
Attack Synthesis for Strings using Meta-Heuristics
Seemanta Saha1, Ismet Burak Kadron1, William Eiers1, Lucas Bang2, and Tevfik Bultan1

1 University of California, Santa Barbara, {seemantasaha,kadron,weiers,bultan}@cs.ucsb.edu

2 Harvey Mudd College, bang@cs.hmc.edu

ABSTRACT
Information leaks are a significant problem in modern computer
systems and string manipulation is prevalent in modern software.
We present techniques for automated synthesis of side-channel
attacks that recover secret string values based on timing obser-
vations on string manipulating code. Our attack synthesis tech-
niques iteratively generate inputs which, when fed to code that
accesses the secret, reveal partial information about the secret
based on the timing observations, leading to recovery of the se-
cret at the end of the attack sequence. We use symbolic execution
to extract path constraints, automata-based model counting to
estimate the probability of execution paths, and meta-heuristic
methods to maximize information gain based on entropy for syn-
thesizing adaptive attack steps.

1. INTRODUCTION
Modern software systems store and manipulate sensitive informa-
tion. It is crucial for software developers to write code in a man-
ner that prevents disclosure of sensitive information to arbitrary
users. However, computation that accesses sensitive information
can have attacker-measurable characteristics that leaks informa-
tion. This can allow a malicious user to infer secret information by
measuring characteristics such as execution time, memory usage,
or network delay. This type of unintended leakage of secret in-
formation due to non-functional behavior of a program is called a
side-channel vulnerability. In this paper, we focus on side-channel
vulnerabilities that result from timing characteristics of string ma-
nipulating functions. For a given function F that performs com-
putation over strings, we automatically synthesize a side-channel
attack against F . The synthesized attack consists of a sequence of
inputs that a malicious user can use to leak information about the
secret by observing timing behavior. By synthesizing an attack,
we provide a proof of vulnerability for the function.

Our approach uses symbolic execution to extract constraints char-
acterizing the relationship between secret strings in the program,
attacker controlled inputs, and side-channel observations.We com-
pare several methods for selecting the next attack input based on
meta-heuristics for maximizing the amount of information gained.

Our contributions in this paper can be summarized as follows:
(1) to the best of our knowledge, this is the first work which
performs attack synthesis specifically targeting side-channels in
string-manipulating programs; (2) we provide and experimentally
compare several approaches to attack synthesis for strings. We
make use of meta-heuristics for searching the input space, includ-
ing model-based searching, random searching, simulated anneal-

∗This material is based on research supported by an Amazon
Research Award and by DARPA under the agreement number
FA8750-15-2-0087. The U.S. Government is authorized to repro-
duce and distribute reprints for Governmental purposes notwith-
standing any copyright notation thereon. The views and conclu-
sions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of DARPA or the U.S.
Government.

pub l i c Boolean checkPIN (St r ing h , S t r ing l){
f o r (i n t i = 0 ; i < 4 ; i++)

i f (h . charAt (i) != l . charAt (i))

re turn f a l s e ;

r e turn true ;

}

Figure 1: PIN checking example.

ing, and genetic algorithms; and (3) we present attack synthesis
techniques based on automata-based model counting.

A Motivating Example. Consider a PIN-based authentication
function (Fig. 1) with inputs: 1) a secret PIN h, and 2) a user
input, l. Both h and l are strings of digit characters (“0”–“9”)
of length 4. We have adopted the nomenclature used in security
literature where h denotes the high-security value (the secret PIN)
and l denotes the low-security value, (the input that the function
compares with the PIN). The function compares the PIN and the
user input character by character and returns false as soon as it
finds a mismatch. Otherwise it returns true.

One can infer information about the secret h by measuring the
execution time. For each length of the common prefix of h and l,
the execution time will differ. Notice that if h and l have no com-
mon prefix, then checkPIN will have the shortest execution time
since the loop body will be executed only once; this corresponds
to 63 Java bytecode instructions. If h and l have a common pre-
fix of one character, we see a longer execution time since the loop
body executes twice (78 instructions). In the case that h and l
match completely, checkPIN has the longest running time (108
instructions). There are 5 observable values since there are 5 dif-
ferent execution times proportional to the length of the common
prefix of h and l. Hence, an attacker can choose inputs and use
the side-channel observations to determine how much of a prefix
has matched. For this function, we automatically generated the
constraints that characterize the length of the matching prefix
and corresponding execution costs (number of executed bytecode
instructions) using symbolic execution (Table 1). Our technique
uses these constraints to synthesize an attack which determines
the value of the secret PIN. We make use of an uncertainty func-
tion, based on Shannon entropy, to measure the progress of an at-
tack (Section 3). Intuitively, the attacker’s uncertainty, H starts
off at some positive value and decreases during the attack. When
H = 0, the attacker has fully learned the secret (Table 2).

Table 1: Observation constraints generated by symbolic execution
of the function in Figure 1.
i Observation Constraint, ψi o

1 charat(l, 0) 6= charat(h, 0) 63
2 charat(l, 0) = charat(h, 0) ∧ charat(l, 1) 6= charat(h, 1) 78
3 charat(l, 0) = charat(h, 0) ∧ charat(l, 1) = charat(h, 1)∧ 93

charat(l, 2) 6= charat(h, 2)
4 charat(l, 0) = charat(h, 0) ∧ charat(l, 1) = charat(h, 1)∧ 108

charat(l, 2) = charat(h, 2) ∧ charat(l, 3) 6= charat(h, 3)
5 charat(l, 0) = charat(h, 0) ∧ charat(l, 1) = charat(h, 1)∧ 123

charat(l, 2) = charat(h, 2) ∧ charat(l, 3) = charat(h, 3)

Table 2: Attack inputs (l), uncertainty about the secret (H), and
observations (o). Prefix matches are shown in bold.

Step H l o Step H l o

1 13.13 “8299” 63 15 5.906 “1392” 93
2 12.96 “0002” 63 16 5.643 “1316” 93
3 9.813 “1058” 78 17 5.321 “1308” 93
4 9.643 “1477” 78 18 4.906 “1362” 93
5 9.451 “1583” 78 19 4.321 “1378” 93
6 9.228 “1164” 78 20 3.169 “1338” 108
7 8.965 “1950” 78 21 3.000 “1332” 108
8 8.643 “1220” 78 22 2.807 “1334” 108
9 8.228 “1786” 78 23 2.584 “1333” 108

10 7.643 “1817” 78 24 2.321 “1330” 108
11 6.643 “1664” 78 25 2.000 “1335” 108
12 6.491 “1342” 93 26 1.584 “1336” 108
13 6.321 “1328” 93 27 0.000 “1337” 123
14 6.129 “1386” 93

Suppose that the secret is “1337”. The initial uncertainty is
log2 104 = 13.13 bits of information. Our attack synthesizer
generated input “8229” at the first step and makes an observa-
tion with cost 63, which corresponds to ψ1. This indicates that
charat(h, 0) 6= 8. Similarly, a second synthesized input, “0002”,
implies charat(h, 0) 6= 0 and the uncertainty is again reduced. At
the third step the synthesized input “1058” yields an observation
of cost 78. Hence, ψ2 is the correct path constraint to update our
constraints on h, which becomes:

charat(h, 0) 6= 8∧charat(h, 0) 6= 0∧charat(h, 0) = 1∧charat(h, 1) 6= 0

We continue synthesizing inputs and learning constraints on h,
which tell us more information about the prefixes of h, until the
secret is known after 27 steps. At the final step, we make an ob-
servation which corresponds to ψ5 indicating a full match and the
remaining uncertainty is 0. In general, our search for attack inputs
should drive the entropy to 0, so we propose entropy optimiza-
tion techniques. This particular type of attack is a segment attack
which is known to be a serious source of security flaws [2, 13, 17].
Our approach automatically synthesizes this attack.

2. AUTOMATIC ATTACK SYNTHESIS
In this section we give a two phase approach that synthesizes
attacks (Procedure 1). We consider functions F that take as input
a secret string h ∈ H and an attacker-controlled string l ∈ L and
that have side-channel observations o ∈ O.

Procedure 1 SynthesizeAttack(F (h, l), Ch, h
∗)

This procedure calls the GenerateConstraints and
RunAttack functions to synthesize adaptive attacks.

1: Ψ← GenerateConstraints(F (h, l))
2: RunAttack(F (h, l),Ψ, Ch, h

∗)

Static Analysis Phase. The first phase generates constraints
from the program for h, l, and o (Procedure 2). We perform
symbolic execution on the program under test with the secret (h)
and the attacker controlled input (l) marked as symbolic [10,16].
Symbolic execution runs F on symbolic rather than concrete in-
puts resulting in a set of path constraints Φ. Each φ ∈ Φ is a
logical formula that characterizes the set of inputs that execute
some path in F . During symbolic execution, we keep track of the
side-channel observation for each path. As in other works in this
area, we model the execution time of the function by the number
of instructions executed [2,14,15]. We assume that the observable
values are noiseless, i.e., multiple executions of the program with
the same input value will result in the same observable value. We
augment symbolic execution to return a function obs that maps
a path constraint φ to an observation o. Since an attacker cannot
extract information from program paths that have indistinguish-
able side-channel observations, we combine observationally similar

path constraints via disjunction (Procedure 2, line 4), where we
say that o ∼ o′ if |o − o′| < δ for a given threshold δ. The re-
sulting observation constraints (denoted ψo and Ψ) characterize
the relationship between the secret (h) the attacker input (l) and
side-channel observations (o).

Attack Synthesis Phase. The second phase synthesizes a se-
quence of inputs that allow an attacker to incrementally learn
the secret (Procedure 3). During this phase, we fix a secret h∗,
unknown to the attacker. We maintain a constraint Ch on the
possible values of the secret h. Initially, Ch merely specifies the
domain of the secret. We call procedure AttackInput, which
uses one of several entropy-based heuristics (Section 4), to deter-
mine the input value l∗ for the current attack step. Then, the
observation o that corresponds to running the program under at-
tack with h∗ and l∗ is revealed. We update Ch to reflect the new
constraint on h implied by the attack input and observation—we
instantiate the corresponding observation constraint, ψo[l 7→ l∗],
and conjoin it with the current Ch (line 5). Based on Ch, we com-
pute an uncertainty measure for h at every step using Shannon
entropy [7], denoted H (Section 3). The goal is to generate inputs
which drive H as close as possible to zero, in which case there is
no uncertainty and the secret is fully known. This attack synthe-
sis phase repeats until it is not possible to reduce the uncertainty,
H, any further.

Procedure 2 GenerateConstraints(F (h, l))
Performs symbolic execution on function F with secret string h
and attacker-controlled string l. The resulting path constraints
are combined according to indistinguishability of observations.

1: Ψ← ∅
2: (Φ,O, obs)← SymbolicExecution(F (h, l))
3: for o ∈ O do
4: ψo ←

∨
φ∈Φ:obs(φ)∼o φ

5: Ψ← Ψ ∪ {ψo}
6: return Ψ

Procedure 3 RunAttack(F (h, l),Ψ, Ch, h
∗)

Synthesizes a sequence of attack inputs, l∗, for F (h, l), given ob-
servation constraints Ψ, initial constraints on h (Ch), and un-
known secret h∗. Function AttackInput is one of the variations
described in Section 4.

1: H ← Entropy(Ch)
2: while H > 0 do
3: l∗ ← AttackInput(Ch,Ψ)
4: o← F (h∗, l∗)
5: Ch ← Ch ∧ φo[l 7→ l∗]
6: H ← Entropy(Ch)

3. ENTROPY-BASED OBJECTIVE FUNCTION
Here we derive an objective function to measure the amount of in-
formation an attacker expects to gain by choosing an input value
lval to be used in the attack search heuristics of Section 4. In
the following discussion, H, L, and O are random variables repre-
senting high-security input, low-security input, and side-channel
observation respectively. We use entropy-based metrics from the
theory of quantitative information flow [18]. Given probabil-
ity function p(h), the information entropy of H, denoted H(H),
which we interpret as the observer’s uncertainty, is

H(H) = −
∑
h∈H

p(h) log2 p(h) (1)

Given conditional distributions p(h|o, l), and p(o|l) we quantify
the attacker’s expected updated uncertainty about h, given a can-
didate choice of L = lval, with the expectation taken over all pos-

sible observations, o ∈ O. We compute the conditional entropy of
H given O with L = lval as

H(H|O,L = lval) = −
∑
o∈O

p(o|lval)
∑
h∈H

p(h|o, lval) log2 p(h|o, lval)

(2)

Now, we can compute the expected amount of information gained
about h by observing o after providing input value lval. The
mutual information between H and O, given L = lval denoted
I(H;O|L = lval) is the difference between the initial entropy of
H and the conditional entropy of H given O when L = lval:

I(H;O|L = lval) = H(H)−H(H|O,L = lval) (3)

Equation (3) is our objective function. Providing input lval = l∗

which maximizes I(H;O|L = lval) maximizes information gained
about h. Equations (1) and (2) rely on p(h), p(o|l), and p(h|o, l),
which may change at every step of the attack. Recall that during
the attack, we maintain a constraint on the secret, Ch. Assuming
that all secrets that are consistent with Ch are equally likely, at
each step, we can compute the required probabilities using model
counting. Given a formula F , performing model counting on F
gives the number of satisfying solutions for F , which we denote
#F . Thus, we observe that p(h) = 1/#Ch if h satisfies Ch,
otherwise 0. Hence, Equation (1) reduces to H(H) = log2(#Ch).

Procedure 2 gives side-channel observations O = {o1, . . . , on} and
constraints over h and l corresponding to each oi, Ψ = {ψ1, . . . , ψn}.
The probability that h takes on a value, constrained by a partic-
ular ψi, for a given lval can be computed by instantiating ψi with
lval and then model counting. Thus, p(h|oi, lval) = 1/#ψi[l 7→ lval].
Similarly, p(o|lval) = #ψi[l 7→ lval]/#Ch[l 7→ lval].

In this paper, the Entropy (Equation (1)) and MutualInfo
(Equation (3)) functions refer to the appropriate entropy-based
computation just described, where p(h), p(o|l), and p(h|o, l) are
computed using the ModelCount procedure. We implement
the ModelCount procedure using the Automata-Based Model
Counter (ABC) tool, which is a constraint solver for string and
integer constraints with model counting capabilities [1].

4. ATTACK SYNTHESIS HEURISTICS
At every attack step the goal is to choose a low input l∗ that re-
veals information about h∗. Here we describe different techniques
for synthesizing attack inputs l∗. Each approach uses a different
heuristic to explore a subset of the possible low inputs. To search
the input space efficiently, we first observe that we need to restrict
the search to those l that are consistent with Ch.

Constraint-based Model Generation. Our attack synthesis
algorithm maintains a constraint Ch which captures all h values
that are consistent with the observations so far (Procedure 3, line
5). Using the observation constraints Ψ (which identify the rela-
tion among the secret h, public input l and the observation o), we
project Ch to a constraint on the input l, which we call Cl, and
we restrict our search on l to the set of values allowed by Cl. I.e.,
we only look for l values that are consistent with what we know
about h (which is characterized by Ch) with respect to Ψ. This
approach is implemented in GetInput and GetNeighborInput
functions. To evaluate different heuristics, in our experiments we
used either GetInput which returns an lval or GetNeighbor-
Input which returns an lval by mutating the previous lval. These
two functions are further classified as Restricted (R), in which
only models of Cl are generated, or non-restricted (NR), in which
we do not enforce lval to be a model of Cl. For Procedures 4, 5,

and 6, we can use either the restricted or non-restricted versions
of GetInput and GetNeighborInput.

Procedure 4 AttackInput-RA(Ch,Ψ)
Generates a low input at each attack step via random sampling.

1: I ← 0
2: for i from 1 to K do
3: lval ← GetInput(Ψ, Ch)
4: Inew ← MutualInfo(Ψ, Ch, lval)
5: if Inew > I then
6: I ← Inew, l∗ ← lval
7: return l∗

Search via Random Model Generation. As a base-line search
heuristic, we make use of the approach described above for gen-
erating low values that are consistent with Ch. The simplest ap-
proach is to generate a single random model from Cl and use it as
the next attack input. We call this approach Model-based (M). A
slightly more sophisticated approach (Procedure 4) is to generate
K random samples using Cl, compute the expected information
gain for each of them using Equation (3) and choose the best one.
We call this approach the Random Restricted (RA-R) heuristic
(since it is restricted to models consistent with Cl, and hence Ch).

Procedure 5 AttackInput-SA(Ch,Ψ)
Generates a low input at each attack step via simulated annealing.

1: t ← t0, lval ← GetInput(Ψ, Ch), I ← Mutual-
Info(Ψ, Ch, lval)

2: while t ≥ tmin do
3: lval ← GetNeighborInput(lval,Ψ, Ch)
4: Inew ← MutualInfo(Ψ, Ch, lval)

5: if (Inew > I)∨
(
e(Inew−I)/t > RandomReal(0, 1)

)
then

6: I ← Inew, l∗ ← lval
7: t← t− (t× k)

8: return l∗

Simulated Annealing. Simulated annealing (SA) is a meta-
heuristic for optimizing an objective function g(s) [11]. SA is
initialized with a candidate solution s0. At step i, SA chooses
a neighbor, si, of candidate si−1. If si is an improvement, i.e.,
g(si) > g(si−1), then si is used as the candidate for the next
iteration. If si is not an improvement (g(si) ≤ g(si−1)), then si
is still used as the candidate for the next iteration with a small
probability p calculated using the second part of disjunction at line
5 in Procedure 5. Intuitively, SA is a controlled random search
that allows a search path to escape local optima by permitting
the search to sometimes accept worse solutions. The acceptance
probability p decreases over time, which is modeled using a search
“temperature” which “cools off” and converges to a steady state.
Our SA based approach is shown in Procedure 5 where we use
GetNeighborInput function to get new candidates.

Genetic Algorithm. A genetic algorithm (GA) searches for an
optimal input to an objective function g(s) by iteratively simulat-
ing a population of candidate solutions Pi = {s1, . . . sn} [9]. Each
si is modeled as a set of genes. Here, a gene sequence consists a
string’s characters. At step i, we compute g(sj) as the fitness of
each candidate. A new population Pi+1 of offspring candidates is
generated from Pi by selecting pairs (s, s′) and performing genetic
crossover and mutation and selecting top N candidates from Pi
by fitness. Our GA-based approach is shown in Procedure 6.

Since GA applies mutation and crossover to generate new values,
restricted model generation does not apply. To restrict the search
to l values that are consistent with Cl would require implementing

mutation and crossover operations with respect to Cl. We are not
aware of a general approach for doing this, so during GA-based
search, mutation and crossover operations can generate low values
that are inconsistent with Cl (and hence Ch). Such values will
have no information gain and will be ignored during search, but
they can increase the search space and slow down the search.

Procedure 6 AttackInput-GA(Ch,Ψ)
Generates low input at each attack step using a genetic algorithm.

1: I ← 0
2: for j from 1 to popSize do
3: pop[j]← GetInput(Ψ, Ch)

4: for i from 1 to K do
5: for j from 1 to popSize do
6: popFit[j]← MutualInfo(Ψ, Ch, pop[j])
7: if popFit[j] > I then
8: I ← popFit[j], l∗ ← pop[j]

9: cand← MutateAndCrossover(pop, popFit, N)
10: pop← Append(SelectBest(pop, N), cand)

11: return l∗

5. IMPLEMENTATIONS AND EXPERIMENTS
Implementation. We implemented Procedure 2 using Symbolic
Path Finder (SPF) [16]. We implemented Procedure 3 as a Java
program that takes the observation constraints generated by Pro-
cedure 2 as input, along with Ch and h∗. The variations of At-
tackInput from Section 4 (Procedures 4, 5, and 6) are imple-
mented in Java. We implemented GetInput, GetNeighborIn-
put, and ModelCount by extending the existing string model
counting tool ABC. We added these features directly into the
C++ source code of ABC along with corresponding Java APIs.

Benchmark Details. To evaluate the effectiveness of our at-
tack synthesis techniques, we experimented on a benchmark of 8
string-manipulating programs utilizing various string operations,
for different string lengths (Table 3). The functions passCheck-

Insec and passCheckSec are password checking implementations.
Both compare a user input and secret password but early termina-
tion optimization (as described in the introduction) induces a tim-
ing side channel for the first one and the latter is a constant-time
implementation. We analyzed the stringEquals method from the
Java String library which is known to contain a timing side chan-
nel [8]. We discovered a similar timing side channel in indexOf

method from the Java String library. Function editDistance

example is an implementation of the standard dynamic program-
ming algorithm to calculate minimum edit distance of two strings.
Function compress is a basic compression algorithm which col-
lapses repeated substrings within two strings. stringInequal-

ity and stringCharInequality functions check lexicographic in-
equality (<,≥) of two strings whereas first one directly compares
the strings and later compares characters in the strings.

Table 3: Benchmark details with the number of path constraints
(|Φ|) and the number of merged observation constraints (|Ψ|).

Benchmark ID Operations
Low

Length
High

Length
|Φ| |Ψ|

passCheckInsec PCI charAt,length 4 4 5 5
passCheckSec PCS charAt,length 4 4 5 1
stringEquals SE charAt,length 4 4 9 9
stringInequality SI <,≥ 4 4 2 2
stringCharInequality SCI charAt,length,<,≥ 4 4 80 2
indexOf IO charAt,length 1 8 9 9
compress CO begins,substring,length 4 4 5 5
editDistance ED charAt,length 4 4 2170 22

Experimental Setup. For all experiments, we use a desktop
machine with an Intel Core i5-2400S 2.50 GHz CPU and 32 GB
of DDR3 RAM running Ubuntu 16.04, with a Linux 4.4.0-81 64-
bit kernel. We used the OpenJDK 64-bit Java VM, build 1.8.0

171. We ran each experiment for 5 randomly chosen secrets. We
present the mean values of the results in Tables 4. For RA, we set
the sample size K to 20. For SA, we set the temperature range (t
to tmin) from 10 to 0.001 and cooling rate k as 0.1. For GA, we
set population size popSize to 20, offspring size as 10, number of
best selections N as 10.

Results. In this discussion, we describe the quality of a syn-
thesized attack according to these metrics: the number of attack
steps and overall change in entropy from Hinit to Hfinal. Attacks
that do not reduce the final entropy to zero are called incomplete.

For all benchmarks, we compare 5 approaches: (1) model-based
(M), (2) non-restricted random (RA-NR), (3) restricted random
(RA-R), and (4) restricted simulated annealing (SA R), (5) re-
stricted Genetic Algorithm (GA R). When we compare RA-NR
and RA-R we observe that RA-NR is not as efficient as reducing
the entropy because attack input generation fails to find any infor-
mative inputs for most of the steps. By restricting the input gen-
eration to consistent models using Cl as described in Section 4, we
synthesize better attacks. Results on non-restricted and restricted
versions of SA and GA were similar. We observe that the model-
based technique (M), which also uses Cl to restrict the search
space is faster than other techniques, as it greedily uses a single
random model generated by ABC as the next attack input, with
no time required to evaluate the objective function. M quickly
generates attacks for most of the functions. We further examined
those functions and determined that their objective functions are
“flat” with respect to l. Any lval that is a model for Cl at the
current step yields the same expected information gain.

Table 4: Experimental results for model-based (M), random non-
restricted (RA NR) and restricted (RA R), simulated-annealing
restricted (SA R) and genetic algorithm restricted (GA R) heuris-
tics. Time bound is set as 3600 seconds.

ID Hinit Metrics M RA NR RA R SA R GA R

PCI 18.8
Time (s) 15.9 3600.0 3600.0 3600.0 3600.0
Steps 54.2 110.0 39.4 34.5 41.5
Hfinal 0.0 9.3 5.7 8.4 8.5

PCS 18.8
Time (s) 3600.0 3600.0 3600.0 3600.0 3600.0
Steps 118.0 42.5 41.4 33.2 38.0
Hfinal 18.8 18.8 18.8 18.8 18.8

SE 18.8
Time (s) 22.0 3600.0 3600.0 3600.0 3600.0
Steps 62.2 85.0 42.6 25.3 30.8
Hfinal 0.0 11.8 6.1 11.1 8.4

SI 18.8
Time (s) 6.1 3600.0 78.3 268.2 218.5
Steps 38.2 171.0 18.6 17.5 18.2
Hfinal 0.0 6.5 0.0 0.0 0.0

SCI 18.8
Time (s) 3600.0 3600.0 3600.0 3600.0 3600.0
Steps 34.6 5.5 4.0 2.0 2.0
Hfinal 12.9 16.8 16.2 17.7 17.5

IO 37.6
Time (s) 29.1 3600.0 3600.0 3600.0 3600.0
Steps 26.0 21.5 18.0 9.5 11.4
Hfinal 1.0 1.24 8.7 16.6 20.1

CO 18.8
Time (s) 3600.0 3600.0 3600.0 3600.0 3600.0
Steps 734.0 183.0 147.0 83.0 97.8
Hfinal 13.48 7.9 9.2 10.3 9.1

ED 18.8
Time (s) 3600.0 3600.0 3600.0 3600.0 3600.0
Steps 27.6 1.0 1.0 1.0 1.0
Hfinal 12.6 18.4 17.8 17.8 17.8

Although M is fast and generates attacks for each benchmark,
experimental results show that it requires more attack steps com-
pared (in terms of information gain) to the attacks generated by
meta-heuristic techniques that optimize the objective function.
As the experimental results show for the stringInequality ex-
ample, a meta-heuristic technique can reduce Hfinal further but
with fewer attack steps compared to the model-based approach
(M). And, this case would be true for any example where dif-
ferent inputs at a specific attack step have different information

gain. Our experimental results also show the differences between
random search (RA) and meta-heuristics (SA and GA). For the
stringInequality example, SA is better than RA and GA. RA
tries a random set of models consistent with Cl as low values, and
picks the one with maximum information gain; GA uses random
models consistent with Cl as the initial population and generates
more low values using mutation and crossover of characters in
the candidate strings; SA selects the first candidate as a random
model consistent with Cl and then mutates the string to get other
low values. Although GA builds the initial population using low
values that are consistent with Cl, mutation and crossover oper-
ations can lead to low values which are not consistent with Cl.
On the other hand, low values explored by SA and RA are al-
ways consistent with Cl, giving better results overall. Finally, we
observe that some of our selected benchmarks are more secure
against our attack synthesizer than others. In particular, pass-
CheckSec, a constant-time implementation of password checking,
did not leak any information through the side channel. Two other
examples from the benchmark, stringCharInequality editDis-

tance also did not succumb to our approach easily, due to the
relatively large number of generated constraints 80 and 2170 re-
spectively, indicating a much more complex relationship between
the inputs and observations. To summarize, our experiments in-
dicate that our attack synthesis approach is able to construct
side-channel attacks against string manipulating programs, pro-
viding evidence of vulnerability (e.g. passCheckInsec). Further,
when our attack synthesizer fails to generate attack steps (pass-
CheckSec), or is only able to extract a relatively small information
after many steps or significant computation time (editDistance),
it provides evidence that the function under test is comparatively
safer against side-channel attacks.

6. RELATED WORK
There has been prior work on analyzing side-channels [2, 4,5,15].
There has been recent results on synthesizing attacks or quanti-
fying information leakage under a model where the attacker can
make multiple runs of the system [2, 3, 6, 12, 15]. For example,
LeakWatch [6] estimates leakage in Java programs based on sam-
pling program executions on concrete inputs and Köpf et. al. [12]
give a multi-run analysis based on an enumerative algorithm.
There has also been prior work on quantifying information leakage
using symbolic execution and model-counting techniques for inte-
ger constraints [3, 14, 15]. There are two previous results closely
related to our work. The first [2] focuses on quantifying informa-
tion flow through side channels for string-manipulating programs,
applies only for programs that have a particular form of vulner-
ability known as segment oracle side-channels, and quantifies the
amount of information leakage (does not synthesize attacks). The
second [14] synthesizes side-channel attacks using either entropy-
based or SAT-based objective functions, but works only for con-
straints in the theories of integer arithmetic or bit-vectors using
model counters and constraint solvers for those theories.

7. CONCLUSION
In this paper we presented techniques for synthesizing adaptive
attacks for string manipulating programs. To the best of our
knowledge this is the first work which is able to automatically dis-
cover side channel vulnerabilities by synthesizing attacks targeting
string manipulating functions. We presented several heuristics for
attack synthesis and extended an existing automata-based model
counter for attack synthesis. We experimentally demonstrated
the effectiveness of our approach and compared several variations
of attack-input selection heuristics.

8. REFERENCES
[1] Abdulbaki Aydin, Lucas Bang, and Tevfik Bultan.

Automata-based model counting for string constraints. In
Proceedings of the 27th International Conference on
Computer Aided Verification (CAV), pages 255–272, 2015.

[2] Lucas Bang, Abdulbaki Aydin, Quoc-Sang Phan, Corina S.
Pasareanu, and Tevfik Bultan. String analysis for side
channels with segmented oracles. In Proceedings of the 24th
ACM SIGSOFT International Symposium on the
Foundations of Software Engineering, 2016.

[3] Lucas Bang, Nicolas Rosner, and Tevfik Bultan. Online
synthesis of adaptive side-channel attacks based on noisy
observations. In Proceedings of the IEEE European
Symposium on Security and Privacy (EuroS&P), 2018.

[4] David Brumley and Dan Boneh. Remote Timing Attacks
Are Practical. In Proceedings of the 12th Conference on
USENIX Security Symposium - Volume 12, SSYM’03, pages
1–1, Berkeley, CA, USA, 2003. USENIX Association.

[5] Shuo Chen, Rui Wang, XiaoFeng Wang, and Kehuan Zhang.
Side-channel leaks in web applications: A reality today, a
challenge tomorrow. In Proceedings of the 2010 IEEE
Symposium on Security and Privacy, SP ’10, pages 191–206,
Washington, DC, USA, 2010. IEEE Computer Society.

[6] Tom Chothia, Yusuke Kawamoto, and Chris Novakovic.
Leakwatch: Estimating information leakage from java
programs. In Computer Security - ESORICS 2014 - 19th
European Symposium on Research in Computer Security,
Wroclaw, Poland, September 7-11, 2014. Proceedings, Part
II, pages 219–236, 2014.

[7] Thomas M. Cover and Joy A. Thomas. Elements of
Information Theory (Wiley Series in Telecommunications
and Signal Processing). Wiley-Interscience, 2006.

[8] Joel Sandin Daniel Mayer. Time trial: Racing towards
practical remote timing attacks.
https://www.nccgroup.trust/globalassets/
our-research/us/whitepapers/TimeTrial.pdf, 2014.

[9] David E Goldberg. Genetic algorithms in search,
optimization, and machine learning. Technical report, 1989.

[10] James C. King. Symbolic execution and program testing.
Commun. ACM, 19(7):385–394, July 1976.

[11] Scott Kirkpatrick, C Daniel Gelatt, and Mario P Vecchi.
Optimization by simulated annealing. science,
220(4598):671–680, 1983.

[12] Boris Köpf and David A. Basin. An information-theoretic
model for adaptive side-channel attacks. In Peng Ning,
Sabrina De Capitani di Vimercati, and Paul F. Syverson,
editors, Proceedings of the 2007 ACM Conference on
Computer and Communications Security, CCS 2007, pages
286–296. ACM, 2007.

[13] Taylor Nelson. Widespread timing vulnerabilities in openid
implementations. http://lists.openid.net/pipermail/
openid-security/2010-July/001156.html, 2010.

[14] Quoc-Sang Phan, Lucas Bang, Corina S. Pasareanu,
Pasquale Malacaria, and Tevfik Bultan. Synthesis of
adaptive side-channel attacks. In 30th IEEE Computer
Security Foundations Symposium, CSF 2017, Santa
Barbara, CA, USA, 2017.

[15] Corina S. Păsăreanu, Quoc-Sang Phan, and Pasquale
Malacaria. Multi-run side-channel analysis using Symbolic
Execution and Max-SMT. In Proceedings of the 2016 IEEE
29th Computer Security Foundations Symposium, CSF ’16,
Washington, DC, USA, 2016. IEEE Computer Society.

[16] Corina S. Păsăreanu, Willem Visser, David Bushnell, Jaco
Geldenhuys, Peter Mehlitz, and Neha Rungta. Symbolic
PathFinder: integrating symbolic execution with model
checking for Java bytecode analysis. Automated Software
Engineering, pages 1–35, 2013.

[17] J. Rizzo and T. Duong. The crime attack. Ekoparty
Security Conference, 2012.

[18] Geoffrey Smith. On the foundations of quantitative
information flow. In Proceedings of the 12th International
Conference on Foundations of Software Science and
Computational Structures (FOSSACS), 2009.

