.45 1099511431168 0.017 1099511431168 0.002 1099511431168 0.45
strstr2 5 [16776960;16776960] 0.45 16776960 0.026 16776960 0.004 16776960 0.46
regex 4 [0;0] 0.52 16 0.004 16 0.002 16 0.45
contains 5 [67108096;67108096] 0.45 67108096 0.007 67108096 0.002 67108096 0.46

Table 2: ABC (uABC), MT-ABC (uMT−ABC) and SMC (uSMC) up-

per bounds comparison.

Benchmark #Constraints uMT−ABC < uSMC uMT−ABC = uSMC uMT−ABC > uSMC

SMCSmall 17544 166 (0.9%) 17388 (99.1%) 1 (0.0%)
SMCBig 1342 1019 (75.9%) 323 (24.1%) 0 (0.0%)

uMT−ABC < uABC uMT−ABC = uABC uMT−ABC > uABC

SMCSmall 17544 1025 (6%) 16529 (94%) 0 (0.0%)
SMCBig 1342 1046 (78%) 296 (22%) 0 (0.0%)

Table 3: MT-ABC and LattE average time (seconds) per

numeric constraint for different bit-lengths. The last two

columns denote the combination of all lengths (columns for

lengths 4,16 omitted for space). For each bit-length, the exe-

cution time of the faster tool is in bold.

Bit-length = 8 Bit-length = 32 Bit-length = 4,8,16,32
Benchmark

MT-ABC LattE MT-ABC LattE MT-ABC LattE

LawDB 0.0218 0.0118 0.0223 0.0144 0.0227 0.0408
Heap 0.0165 0.0214 0.0209 0.0217 0.0212 0.0868
Booking 0.0104 0.0133 0.0106 0.0133 0.0107 0.0534
Bubble 0.0184 0.0218 0.0264 0.0221 0.0268 0.0879
Binary 0.0246 0.0250 0.0409 0.0256 0.0410 0.1036
DaisyChain 0.0128 0.0359 0.0138 0.0361 0.0140 0.3571
Selection 0.0171 0.0217 0.0224 0.0219 0.0228 0.0878
Crime 0.0143 0.2628 0.0151 0.2604 0.0153 0.9873
Merge 0.0183 0.0215 0.0262 0.0216 0.0266 0.0868
Flap 0.0094 0.0308 0.0094 0.0308 0.0096 0.1234
Quick 0.0173 0.0219 0.0236 0.0224 0.0239 0.0891
Insertion 0.0190 0.0218 0.0270 0.0220 0.0273 0.0880
RobotGame 0.0113 0.1408 0.0113 0.1397 0.0114 0.5717
AlarmClock 0.0095 0.0121 0.0096 0.0121 0.0097 0.0487
Password 0.0102 0.0542 0.0102 0.0542 0.0102 0.2185

for all constraints as both model counters are precise in counting

linear arithmetic constraints. We focus on the timing comparison

between MT-ABC and LattE. As a side note, the LattE input format

does not support disequalities and thus needs a preprocessing step

when such constraints arise. The LattE integration with SPF uses

Omega [20]; we refer the reader to [6, 8, 15] for integration details.

Figure 3 shows that in general MT-ABC performs better than

LattE, though there are exceptions (such as LawDB, Binary). Note

that MT-ABC always outperforms LattEwhen counting multiple

bit-lengths. Since MT-ABC is a parameterized model counter, it

first solves a constraint without constraints on bit length, and then

Table 4: MT-ABC and SMTApproxMC average time (seconds)

per numeric constraint for different bit-lengths. For each

bit-length, the execution time of the faster tool is in bold.

Bit-length = 2 Bit-length = 3
Benchmark

MT-ABC SMTApproxMC MT-ABC SMTApproxMC

Bubble 0.011 0.502 0.011 1.046
Booking 0.019 0.530 0.018 24.09
Selection 0.017 0.518 0.017 14.29
Password 0.011 47.28 0.011 1680.67
Merge 0.018 0.528 0.018 24.08
FlapController 0.793 1.487 0.791 158.81
Binary 0.009 0.656 0.009 4.525
Insertion 0.019 0.531 0.019 24.05
Heap 0.017 0.513 0.017 10.33
Quick 0.017 0.521 0.017 16.97
Alarm 0.009 0.472 0.010 0.99

reuses the generated automaton to count for multiple bit-lengths.

In contrast, LattE needs to be called separately for each bit-length.

Comparison with SMTApproxMC: We compare the perfor-

mance of MT-ABC with SMTApproxMC using the same program

analysis benchmarks we used in comparison of MT-ABC with LattE.

Since SMTApproxMC targets the theory of fixed-width words, we

translated each benchmark into the SMT2-BitVector format that

SMTApproxMC is able to handle. We ran both MT-ABC and SM-

TApproxMC using bit-lengths of 2 and 3 since SMTApproxMC does

not scale to larger bit-lengths. As some of the benchmarks contains

constants which require more than 2 or 3 bits to be represented

in bitvector format, we omit them from our comparison. Table 4

shows the execution time of both tools. For both bit-lengths and all

benchmarks, MT-ABC is significantly faster than SMTApproxMC.

MT-ABC produces an exact count in every case, while SMTAp-

proxMC reports an approximate count which varies in precision.

The average difference in model count as percentage of the domain

size between the two tools is 3.7% and 4.2%, for bit-lengths of 2

and 3, respectively, with a maximum difference of 23.4% and 25.7%

for bit-lengths of 2 and 3 for the FlapController. For every con-

straint in these benchmarks, MT-ABC significantly outperforms

SMTApproxMC while producing as or more precise counts.

6.3 Mixed String and Integer Constraints

For our final tool comparison we use the unmodified SMT2 Kaluza

benchmark, used in [36], which requires constraint solvers to reason
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about constraints over mixed string and integer variables. In [38]

this benchmark was used by the authors to demonstrate that S3#

can handle mixed string and integer constraints. However, for these

constraints, no model counting was performed, only a satisfiability

check was done in [38]. When we used S3# to model count (by

giving a string length) we found out that S3# reported erroneous

results for many constraints.

We focused on a subset of the SMT2 Kaluza benchmark. We

compared MT-ABC and S3# on 28059 of the smaller constraints

within the benchmark, given a query variable and a string length

bound of 50 (solutions for the query variable must have an exact

length of 50 characters). MT-ABC and S3# agree on 24317 (87%) of

the constraints. In each of these cases, S3# was able to give an exact

count, matching the upper bound given by MT-ABC. In the other

3742 (13%) constraints, S3# reported both a lower and upper bound,

neither of which matched the upper bound reported by MT-ABC.

For the constraints where MT-ABC and S3# produce different

counts, the lower bound reported by S3# was between 1-3 models,

while the upper bound seemed entirely random, fluctuating either

below or above the count reported by MT-ABC. In the SMT2 Kaluza

benchmark, there are many sets of constraints which are essentially

equivalent to each other, some differing only in variable naming.

We manually confirmed the upper bound returned by MT-ABC for

many of the constraints was the exact count, while the upper bound

reported by S3# between identical constraints varied wildly, with

many of them being unsound. Additionally, we found that S3# gives

different results for identical files with different names. Consider a

constraint from the SMT2 Kaluza benchmark, length(s ) = i , where

s is an string variable, i an integer variable. We created three files

each containing this single constraint, differing only in name. For

query variable s and query length 5, the number of models is 2565 =

1099511627776, or 240. While MT-ABC gives the exact count for all

three files, S3# reports three different upper bounds, all unsound

(1.840133, 1.856730, 1.855426). We observed similar behavior from

S3# given different constraints from the Kaluza dataset.

We reached out to the developer of S3# ([38]) for a possible

explanation. One issue is that they assumed that constraints from

the Kaluza data set could be transformed into their solved form, but

they did not verify this, nor the soundness of their results for this

dataset in [38]. Thus, it is possible that either the Kaluza constraints

cannot all be transformed into solved form, or S3# has a faulty

implementation. Additionally, the authors of S3# were unable to

explain why their tool was producing non-deterministic unsound

upper bounds when the input constraint cannot be transformed

into their solved form. Our experiments suggest that the techniques

presented in [38] and their implementation in S3# are not able to

handle mixed numeric and string constraints with both string and

integer variables. Hence, to the best of our knowledge, MT-ABC

is the only model counting constraint solver that can handle this

class of constraints.

7 RELATED WORK

There has been significant amount of work on string constraint

solving in recent years [1, 16, 18, 19, 22, 25, 33, 36, 37, 43]; however

none of these solvers provide model-counting functionality. Mean-

while, due to the importance of model counting for quantitative

program analyses, model counting constraint solvers are gaining

increasing attention. SMC and S3# are model-counting constraints

solvers for string constraints [27, 38]. Our model counting approach

is more precise and more expressive than SMC since SMC cannot

propagate string values across logical connectives and cannot han-

dle complex string operations such as replace. S3# handles string

constraints involving length constraints, but suffers a severe loss

in precision when length constraints include symbolic integers.

Although the expressiveness of S3# is comparable to that of MT-

ABC for string constraints, unlike MT-ABC S3# cannot handle pure

numeric constraints, and it produces unsound results for mixed

constraints.

LattE [7] is a model counting constraint solver for linear integer

arithmetic. LattE uses the polynomial-time Barvinok algorithm [10]

for integer lattice point enumeration. LattE cannot handle string

constraints, so our approach is more expressive than LattE.

Automata-based constraint solving and model counting tech-

niques we use in this paper are not domain-specific like the ap-

proaches used in LattE, SMC, and S3# but general in the sense

that, they can handle any set of constraints that can be mapped to

automata. As we present in this paper, it is possible to map both

numeric and string constraints and their combinations to automata.

While linear algebraic methods for counting paths in a graph are

well established, this paper is the first to implement those methods

for the purpose of parameterized model counting for relational

string and integer constraints. There has been earlier work on

integer constraint model counting by counting paths in numeric

DFA [28], but this earlier approach can only count models when

there are finitely many models. We built MT-ABC by extending an

existing tool called Automata Based model Counter (ABC) [4]. ABC

uses a single-track automata representation. ABC cannot model

count relational constraints and numeric constraints as precisely

as MT-ABC, and it cannot handle constraints with integer vari-

ables. ABC has been integrated with Symbolic PathFinder (SPF)

and applied to side-channel analysis in [8].

SMTApproxMC [14] is a model counting constraint solver for

the theory of fixed-width words, and it uses a different approach

for model-counting based on solution sampling [13]. Since SMTAp-

proxMC cannot handle string constraints, we compared SMTAp-

proxMC with MT-ABC on a set of numeric constraints. MT-ABC

produces precise counts for linear arithmetic constraints whereas

SMTApproxMC can only produce approximations, and our experi-

ments demonstrate that MT-ABC is significantly faster.

8 CONCLUSION

Model counting is a crucial problem in quantitative program analy-

sis. Using automata as a representation for all solutions of a given

constraint reduces the model counting problem to path counting. In

this paper, we show that, using automata-based constraint solving,

one can construct a model counting constraint solver that is able

to handle both string and numeric constraints and their combina-

tions. Our experiments on a large set of constraints generated from

Java and JavaScript programs indicate that, automata-based model

counting approach is as efficient and as precise as domain specific

model counting methods, while it is able to handle a richer set of

constraints than any other model counting constraint solver.
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