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Background and Motivation

Software channels:

I Main Channel. Output of the program, i.e. return value
I Side Channel. Other execution aspects:

time, memory, network, . . .

Intuitively, Segment Oracles have

I side channels that reveal information about
I segments (single characters, bytes, bits, array slice) of a
I secret program value.
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Example

1 passcheck(char[] pw, char[] guess)
2 for (int i = 0; i < length; i++)
3 if (pw[i] != guess[i]) return false
4 return true

Using the program main channel (true, false), and brute force needs

(alphabet size)L = (128 ASCII chars)L

guesses in the worst case = thousands of years.
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Motivation

Real-life segmented oracle security vulnerabilities:

I Timing Side Channels

I Authentication keys: Google Keyczar Library, Xbox 360
I Authorization Frameworks: OAuth, OpenID (Google, Facebook,

Microsoft, Twitter)
I Java’s Array.equals, String.equals
I C’s memcmp
I Save computation time.

I Network Packet Size Side Channel
I Compression Ratio Infoleak Made Easy (CRIME) [Ekoparty 2012]
I Browser Recon and Exfiltration via Adaptive Compression

(BREACH) [Black Hat 2013]
I Lempel Ziv String Compression. Save space.
I Adversary inject plain text. More compression → substring match.

Goal: quantify information leakage for these types of vulnerabilties.
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Segmented Oracle Path Constraints Pattern

(oi ,PCi) : P[0] = G[0] . . . ∧ P[i − 1] = G[i − 1]∧P[i] 6= G[i]

A criterion for segmented oracles: path constraints grouped by
observable are logically equivalent to this pattern (up to reordering).
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Multiple Runs of the Program

Adversary learns more with multiple invocations.

Model adversary A’s strategy S:

1. obs ← nil . Initially observation sequence is empty.
2. I ← A(obs). Adversary chooses I based on observations so far.
3. o ← F (I). Adversary invokes function, makes observation.
4. obs ← append(obs, 〈I,o〉). Update observation record.
5. Repeat until entire secret revealed.

Symbolic execution of S: all possible observable sequences.
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How likely is a certain program behavior?

What is the the probability of a particular program execution path?

Computing Path Constraint Probability

Probability of PC =
Number of solutions to PC

Total input domain size

p(PC) =
|PC|
|D|

How do you compute the number of solutions |PC| automatically?
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Model Counting

Symbolic execution for string manipulating programs results in path
constraints over string variables.

Count the number of strings consistent with PC.

Automata-Based Counter (ABC):

I Constructs an automaton recognizing solutions to PC.

0 1 2
1 0

1
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0

I |PC| is number of accepting paths in automaton.
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Information Leakage
Adversary sees a sequence of observables and PCs:

(PCi ,
−→oi ) = (PCi , 〈o1,o2 . . . ok 〉)

We can compute probabilities:

p(−→oi ) =
|PCi |
|D|

Quantify information gain using information entropy:

H =
∑

p(−→oi ) log2
1

p(−→oi )

Information entropy measures information uncertainty.

Initially, H = log2 |D| = number of bits.

H decreases with increasing observation length.

Eventually, H = 0, no uncertainty, secret revealed.
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Avoiding Expensive Multirun Symbolic Execution

Do a single run of symbolic execution.

Numerically compute multi-run behavior:

Derive recurrence relating segment sizes |Di | to |PCi | :{∏
|D| = |PCn|∏
|D| · (|Di | − 1) ·

∏
|D|i+1:n−1 = |PCi |

and probablity recurrence:

p(−→o |D) = p(o1|D′i ) · p(〈o2, . . . ,ok 〉|D′i )

Efficiently compute p(−→o ) using standard dynamic programming and
memoization techniques.
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Implementation

I Java Symbolic Pathfinder (JPF / SPF), symbolic execution.
I Specialized listeners for tracking observables.
I ABC and Latte for model counting path constraints.
I SPF packages to quantify information leakage.
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Experiments

Analysis of the CRIME attack.

I Symbolically execute LZ77 compression. 60 lines of complex
code. Nested loops, multiple buffers, complex compression
conditions.

I Length 3 and alphabet size 4 generates 187 path conditions
leading to 4 different observables.

I Use Z3 to prove equivalence to segmented oracle PC pattern.
I Leaks all information after 10 executions by the adversary.
I Running time: 8.695 seconds
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Conclusions

In this talk:

I Segmented oracles.
I Multi-run symbolic exection of adversary model to get leakage.
I Infer multi-run leakage from a singel run of symbolic execution.
I Model counting for string manipulating programs.
I Experimentally validated our appraoch.

Future work:

I Extend analsysis to more general oracles.
I Incorporate model of system noise.
I Automatically generate adversary strategies.



Closing Remark

Where do segment oracle side channels come from?

Algorithmic optimizations:

I Saving time and space whenever possible...

I early loop termination, text compression...
I might reveal some properties of secure data.

“Premature optimization is the root of all evil.” -Tony Hoare

Important tradeoff: efficiency vs. security.

Important problem to address: we need tools for automatically
measuring this tradeoff.
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Questions?

Thank you.
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