
Parameterized Model Counting for
String and Numeric Constraints

¹ Microsoft
² University of California Santa Barbara
³ Harvey Mudd College
⁴ National Chengchi University, Taiwan

Abdulbaki Aydin¹, William Eiers², Lucas Bang³, Tegan
Brennan², Miroslav Gavrilov², Tevfik Bultan², Fang Yu⁴

Quantitative program analysis

Given a program, quantitative program analysis can determine:

● Probability of program behaviors
● Number of inputs that cause an error
● Amount of information leakage

Quantitative program analysis requires model counting:

● Counting the number of satisfying solutions (models) for a given constraint

Our tool MT-ABC is the most expressive model-counting constraint solver!

MT-ABC

formula

𝞿 bound k

counting
function

#𝞿

of models within bound k for
which 𝞿 evaluates to true

INPUT OUTPUT

MT-ABC: Model counting constraint solver

● Language agnostic, supports SMT2Lib format

● Supports string and numeric constraints and their combinations

MT-ABC: Expressive constraint language

MT-ABC in a nutshell

Automata-based constraint solving

Why?

MT-ABC in a nutshell

Automata-based constraint solving

Basic idea:

Automata can represent
sets of strings

Represent satisfying
solutions for constraints as
strings

Construct an
automaton that accepts
satisfying solutions for
a given constraint

Given some bound,
count the number of
paths in a graph

This reduces the
model counting
problem to path
counting

Automata-based constraint solving

Generate automaton that accepts satisfying solutions for the constraint

MT-ABC can handle both
string and integer constraints

Constraints over
only string
variables
(e.g., v = “abcd”)

Constraints over both
string and integer
variables
(e.g., length(v) = i)

Constraints over
only integer
variables
(e.g., i = 2×j)

¬match(v, (ab)*)match(v, (ab)*)v = “ab”

Automata-based constraint solving: Strings, ¬

automata
complement

Basic string constraints are directly mapped to automata

Automata-based constraint solving: Strings, ¬, ∧, ∨

¬match(v, (ab)*) ⋀ length(v) = 2

automata
product

More complex constraints are solved by creating automata for subformulae then
combining their results

Automata-based constraint solving: Strings, ¬, ∧, ∨

¬match(v, (ab)*) ⋀ length(v) = 2

More complex constraints are solved by creating automata for subformulae then
combining their results

automata
product

Automata-based constraint solving: Multi-variable

For multi-variable constraints, generate an automaton for each variable

v = t ⋀ v ≠ tv = t v ≠ t

Automata-based constraint solving: Multi-variable

For multi-variable constraints, generate an automaton for each variable

v = t ⋀ v ≠ tv = t v ≠ t

Not Satisfiable!

Automata-based constraint solving: Multi-variable

Traditional string automata cannot precisely capture relational constraints

Generated automata significantly over-approximate # of satisfying solutions

Can we do better?

YES!
Enter Multi-track Automata...

Multi-track automata

Multi-track automaton = DFA accepting tuples of strings

Each track represents the values of a single variable

v = t v = t

Preserves relations
between variables!

v ≠ t

Padding symbol λ ∉ Σ
used to align tracks of
different length

- Appears at the end

Multi-track automata

v = t ⋀ v ≠ t

Correctly encodes
unsatisfiability!

v = t

automata
product

Multi-track automata

Multi-track automata can also solve numeric constraints

● Each track represents a single numeric variable

● Encoded as binary integers in 2’s complement form

i = j i ≠ j i = 2⨯j

Constraint Solving: Algorithm

1. Push negations down to atomic constraints
2. Solve atomic string (𝜑𝕊) and integer (𝜑

ℤ
) constraints

○ Initially all variables are unconstrained
3. Solve mixed constraints
4. Handle disjunctions using automata product
5. Handle conjunctions using automata product
6. If there is an over-approximation under a conjunction, solve atomic

constraints that cause over-approximation again
○ This time initialize variables with the latest computed values

i = 2⨯j ∧ length(v) = i

Constraint Solving: Example

MT-ABC

formula

𝞿 bound k

counting
function

#𝞿

of models within bound k for
which 𝞿 evaluates to true

INPUT OUTPUT

MT-ABC: Model counting constraint solver

Automata-based model counting

● Mapping constraints to automata reduces the model counting problem to
path counting in graphs

● We generate a function f(k)
○ Given a length bound k, it will count the number of accepting paths with

length k

Parameterized Model Counting

Experimental evaluation

Compared MT-ABC with existing model counters on a variety of benchmarks

● S3#
○ String constraints, mixed constraints

● SMC
○ String constraints

● ST-ABC
○ String constraints

● LattE
○ Integer constraints

● SMTApproxMC
○ Integer constraints

S3# security benchmark

● String constraint benchmark introduced by authors of S3# to evaluate their
tool
○ 14 constraints taken from various security contexts

○ Comparison with SMC, ST-ABC

● We extend the comparison with results from MT-ABC

S3# security benchmark: # of precise results

S3# security benchmark: Execution time
S3#

SMC

MT-ABC

ST-ABC

S3# security benchmark: Execution time

S3#

MT-ABC

Kaluza benchmark

● Kaluza benchmark generated via symbolic execution of JavaScript programs

● Simplified and partitioned into two benchmarks by SMC authors

○ SMCSmall (17544 constraints), SMCBig (1342 constraints)

○ Removed disjunctions and replaced integer variables with constants

● Given a query variable, count the number of solutions with length <= 50

○ Evaluated efficiency and precision of MT-ABC with ST-ABC and SMC

SMCSmall

Simplified Kaluza benchmark: MT-ABC vs SMC
SMCBig

MT-ABC more precise
than SMC

MT-ABC as precise
as SMC

SMCSmall

Simplified Kaluza benchmark: MT-ABC vs ST-ABC
SMCBig

MT-ABC more precise
than ST-ABC

MT-ABC as precise
as ST-ABC

Integer constraint benchmark

● Compared efficiency of MT-ABC with LattE for model counting linear

arithmetic constraints

○ Both tools can precisely model count linear arithmetic constraints

○ Focus on timing comparison between both

● Evaluated each tool on benchmark for varying bit length bounds

Integer constraint benchmark: Execution time

MT-ABC faster
execution time

LattE faster
execution time

Mixed constraint benchmark

Compare MT-ABC with S3# in the context of mixed string and integer constraints

● Only known model counter claiming to handle this constraint combination

Evaluated using the Kaluza benchmark (unmodified)

● Features mixed string and integer constraints

● Used by S3# authors to prove their claim

Mixed constraint benchmark

● MT-ABC, S3# agree on count for many of the

constraints

○ S3# gave same lower/upper bounds

● S3# counts incorrect for the rest

○ Manually confirmed MT-ABC correct

○ S3# lower/upper bounds incorrect

Conclusion

● String, numeric and mixed constraints can be mapped to automata

● Automata representation for constraints reduces model counting problem to
path counting in graphs

● MT-ABC performs as well as domain specific string and integer model
counters

● MT-ABC is the only model counter that can handle mixed string and numeric
constraints

Thanks!

