
String Analysis for Side Channels with
Segmented Oracles

Lucas Bang1 , Abdulbaki Aydin1 , Quoc-Sang Phan2 ,
Corina S. Păsăreanu2,3 , Tevfik Bultan1

1University of California, Santa Barbara
Santa Barbara, CA, USA

2Carnegie Mellon University
Moffet Field, CA, USA

3NASA Ames Research Center
Moffet Field, CA, USA

ACM Foundations of Software Engineering
Seattle, Washington, USA

15 November 2016

Overview

Program

(Segmented Oracle)

Symbolic
Execution

Model
Counter

Path Constraints

Side
Channel
Analysis

Probability Distribution

Information
Leakage
Quantification

Overview

Program

(Segmented Oracle)

Symbolic
Execution

Model
Counter

Path Constraints

Side
Channel
Analysis

Probability Distribution

Information
Leakage
Quantification

Overview

Program

(Segmented Oracle)

Symbolic
Execution

Model
Counter

Path Constraints

Side
Channel
Analysis

Probability Distribution

Information
Leakage
Quantification

Overview

Program

(Segmented Oracle)

Symbolic
Execution

Model
Counter

Path Constraints

Side
Channel
Analysis

Probability Distribution

Information
Leakage
Quantification

Overview

Program

(Segmented Oracle)

Symbolic
Execution

Model
Counter

Path Constraints

Side
Channel
Analysis

Probability Distribution

Information
Leakage
Quantification

Overview

Program

(Segmented Oracle)

Symbolic
Execution

Model
Counter

Path Constraints

Side
Channel
Analysis

Probability Distribution

Information
Leakage
Quantification

Background and Motivation

Software channels:

I Main Channel. Output of the program, i.e. return value
I Side Channel. Other execution aspects:

time, memory, network, . . .

Intuitively, Segment Oracles have

I side channels that reveal information about
I segments (single characters, bytes, bits, array slice) of a
I secret program value.

Background and Motivation

Software channels:

I Main Channel. Output of the program, i.e. return value

I Side Channel. Other execution aspects:
time, memory, network, . . .

Intuitively, Segment Oracles have

I side channels that reveal information about
I segments (single characters, bytes, bits, array slice) of a
I secret program value.

Background and Motivation

Software channels:

I Main Channel. Output of the program, i.e. return value
I Side Channel. Other execution aspects:

time, memory, network, . . .

Intuitively, Segment Oracles have

I side channels that reveal information about
I segments (single characters, bytes, bits, array slice) of a
I secret program value.

Background and Motivation

Software channels:

I Main Channel. Output of the program, i.e. return value
I Side Channel. Other execution aspects:

time, memory, network, . . .

Intuitively, Segment Oracles have

I side channels that reveal information about
I segments (single characters, bytes, bits, array slice) of a
I secret program value.

Background and Motivation

Software channels:

I Main Channel. Output of the program, i.e. return value
I Side Channel. Other execution aspects:

time, memory, network, . . .

Intuitively, Segment Oracles have

I side channels that reveal information about

I segments (single characters, bytes, bits, array slice) of a
I secret program value.

Background and Motivation

Software channels:

I Main Channel. Output of the program, i.e. return value
I Side Channel. Other execution aspects:

time, memory, network, . . .

Intuitively, Segment Oracles have

I side channels that reveal information about
I segments (single characters, bytes, bits, array slice) of a

I secret program value.

Background and Motivation

Software channels:

I Main Channel. Output of the program, i.e. return value
I Side Channel. Other execution aspects:

time, memory, network, . . .

Intuitively, Segment Oracles have

I side channels that reveal information about
I segments (single characters, bytes, bits, array slice) of a
I secret program value.

Example

1 passcheck(char[] pw, char[] guess)
2 for (int i = 0; i < length; i++)
3 if (pw[i] != guess[i]) return false
4 return true

Using the program main channel (true, false), and brute force needs

(alphabet size)L = (128 ASCII chars)L

guesses in the worst case = thousands of years.

Example

1 passcheck(char[] pw, char[] guess)
2 for (int i = 0; i < length; i++)
3 if (pw[i] != guess[i]) return false
4 return true

Using the program main channel (true, false), and brute force needs

(alphabet size)L = (128 ASCII chars)L

guesses in the worst case = thousands of years.

Example
1 passcheck(char[] pw, char[] guess)
2 for (int i = 0; i < length; i++)
3 if (pw[i] != guess[i]) return false
4 return true

What if the adversary can measure execution time? Assume:
I 1 observable time unit = 1 loop execution.
I No measurement error, no system noise.

Secret password seatac_airport
User guesses aaaaaaaaaaaaaa false 1 loop

saaaaaaaaaaaaa false 2 loops
seaaaaaaaaaaaa false 3 loops
seatacaaaaaaaa false 7 loops
seatac_airport true 15 loops

Using the program timing channel, adversary needs

(alphabet size)×L = (128)× 15 guesses = a few seconds.

Example
1 passcheck(char[] pw, char[] guess)
2 for (int i = 0; i < length; i++)
3 if (pw[i] != guess[i]) return false
4 return true

What if the adversary can measure execution time? Assume:
I 1 observable time unit = 1 loop execution.
I No measurement error, no system noise.

Secret password seatac_airport
User guesses aaaaaaaaaaaaaa false 1 loop

saaaaaaaaaaaaa false 2 loops
seaaaaaaaaaaaa false 3 loops
seatacaaaaaaaa false 7 loops
seatac_airport true 15 loops

Using the program timing channel, adversary needs

(alphabet size)×L = (128)× 15 guesses = a few seconds.

Example
1 passcheck(char[] pw, char[] guess)
2 for (int i = 0; i < length; i++)
3 if (pw[i] != guess[i]) return false
4 return true

What if the adversary can measure execution time? Assume:
I 1 observable time unit = 1 loop execution.
I No measurement error, no system noise.

Secret password seatac_airport
User guesses aaaaaaaaaaaaaa false 1 loop

saaaaaaaaaaaaa false 2 loops

seaaaaaaaaaaaa false 3 loops
seatacaaaaaaaa false 7 loops
seatac_airport true 15 loops

Using the program timing channel, adversary needs

(alphabet size)×L = (128)× 15 guesses = a few seconds.

Example
1 passcheck(char[] pw, char[] guess)
2 for (int i = 0; i < length; i++)
3 if (pw[i] != guess[i]) return false
4 return true

What if the adversary can measure execution time? Assume:
I 1 observable time unit = 1 loop execution.
I No measurement error, no system noise.

Secret password seatac_airport
User guesses aaaaaaaaaaaaaa false 1 loop

saaaaaaaaaaaaa false 2 loops
seaaaaaaaaaaaa false 3 loops

seatacaaaaaaaa false 7 loops
seatac_airport true 15 loops

Using the program timing channel, adversary needs

(alphabet size)×L = (128)× 15 guesses = a few seconds.

Example
1 passcheck(char[] pw, char[] guess)
2 for (int i = 0; i < length; i++)
3 if (pw[i] != guess[i]) return false
4 return true

What if the adversary can measure execution time? Assume:
I 1 observable time unit = 1 loop execution.
I No measurement error, no system noise.

Secret password seatac_airport
User guesses aaaaaaaaaaaaaa false 1 loop

saaaaaaaaaaaaa false 2 loops
seaaaaaaaaaaaa false 3 loops
seatacaaaaaaaa false 7 loops

seatac_airport true 15 loops

Using the program timing channel, adversary needs

(alphabet size)×L = (128)× 15 guesses = a few seconds.

Example
1 passcheck(char[] pw, char[] guess)
2 for (int i = 0; i < length; i++)
3 if (pw[i] != guess[i]) return false
4 return true

What if the adversary can measure execution time? Assume:
I 1 observable time unit = 1 loop execution.
I No measurement error, no system noise.

Secret password seatac_airport
User guesses aaaaaaaaaaaaaa false 1 loop

saaaaaaaaaaaaa false 2 loops
seaaaaaaaaaaaa false 3 loops
seatacaaaaaaaa false 7 loops
seatac_airport true 15 loops

Using the program timing channel, adversary needs

(alphabet size)×L = (128)× 15 guesses = a few seconds.

Example
1 passcheck(char[] pw, char[] guess)
2 for (int i = 0; i < length; i++)
3 if (pw[i] != guess[i]) return false
4 return true

What if the adversary can measure execution time? Assume:
I 1 observable time unit = 1 loop execution.
I No measurement error, no system noise.

Secret password seatac_airport
User guesses aaaaaaaaaaaaaa false 1 loop

saaaaaaaaaaaaa false 2 loops
seaaaaaaaaaaaa false 3 loops
seatacaaaaaaaa false 7 loops
seatac_airport true 15 loops

Using the program timing channel, adversary needs

(alphabet size)×L = (128)× 15 guesses = a few seconds.

Motivation

Real-life segmented oracle security vulnerabilities:

I Timing Side Channels

I Authentication keys: Google Keyczar Library, Xbox 360
I Authorization Frameworks: OAuth, OpenID (Google, Facebook,

Microsoft, Twitter)
I Java’s Array.equals, String.equals
I C’s memcmp
I Save computation time.

I Network Packet Size Side Channel
I Compression Ratio Infoleak Made Easy (CRIME) [Ekoparty 2012]
I Browser Recon and Exfiltration via Adaptive Compression

(BREACH) [Black Hat 2013]
I Lempel Ziv String Compression. Save space.
I Adversary inject plain text. More compression → substring match.

Goal: quantify information leakage for these types of vulnerabilties.

Motivation

Real-life segmented oracle security vulnerabilities:

I Timing Side Channels
I Authentication keys: Google Keyczar Library, Xbox 360
I Authorization Frameworks: OAuth, OpenID (Google, Facebook,

Microsoft, Twitter)

I Java’s Array.equals, String.equals
I C’s memcmp
I Save computation time.

I Network Packet Size Side Channel
I Compression Ratio Infoleak Made Easy (CRIME) [Ekoparty 2012]
I Browser Recon and Exfiltration via Adaptive Compression

(BREACH) [Black Hat 2013]
I Lempel Ziv String Compression. Save space.
I Adversary inject plain text. More compression → substring match.

Goal: quantify information leakage for these types of vulnerabilties.

Motivation

Real-life segmented oracle security vulnerabilities:

I Timing Side Channels
I Authentication keys: Google Keyczar Library, Xbox 360
I Authorization Frameworks: OAuth, OpenID (Google, Facebook,

Microsoft, Twitter)
I Java’s Array.equals, String.equals
I C’s memcmp
I Save computation time.

I Network Packet Size Side Channel
I Compression Ratio Infoleak Made Easy (CRIME) [Ekoparty 2012]
I Browser Recon and Exfiltration via Adaptive Compression

(BREACH) [Black Hat 2013]
I Lempel Ziv String Compression. Save space.
I Adversary inject plain text. More compression → substring match.

Goal: quantify information leakage for these types of vulnerabilties.

Motivation

Real-life segmented oracle security vulnerabilities:

I Timing Side Channels
I Authentication keys: Google Keyczar Library, Xbox 360
I Authorization Frameworks: OAuth, OpenID (Google, Facebook,

Microsoft, Twitter)
I Java’s Array.equals, String.equals
I C’s memcmp
I Save computation time.

I Network Packet Size Side Channel
I Compression Ratio Infoleak Made Easy (CRIME) [Ekoparty 2012]
I Browser Recon and Exfiltration via Adaptive Compression

(BREACH) [Black Hat 2013]

I Lempel Ziv String Compression. Save space.
I Adversary inject plain text. More compression → substring match.

Goal: quantify information leakage for these types of vulnerabilties.

Motivation

Real-life segmented oracle security vulnerabilities:

I Timing Side Channels
I Authentication keys: Google Keyczar Library, Xbox 360
I Authorization Frameworks: OAuth, OpenID (Google, Facebook,

Microsoft, Twitter)
I Java’s Array.equals, String.equals
I C’s memcmp
I Save computation time.

I Network Packet Size Side Channel
I Compression Ratio Infoleak Made Easy (CRIME) [Ekoparty 2012]
I Browser Recon and Exfiltration via Adaptive Compression

(BREACH) [Black Hat 2013]
I Lempel Ziv String Compression. Save space.
I Adversary inject plain text. More compression → substring match.

Goal: quantify information leakage for these types of vulnerabilties.

Motivation

Real-life segmented oracle security vulnerabilities:

I Timing Side Channels
I Authentication keys: Google Keyczar Library, Xbox 360
I Authorization Frameworks: OAuth, OpenID (Google, Facebook,

Microsoft, Twitter)
I Java’s Array.equals, String.equals
I C’s memcmp
I Save computation time.

I Network Packet Size Side Channel
I Compression Ratio Infoleak Made Easy (CRIME) [Ekoparty 2012]
I Browser Recon and Exfiltration via Adaptive Compression

(BREACH) [Black Hat 2013]
I Lempel Ziv String Compression. Save space.
I Adversary inject plain text. More compression → substring match.

Goal: quantify information leakage for these types of vulnerabilties.

Overview

Program Symbolic
Execution

Model
Counting

Path Constraints

Side
Channel
Analysis

Probability Distribution

Program
Vulnerability
Quantification

bool pwcheck(guess[])
for(i = 0; i < 4; i++)
if(guess[i] != pw[i])
return false

return true

P: pw, G: guess

oi = lines of code

P[0] 6= G[0] falseT P[0] 6= G[0]

o0 = 3

P[1] 6= G[1]

F

false
P[0] = G[0]
P[1] 6= G[1]

o1 = 6

T

P[2] 6= G[2]

F

false
P[0] = G[0]
P[1] = G[1]
P[2] 6= G[2]

o2 = 9

T

P[3] 6= G[3]

F

false

P[0] = G[0]
P[1] = G[1]
P[2] = G[2]
P[3] 6= G[3]

o3 = 12

T

true

P[0] = G[0]
P[1] = G[1]
P[2] = G[2]
P[3] = G[3]

o4 = 15

F

bool pwcheck(guess[])
for(i = 0; i < 4; i++)
if(guess[i] != pw[i])
return false

return true

P: pw, G: guess

oi = lines of code

P[0] 6= G[0] falseT P[0] 6= G[0]

o0 = 3

P[1] 6= G[1]

F

false
P[0] = G[0]
P[1] 6= G[1]

o1 = 6

T

P[2] 6= G[2]

F

false
P[0] = G[0]
P[1] = G[1]
P[2] 6= G[2]

o2 = 9

T

P[3] 6= G[3]

F

false

P[0] = G[0]
P[1] = G[1]
P[2] = G[2]
P[3] 6= G[3]

o3 = 12

T

true

P[0] = G[0]
P[1] = G[1]
P[2] = G[2]
P[3] = G[3]

o4 = 15

F

Segmented Oracle Path Constraints Pattern

(oi ,PCi) : P[0] = G[0] . . . ∧ P[i − 1] = G[i − 1]∧P[i] 6= G[i]

A criterion for segmented oracles: path constraints grouped by
observable are logically equivalent to this pattern (up to reordering).

Segmented Oracle Path Constraints Pattern

(oi ,PCi) : P[0] = G[0] . . . ∧ P[i − 1] = G[i − 1]∧P[i] 6= G[i]

A criterion for segmented oracles: path constraints grouped by
observable are logically equivalent to this pattern (up to reordering).

Multiple Runs of the Program

Adversary learns more with multiple invocations.

Model adversary A’s strategy S:

1. obs ← nil . Initially observation sequence is empty.
2. I ← A(obs). Adversary chooses I based on observations so far.
3. o ← F (I). Adversary invokes function, makes observation.
4. obs ← append(obs, 〈I,o〉). Update observation record.
5. Repeat until entire secret revealed.

Symbolic execution of S: all possible observable sequences.

Multiple Runs of the Program

Adversary learns more with multiple invocations.

Model adversary A’s strategy S:

1. obs ← nil . Initially observation sequence is empty.

2. I ← A(obs). Adversary chooses I based on observations so far.
3. o ← F (I). Adversary invokes function, makes observation.
4. obs ← append(obs, 〈I,o〉). Update observation record.
5. Repeat until entire secret revealed.

Symbolic execution of S: all possible observable sequences.

Multiple Runs of the Program

Adversary learns more with multiple invocations.

Model adversary A’s strategy S:

1. obs ← nil . Initially observation sequence is empty.
2. I ← A(obs). Adversary chooses I based on observations so far.

3. o ← F (I). Adversary invokes function, makes observation.
4. obs ← append(obs, 〈I,o〉). Update observation record.
5. Repeat until entire secret revealed.

Symbolic execution of S: all possible observable sequences.

Multiple Runs of the Program

Adversary learns more with multiple invocations.

Model adversary A’s strategy S:

1. obs ← nil . Initially observation sequence is empty.
2. I ← A(obs). Adversary chooses I based on observations so far.
3. o ← F (I). Adversary invokes function, makes observation.

4. obs ← append(obs, 〈I,o〉). Update observation record.
5. Repeat until entire secret revealed.

Symbolic execution of S: all possible observable sequences.

Multiple Runs of the Program

Adversary learns more with multiple invocations.

Model adversary A’s strategy S:

1. obs ← nil . Initially observation sequence is empty.
2. I ← A(obs). Adversary chooses I based on observations so far.
3. o ← F (I). Adversary invokes function, makes observation.
4. obs ← append(obs, 〈I,o〉). Update observation record.

5. Repeat until entire secret revealed.

Symbolic execution of S: all possible observable sequences.

Multiple Runs of the Program

Adversary learns more with multiple invocations.

Model adversary A’s strategy S:

1. obs ← nil . Initially observation sequence is empty.
2. I ← A(obs). Adversary chooses I based on observations so far.
3. o ← F (I). Adversary invokes function, makes observation.
4. obs ← append(obs, 〈I,o〉). Update observation record.
5. Repeat until entire secret revealed.

Symbolic execution of S: all possible observable sequences.

Multiple Runs of the Program

Adversary learns more with multiple invocations.

Model adversary A’s strategy S:

1. obs ← nil . Initially observation sequence is empty.
2. I ← A(obs). Adversary chooses I based on observations so far.
3. o ← F (I). Adversary invokes function, makes observation.
4. obs ← append(obs, 〈I,o〉). Update observation record.
5. Repeat until entire secret revealed.

Symbolic execution of S: all possible observable sequences.

How likely is a certain program behavior?

What is the the probability of a particular program execution path?

Computing Path Constraint Probability

Probability of PC =
Number of solutions to PC

Total input domain size

p(PC) =
|PC|
|D|

How do you compute the number of solutions |PC| automatically?

How likely is a certain program behavior?

What is the the probability of a particular program execution path?

Computing Path Constraint Probability

Probability of PC =
Number of solutions to PC

Total input domain size

p(PC) =
|PC|
|D|

How do you compute the number of solutions |PC| automatically?

How likely is a certain program behavior?

What is the the probability of a particular program execution path?

Computing Path Constraint Probability

Probability of PC =
Number of solutions to PC

Total input domain size

p(PC) =
|PC|
|D|

How do you compute the number of solutions |PC| automatically?

How likely is a certain program behavior?

What is the the probability of a particular program execution path?

Computing Path Constraint Probability

Probability of PC =
Number of solutions to PC

Total input domain size

p(PC) =
|PC|
|D|

How do you compute the number of solutions |PC| automatically?

Overview

Program Symbolic
Execution

Model
Counting

Path Constraints

Side
Channel
Analysis

Probability Distribution

Program
Vulnerability
Quantification

Model Counting

Symbolic execution for string manipulating programs results in path
constraints over string variables.

Count the number of strings consistent with PC.

Automata-Based Counter (ABC):

I Constructs an automaton recognizing solutions to PC.

0 1 2
1 0

1
01

0

I |PC| is number of accepting paths in automaton.

Model Counting

Symbolic execution for string manipulating programs results in path
constraints over string variables.

Count the number of strings consistent with PC.

Automata-Based Counter (ABC):

I Constructs an automaton recognizing solutions to PC.

0 1 2
1 0

1
01

0

I |PC| is number of accepting paths in automaton.

Model Counting

Symbolic execution for string manipulating programs results in path
constraints over string variables.

Count the number of strings consistent with PC.

Automata-Based Counter (ABC):

I Constructs an automaton recognizing solutions to PC.

0 1 2
1 0

1
01

0

I |PC| is number of accepting paths in automaton.

Overview

Program Symbolic
Execution

Model
Counting

Path Constraints

Side
Channel
Analysis

Probability Distribution

Program
Vulnerability
Quantification

Information Leakage
Adversary sees a sequence of observables and PCs:

(PCi ,
−→oi) = (PCi , 〈o1,o2 . . . ok 〉)

We can compute probabilities:

p(−→oi) =
|PCi |
|D|

Quantify information gain using information entropy:

H =
∑

p(−→oi) log2
1

p(−→oi)

Information entropy measures information uncertainty.

Initially, H = log2 |D| = number of bits.

H decreases with increasing observation length.

Eventually, H = 0, no uncertainty, secret revealed.

Information Leakage
Adversary sees a sequence of observables and PCs:

(PCi ,
−→oi) = (PCi , 〈o1,o2 . . . ok 〉)

We can compute probabilities:

p(−→oi) =
|PCi |
|D|

Quantify information gain using information entropy:

H =
∑

p(−→oi) log2
1

p(−→oi)

Information entropy measures information uncertainty.

Initially, H = log2 |D| = number of bits.

H decreases with increasing observation length.

Eventually, H = 0, no uncertainty, secret revealed.

Information Leakage
Adversary sees a sequence of observables and PCs:

(PCi ,
−→oi) = (PCi , 〈o1,o2 . . . ok 〉)

We can compute probabilities:

p(−→oi) =
|PCi |
|D|

Quantify information gain using information entropy:

H =
∑

p(−→oi) log2
1

p(−→oi)

Information entropy measures information uncertainty.

Initially, H = log2 |D| = number of bits.

H decreases with increasing observation length.

Eventually, H = 0, no uncertainty, secret revealed.

Information Leakage
Adversary sees a sequence of observables and PCs:

(PCi ,
−→oi) = (PCi , 〈o1,o2 . . . ok 〉)

We can compute probabilities:

p(−→oi) =
|PCi |
|D|

Quantify information gain using information entropy:

H =
∑

p(−→oi) log2
1

p(−→oi)

Information entropy measures information uncertainty.

Initially, H = log2 |D| = number of bits.

H decreases with increasing observation length.

Eventually, H = 0, no uncertainty, secret revealed.

Information Leakage
Adversary sees a sequence of observables and PCs:

(PCi ,
−→oi) = (PCi , 〈o1,o2 . . . ok 〉)

We can compute probabilities:

p(−→oi) =
|PCi |
|D|

Quantify information gain using information entropy:

H =
∑

p(−→oi) log2
1

p(−→oi)

Information entropy measures information uncertainty.

Initially, H = log2 |D| = number of bits.

H decreases with increasing observation length.

Eventually, H = 0, no uncertainty, secret revealed.

Information Leakage
Adversary sees a sequence of observables and PCs:

(PCi ,
−→oi) = (PCi , 〈o1,o2 . . . ok 〉)

We can compute probabilities:

p(−→oi) =
|PCi |
|D|

Quantify information gain using information entropy:

H =
∑

p(−→oi) log2
1

p(−→oi)

Information entropy measures information uncertainty.

Initially, H = log2 |D| = number of bits.

H decreases with increasing observation length.

Eventually, H = 0, no uncertainty, secret revealed.

Information Leakage
Adversary sees a sequence of observables and PCs:

(PCi ,
−→oi) = (PCi , 〈o1,o2 . . . ok 〉)

We can compute probabilities:

p(−→oi) =
|PCi |
|D|

Quantify information gain using information entropy:

H =
∑

p(−→oi) log2
1

p(−→oi)

Information entropy measures information uncertainty.

Initially, H = log2 |D| = number of bits.

H decreases with increasing observation length.

Eventually, H = 0, no uncertainty, secret revealed.

Overview

Program Symbolic
Execution

Model
Counting

Path Constraints

Side
Channel
Analysis

Probability Distribution

Program
Vulnerability
Quantification

Avoiding Expensive Multirun Symbolic Execution

Do a single run of symbolic execution.

Numerically compute multi-run behavior:

Derive recurrence relating segment sizes |Di | to |PCi | :{∏
|D| = |PCn|∏
|D| · (|Di | − 1) ·

∏
|D|i+1:n−1 = |PCi |

and probablity recurrence:

p(−→o |D) = p(o1|D′i) · p(〈o2, . . . ,ok 〉|D′i)

Efficiently compute p(−→o) using standard dynamic programming and
memoization techniques.

Avoiding Expensive Multirun Symbolic Execution

Do a single run of symbolic execution.

Numerically compute multi-run behavior:

Derive recurrence relating segment sizes |Di | to |PCi | :{∏
|D| = |PCn|∏
|D| · (|Di | − 1) ·

∏
|D|i+1:n−1 = |PCi |

and probablity recurrence:

p(−→o |D) = p(o1|D′i) · p(〈o2, . . . ,ok 〉|D′i)

Efficiently compute p(−→o) using standard dynamic programming and
memoization techniques.

Avoiding Expensive Multirun Symbolic Execution

Do a single run of symbolic execution.

Numerically compute multi-run behavior:

Derive recurrence relating segment sizes |Di | to |PCi | :{∏
|D| = |PCn|∏
|D| · (|Di | − 1) ·

∏
|D|i+1:n−1 = |PCi |

and probablity recurrence:

p(−→o |D) = p(o1|D′i) · p(〈o2, . . . ,ok 〉|D′i)

Efficiently compute p(−→o) using standard dynamic programming and
memoization techniques.

Avoiding Expensive Multirun Symbolic Execution

Do a single run of symbolic execution.

Numerically compute multi-run behavior:

Derive recurrence relating segment sizes |Di | to |PCi | :{∏
|D| = |PCn|∏
|D| · (|Di | − 1) ·

∏
|D|i+1:n−1 = |PCi |

and probablity recurrence:

p(−→o |D) = p(o1|D′i) · p(〈o2, . . . ,ok 〉|D′i)

Efficiently compute p(−→o) using standard dynamic programming and
memoization techniques.

Avoiding Expensive Multirun Symbolic Execution

Do a single run of symbolic execution.

Numerically compute multi-run behavior:

Derive recurrence relating segment sizes |Di | to |PCi | :{∏
|D| = |PCn|∏
|D| · (|Di | − 1) ·

∏
|D|i+1:n−1 = |PCi |

and probablity recurrence:

p(−→o |D) = p(o1|D′i) · p(〈o2, . . . ,ok 〉|D′i)

Efficiently compute p(−→o) using standard dynamic programming and
memoization techniques.

Implementation

I Java Symbolic Pathfinder (JPF / SPF), symbolic execution.
I Specialized listeners for tracking observables.
I ABC and Latte for model counting path constraints.
I SPF packages to quantify information leakage.

Experiments

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

Observation Sequence Length

R
un

ni
ng

Ti
m

e
(s

)
Numeric recurrence
Multi-run SE

Figure : Time for multi-run and single-run SE.

Experiments

0 2 4 6 8 10
0

1

2

3

4

5

6

Observation Sequence Length

E
nt

ro
py

(b
its

)

Initial Entropy
Leakage
Remaining Entropy

Figure : Information leakage and remaining entropy for password checking
function. Length = 3, alphabet size = 4.

Experiments

Analysis of the CRIME attack.

I Symbolically execute LZ77 compression. 60 lines of complex
code. Nested loops, multiple buffers, complex compression
conditions.

I Length 3 and alphabet size 4 generates 187 path conditions
leading to 4 different observables.

I Use Z3 to prove equivalence to segmented oracle PC pattern.
I Leaks all information after 10 executions by the adversary.
I Running time: 8.695 seconds

Experiments

Analysis of the CRIME attack.

I Symbolically execute LZ77 compression. 60 lines of complex
code. Nested loops, multiple buffers, complex compression
conditions.

I Length 3 and alphabet size 4 generates 187 path conditions
leading to 4 different observables.

I Use Z3 to prove equivalence to segmented oracle PC pattern.
I Leaks all information after 10 executions by the adversary.

I Running time: 8.695 seconds

Experiments

Analysis of the CRIME attack.

I Symbolically execute LZ77 compression. 60 lines of complex
code. Nested loops, multiple buffers, complex compression
conditions.

I Length 3 and alphabet size 4 generates 187 path conditions
leading to 4 different observables.

I Use Z3 to prove equivalence to segmented oracle PC pattern.
I Leaks all information after 10 executions by the adversary.
I Running time: 8.695 seconds

Conclusions

In this talk:

I Segmented oracles.
I Multi-run symbolic exection of adversary model to get leakage.
I Infer multi-run leakage from a singel run of symbolic execution.
I Model counting for string manipulating programs.
I Experimentally validated our appraoch.

Future work:

I Extend analsysis to more general oracles.
I Incorporate model of system noise.
I Automatically generate adversary strategies.

Closing Remark

Where do segment oracle side channels come from?

Algorithmic optimizations:

I Saving time and space whenever possible...

I early loop termination, text compression...
I might reveal some properties of secure data.

“Premature optimization is the root of all evil.” -Tony Hoare

Important tradeoff: efficiency vs. security.

Important problem to address: we need tools for automatically
measuring this tradeoff.

Closing Remark

Where do segment oracle side channels come from?

Algorithmic optimizations:

I Saving time and space whenever possible...
I early loop termination, text compression...

I might reveal some properties of secure data.

“Premature optimization is the root of all evil.” -Tony Hoare

Important tradeoff: efficiency vs. security.

Important problem to address: we need tools for automatically
measuring this tradeoff.

Closing Remark

Where do segment oracle side channels come from?

Algorithmic optimizations:

I Saving time and space whenever possible...
I early loop termination, text compression...
I might reveal some properties of secure data.

“Premature optimization is the root of all evil.” -Tony Hoare

Important tradeoff: efficiency vs. security.

Important problem to address: we need tools for automatically
measuring this tradeoff.

Closing Remark

Where do segment oracle side channels come from?

Algorithmic optimizations:

I Saving time and space whenever possible...
I early loop termination, text compression...
I might reveal some properties of secure data.

“Premature optimization is the root of all evil.” -Tony Hoare

Important tradeoff: efficiency vs. security.

Important problem to address: we need tools for automatically
measuring this tradeoff.

Questions?

Thank you.

Multi-Run Symbolic Execution
Model “the best” adversary.

I Keep making inputs and observations.
I Iterate over segment alphabet until matched prefix gets longer.
I Search the next segment.

Multi-Run Symbolic Execution
Model “the best” adversary.

I Keep making inputs and observations.
I Iterate over segment alphabet until matched prefix gets longer.
I Search the next segment.

Information Theory Intuition

Information Entropy:

H =
∑

pi log
1
pi

= E
[
log

1
pi

]
The expected amount of information gain.
The expected amount of “surprise”.

Seattle Weather, Always Raining
prain = 1,psun = 0 H = 0

Costa Rica Weather, Coin Flip
prain = 1

2 ,psun = 1
2 H = 1

Santa Barbara Weather, Almost Always Sunny.
prain = 1

10 ,psun = 9
10 H = 0.4960

Information Theory Intuition

Information Entropy:

H =
∑

pi log
1
pi

= E
[
log

1
pi

]

The expected amount of information gain.
The expected amount of “surprise”.

Seattle Weather, Always Raining
prain = 1,psun = 0 H = 0

Costa Rica Weather, Coin Flip
prain = 1

2 ,psun = 1
2 H = 1

Santa Barbara Weather, Almost Always Sunny.
prain = 1

10 ,psun = 9
10 H = 0.4960

Information Theory Intuition

Information Entropy:

H =
∑

pi log
1
pi

= E
[
log

1
pi

]
The expected amount of information gain.

The expected amount of “surprise”.

Seattle Weather, Always Raining
prain = 1,psun = 0 H = 0

Costa Rica Weather, Coin Flip
prain = 1

2 ,psun = 1
2 H = 1

Santa Barbara Weather, Almost Always Sunny.
prain = 1

10 ,psun = 9
10 H = 0.4960

Information Theory Intuition

Information Entropy:

H =
∑

pi log
1
pi

= E
[
log

1
pi

]
The expected amount of information gain.
The expected amount of “surprise”.

Seattle Weather, Always Raining
prain = 1,psun = 0 H = 0

Costa Rica Weather, Coin Flip
prain = 1

2 ,psun = 1
2 H = 1

Santa Barbara Weather, Almost Always Sunny.
prain = 1

10 ,psun = 9
10 H = 0.4960

Information Theory Intuition

Information Entropy:

H =
∑

pi log
1
pi

= E
[
log

1
pi

]
The expected amount of information gain.
The expected amount of “surprise”.

Seattle Weather, Always Raining
prain = 1,psun = 0

H = 0

Costa Rica Weather, Coin Flip
prain = 1

2 ,psun = 1
2 H = 1

Santa Barbara Weather, Almost Always Sunny.
prain = 1

10 ,psun = 9
10 H = 0.4960

Information Theory Intuition

Information Entropy:

H =
∑

pi log
1
pi

= E
[
log

1
pi

]
The expected amount of information gain.
The expected amount of “surprise”.

Seattle Weather, Always Raining
prain = 1,psun = 0 H = 0

Costa Rica Weather, Coin Flip
prain = 1

2 ,psun = 1
2 H = 1

Santa Barbara Weather, Almost Always Sunny.
prain = 1

10 ,psun = 9
10 H = 0.4960

Information Theory Intuition

Information Entropy:

H =
∑

pi log
1
pi

= E
[
log

1
pi

]
The expected amount of information gain.
The expected amount of “surprise”.

Seattle Weather, Always Raining
prain = 1,psun = 0 H = 0

Costa Rica Weather, Coin Flip
prain = 1

2 ,psun = 1
2

H = 1

Santa Barbara Weather, Almost Always Sunny.
prain = 1

10 ,psun = 9
10 H = 0.4960

Information Theory Intuition

Information Entropy:

H =
∑

pi log
1
pi

= E
[
log

1
pi

]
The expected amount of information gain.
The expected amount of “surprise”.

Seattle Weather, Always Raining
prain = 1,psun = 0 H = 0

Costa Rica Weather, Coin Flip
prain = 1

2 ,psun = 1
2 H = 1

Santa Barbara Weather, Almost Always Sunny.
prain = 1

10 ,psun = 9
10 H = 0.4960

Information Theory Intuition

Information Entropy:

H =
∑

pi log
1
pi

= E
[
log

1
pi

]
The expected amount of information gain.
The expected amount of “surprise”.

Seattle Weather, Always Raining
prain = 1,psun = 0 H = 0

Costa Rica Weather, Coin Flip
prain = 1

2 ,psun = 1
2 H = 1

Santa Barbara Weather, Almost Always Sunny.
prain = 1

10 ,psun = 9
10

H = 0.4960

Information Theory Intuition

Information Entropy:

H =
∑

pi log
1
pi

= E
[
log

1
pi

]
The expected amount of information gain.
The expected amount of “surprise”.

Seattle Weather, Always Raining
prain = 1,psun = 0 H = 0

Costa Rica Weather, Coin Flip
prain = 1

2 ,psun = 1
2 H = 1

Santa Barbara Weather, Almost Always Sunny.
prain = 1

10 ,psun = 9
10 H = 0.4960

	Motivation
	Symbolic Execution
	ModelCounting
	Side Channel Analysis
	Multi-Run Behavior from Single-Run Symbolic Execution
	Implementation and Experiments

