Attack Synthesis for Strings using Meta-heuristics

JPF Workshop 2018

Seemanta Saha^{*}, Ismet Burak Kadron^{*}, William Eiers^{*}, Lucas Bang⁺, Tevfik Bultan^{*}

* University of California Santa Barbara + Harvey Mudd College

Timing Side-Channel Attack

- known as segment attack vulnerability:
 - attacker reveals the secret input segment (character) by segment (character)

- known as segment attack vulnerability:
 - attacker reveals the secret input segment (character) by segment (character)
- this vulnerability was present in
 - Google KeyCzar library

Timing attack in Google Keyczar library

Filed under: Crypto, Hacking, Network, Protocols, python, Security - Nate Lawson @ 11:30 pm

I recently found a security flaw in the Google Keyczar crypto library. The impact was that an attacker could forge signatures for data that was "signed" with the SHA-1 HMAC algorithm (the default algorithm).

Firsty, I'm really glad to see more high-level libraries being developed so that programmers don't have to work directly with algorithms. Keyczar is definitely a step in the right direction. Thanks to all the people who developed it. Also, thanks to Stephen Weis for responding quickly to address this issue after I notified him (Python fix and Java fix).

- known as segment attack vulnerability
 - attacker reveals the secret input segment (character) by segment (character)
- this vulnerability was present in
 - Google KeyCzar library, OpenID, etc.

Timing attack in Google Keyczar library

Filed under: Crypto, Hacking, Network, Protocols, python, Security - Nate Lawson @ 11:30 pm

I recently found a security flaw in the Google Keyczar crypto library. The impact was that an attacker could forge signatures for data that was "signed" with the SHA-1 HMAC algorithm (the default algorithm).

Firsty, I'm really glad to see more high-level libraries being developed so that programmers don't have to work directly with algorithms. Keyczar is definitely a step in the right direction. Thanks to all the people who developed it. Also, thanks to Stephen Weis for responding quickly to address this issue after I notified him (Python fix and Java fix).

[security] Widespread Timing Vulnerabilities in OpenID implementations

Taylor Nelson taylor at rootlabs.com Tue Jul 13 20:32:50 UTC 2010

- Next message: [security] Widespread Timing Vulnerabilities in OpenID implementations
- Messages sorted by: [date] [thread] [subject] [author]

Every OpenID implementation I have checked this far has contained timing dependent compares in the HMAC verification, allowing a remote attacker to forge valid tokens.

In JOpenId:

There is a timing vulnerability in thegetAuthentication function in trunk/JOpenId/src/org/expressme/openid/OpenIdManager.java

Static Analysis Phase Attack Synthesis Phase

Attack Synthesis Phase

String Function F(h,l)

Constraints on h: length and range bound

String Function F(h,l)

Path Constraints for Password Checking Function

i	Observation Constraint, ψ_i	0
1	$charat(l,0) \neq charat(h,0)$	63
2	$charat(l,0) = charat(h,0) \wedge charat(l,1) \neq charat(h,1)$	78
3	$charat(l,0) = charat(h,0) \land charat(l,1) = charat(h,1) \land$	93
	$charat(l,2) \neq charat(h,2)$	
4	$charat(l,0) = charat(h,0) \land charat(l,1) = charat(h,1) \land$	108
	$charat(l,2) = charat(h,2) \wedge charat(l,3) \neq charat(h,3)$	
5	$charat(l,0) = charat(h,0) \land charat(l,1) = charat(h,1) \land$	123
	$charat(l,2) = charat(h,2) \wedge charat(l,3) = charat(h,3)$	

Length of public input (1) = 4 Length of secret input (h) = 4

Goal: Attack Synthesis

Generate Sequence of inputs revealing information about the secret value

i	Observation Constraint, ψ_i	0
1	$charat(l, 0) \neq charat(h, 0)$	63
2	$charat(l, 0) = charat(h, 0) \land charat(l, 1) \neq charat(h, 1)$	78
3	$charat(l, 0) = charat(h, 0) \land charat(l, 1) = charat(h, 1) \land charat(l, 2) \neq charat(h, 2)$	93
4	$charat(l, 0) = charat(h, 0) \land charat(l, 1) = charat(h, 1) \land charat(l, 2) = charat(h, 2) \land charat(l, 3) \neq charat(h, 3)$	108
5	$\begin{array}{l} charat(l,0) = charat(h,0) \wedge charat(l,1) = charat(h,1) \wedge \\ charat(l,2) = charat(h,2) \wedge charat(l,3) = charat(h,3) \end{array}$	123

Unknown Secret:						
"PATH"						

i	Observation Constraint, ψ_i	0
1	$charat(l, 0) \neq charat(h, 0)$	63
2	$charat(l, 0) = charat(h, 0) \land charat(l, 1) \neq charat(h, 1)$	78
3	$charat(l, 0) = charat(h, 0) \land charat(l, 1) = charat(h, 1) \land$	93
	$charat(l, 2) \neq charat(h, 2)$	
4	$charat(l, 0) = charat(h, 0) \land charat(l, 1) = charat(h, 1) \land$	108
	$charat(l,2) = charat(h,2) \wedge charat(l,3) \neq charat(h,3)$	
5	$charat(l, 0) = charat(h, 0) \land charat(l, 1) = charat(h, 1) \land$	123
	$charat(l,2) = charat(h,2) \wedge charat(l,3) = charat(h,3)$	

Attack Synthesis Phase

Attack Synthesis Phase

Attack Synthesis Phase

- We can automatically generate an attack using
 - Program path constraints
 - Observation from program execution
 - \circ $\,$ Generating constraints from observation $\,$
 - Updating constraints on secret value
 - \circ $\,$ Solving constraints to get attack input $\,$

We call this Model-Based Attack Synthesis (M)

We can synthesize attacks using Model-Based (M) Attack Synthesis

Why do we need meta-heuristics?

String inequality Function

```
public String inequality(string i) {
    if(s <= i)
        do something simple; // 2 seconds
    else
        do something complex; // 5 seconds
    return 0;
}</pre>
```

String inequality Function

```
public String inequality(string i) {
    if(s <= i)
        do something simple; // 2 seconds
    else
        do something complex; // 5 seconds
    return 0;
}</pre>
```

$$0 = 1 \Rightarrow s <= i \qquad 0 = 2 \Rightarrow s > i$$

S AAAA AAAB ZZZY ZZZZ

Attacker's input and observation **partitions** domain of S

Attacker's input and observation sequences partitions domain of S

How input and observation affects partitioning?

0 = 1 ⇒ s <= i				0 = 2 ⇒ s > i			
AAAA	AAAB	• • •	MNOO	MNOP	• • •	ZZZY	ZZZZ

$$0 = 1 \Rightarrow s \le i$$
 $0 = 2 \Rightarrow s > i$

$$0 = 1 \Rightarrow s \le i$$
 $0 = 2 \Rightarrow s > i$

 $0 = 2 \Rightarrow s > i$

0 = 2 ⇒ s > i

Balanced partitions

Maximizes information gain

 $0 = 1 \Rightarrow s \le i$ $0 = 2 \Rightarrow s > i$

Maximize information gain \Rightarrow Binary Search

 $0 = 1 \Rightarrow s \le i$ $0 = 2 \Rightarrow s > i$

Maximize information gain \Rightarrow Binary Search

Programs in general

Maximize information gain \Rightarrow Optimal Search

Shannon Entropy Formula
$$\mathcal{H} = \sum_{j=1}^{n} p_j \log_2 \frac{1}{p_j}$$

How to calculate
$$P_j$$
?

$\overbrace{i_0 \in I}$

secret $s \in S$

\bigcirc $i_0 \in I$

secret $s \in S$

$\overbrace{i_0 \in I}_{i_1 \in I}$ $i_2 \in I$

secret $s \in S$

 $\mathscr{H} = \sum_{j=1}^{n} (p_j) \log_2 \frac{1}{p_j}$

$\begin{array}{c} \overbrace{i_0 \in I} \\ i_1 \in I \\ i_2 \in I \end{array}$ secret $s \in S$

P(s ∈

Count the number of strings consistent with PC

Count the number of strings consistent with PC

ABC constructs an automaton recognizing solution to PC

Count the number of strings consistent with PC

ABC constructs an automaton recognizing solution to PC

x in [A-Z] + ^ charat(x,0)='A' 0 A 2

Count the number of strings consistent with PC

ABC constructs an automaton recognizing solution to PC

Model count (|PC|) is the number of accepting paths in automaton

Constraints ABC ABC Model

Maximize information gain \Rightarrow Optimal Search

Meta-heuristics Techniques

Random Search

Simulated Annealing

Genetic Algorithm

Meta-heuristics Techniques

Random Search

Simulated Annealing

Genetic Algorithm

- We implement and experiment these popular meta-heuristics techniques as
 - black box optimization procedures that
 - make repeated calls to ABC
 - to evaluate the information gain objective function

Random Search

Calculate information gain for random candidate inputs

Random Search

Calculate information gain for random candidate inputs

Select candidate input with maximum information gain

Random Search

Calculate information gain for random candidate inputs

Select candidate input with maximum information gain

Use the candidate as next attack input

information gain for first candidate input

information gain for first candidate input

information gain for new candidate input

information gain for first candidate input

information gain for new candidate input

better information gain ⇒ select as attack input

information gain for first candidate input

information gain for new candidate input

better information gain ⇒ select as attack input

less information gain ⇒ select with an
 acceptance probability

information gain for first candidate input

information gain for new candidate input

better information gain ⇒ select as attack input

less information gain ⇒ select with an
 acceptance probability

information gain for first candidate input

information gain for new candidate input

better information gain ⇒ select as attack input

less information gain ⇒ select with an acceptance probability

reduce acceptance probability as temperature cools down

information gain for first candidate input

information gain for new candidate input

better information gain ⇒ select as attack input

less information gain ⇒ select with an acceptance probability

Reduce acceptance probability as temperature cools down

information gain for first candidate input

information gain for new candidate input

better information gain ⇒ select as attack input

less information gain ⇒ select with an acceptance probability

Reduce acceptance probability as temperature cools down

Genetic Algorithm

Population of candidate inputs

Genetic Algorithm

Population of candidate inputs

fitness (information gain) of these candidates

Population of candidate inputs

fitness (information gain) of these candidates

Select top candidates

Population of candidate inputs

fitness (information gain) of these candidates

Select top candidates

Mutate and crossover

Population of candidate inputs

fitness (information gain) of these candidates

Select top candidates

Mutate and crossover

Update population

Population of candidate inputs

fitness (information gain) of these candidates

Select top candidates

Mutate and crossover

Update population

Select top candidate from population as attack input (1*)

Benchmark	ID	Operations	Low Length	High Length	$ \Phi $	$ \Psi $
passCheckInsec	PCI	charAt,length	4	4	5	5
passCheckSec	PCS	charAt,length	4	4	5	1
stringEquals	SE	charAt,length	4	4	9	9
stringInequality	SI	<,≥	4	4	2	2
stringCharInequality	SCI	$charAt, length, <, \geq$	4	4	80	2
index0f	IO	charAt, length	1	8	9	9
compress	CO	begins, substring, length	4	4	5	5
editDistance	ED	charAt,length	4	4	2170	22

Benchmark	ID	Operations	Low Length	High Length	$ \Phi $	$ \Psi $
passCheckInsec	PCI	${\rm charAt, length}$	4	4	5	5
passCheckSec	PCS	charAt,length	4	4	5	1
stringEquals	SE	charAt,length	4	4	9	9
stringInequality	SI	$<,\geq$	4	4	2	2
stringCharInequality	SCI	$charAt, length, <, \geq$	4	4	80	2
indexOf	IO	charAt,length	1	8	9	9
compress CO		begins, substring, length	4	4	5	5
editDistance ED		charAt,length	4	4	2170	22

Benchmark	ID	Operations	Low Length	High Length	$ \Phi $	$ \Psi $
passCheckInsec	PCI	${\rm charAt, length}$	4	4	5	5
passCheckSec	PCS	charAt, length	4	4	5	1
stringEquals	SE	charAt, length	4	4	9	9
stringInequality	SI	<,≥	4	4	2	2
stringCharInequality	SCI	$charAt, length, <, \geq$	4	4	80	2
indexOf	IO	${\rm charAt, length}$	1	8	9	9
compress	CO	begins, substring, length	4	4	5	5
editDistance	ED	${\rm charAt, length}$	4	4	2170	22

Benchmark	ID	Operations	Low Length	High Length	$ \Phi $	$ \Psi $
passCheckInsec	PCI	${\rm charAt, length}$	4	4	5	5
passCheckSec	PCS	charAt, length	4	4	(5)	(1)
stringEquals	SE	charAt, length	4	4	9	/9
stringInequality	SI	$<,\geq$	4	4	2	2
stringCharInequality	SCI	$charAt, length, <, \geq$	4	4	80/	2
index0f	IO	${\rm charAt, length}$	1	8	/9	9
compress	CO	begins, substring, length	4	4	5	5
editDistance	ED	${\rm charAt, length}$	4	4	/2170	22

Number of path constraints

Number of merged path constraints

Benchmark	ID	Operations	Low Length	High Length	$ \Phi $	$ \Psi $
passCheckInsec	PCI	${\rm charAt, length}$	4	4	5	5
passCheckSec	PCS	charAt, length	4	4	5	1
stringEquals	SE	charAt, length	4	4	9	9
stringInequality	SI	$<,\geq$	4	4	2	2
stringCharInequality	SCI	$charAt, length, <, \geq$	4	4	(80)	(2)
indexOf	IO	${\rm charAt, length}$	1	8	9	9
compress	CO	begins, substring, length	4	A	5	5
editDistance	ED	${\rm charAt, length}$	4	4	2170	22

Number of path constraints

Number of merged path constraints

Benchmark	ID	Operations	Low Length	High Length	$ \Phi $	$ \Psi $
passCheckInsec	PCI	charAt,length	4	4	5	5
passCheckSec	PCS	charAt,length	4	4	5	1
stringEquals	SE	charAt,length	4	4	9	9
stringInequality	SI	<,≥	4	4	2	2
stringCharInequality	SCI	$charAt, length, <, \geq$	4	4	80	2
indexOf	IO	${\rm charAt, length}$	1	8	9	9
compress	CO	begins, substring, length	4	4	5	5
editDistance	ED	${\rm charAt, length}$	4	4	(2170)	(22)

Number of path constraints

Number of merged path constraints

ID	\mathcal{H}_{init}	Metrics	Μ	RA	SA	GA
		Time (s)	15.9	3600.0	3600.0	3600.0
PCI	18.8	Steps	54.2	39.4	34.5	41.5
		\mathcal{H}_{final}	0.0	5.7	8.4	8.5
		Time (s)	3600.0	3600.0	3600.0	3600.0
PCS	18.8	Steps	118.0	41.4	33.2	38.0
		\mathcal{H}_{final}	18.8	18.8	18.8	18.8
		Time (s)	22.0	3600.0	3600.0	3600.0
SE	18.8	Steps	62.2	42.6	25.3	30.8
		\mathcal{H}_{final}	0.0	6.1	11.1	8.4
		Time (s)	6.1	78.3	268.2	218.5
SI	18.8	Steps	38.2	18.6	17.5	18.2
		\mathcal{H}_{final}	0.0	0.0	0.0	0.0
		Time (s)	3600.0	3600.0	3600.0	3600.0
SCI	18.8	Steps	34.6	4.0	2.0	2.0
		\mathcal{H}_{final}	12.9	16.2	17.7	17.5
		Time (s)	29.1	3600.0	3600.0	3600.0
IO	37.6	Steps	26.0	18.0	9.5	11.4
		\mathcal{H}_{final}	1.0	8.7	16.6	20.1
		Time (s)	3600.0	3600.0	3600.0	3600.0
CO	18.8	Steps	734.0	147.0	83.0	97.8
		\mathcal{H}_{final}	13.48	9.2	10.3	9.1
		Time (s)	3600.0	3600.0	3600.0	3600.0
ED	18.8	Steps	27.6	1.0	1.0	1.0
		\mathcal{H}_{final}	12.6	17.8	17.8	17.8

Initial uncertainty
of secret input (in
bits)

Number of alphabets = 26

Length of secret = 4

Domain size of $h = 26^4 = 456976$

Initial uncertainty = $\log_2(456976) = 18.8$

ID	\mathcal{H}_{init}	Metrics	M	RA	SA	GA
		Time (s)	15.9	3600.0	3600.0	3600.0
PCI	18.8	Steps	54.2	39.4	34.5	41.5
		\mathcal{H}_{final}	0.0	5.7		8.5
		Time (s)	3600.0	3600.0	3600.0	3600.0
PCS	18.8	Steps	118.0	41.4	33.2	38.0
		\mathcal{H}_{final}	18.8	18.8	18.8	18.8
		Time (s)	22.0	3600.0	3600.0	3600.0
SE	SE 18.8	Steps	62.2	42.6	25.3	30.8
		\mathcal{H}_{final}	0.0	6.1	11.1	8.4
		Time (s)	6.1	78.3	268.2	218.5
SI	18.8	Steps	38.2	18.6	17.5	18.2
		\mathcal{H}_{final}	0.0	0.0	0.0	0.0
		Time (s)	3600.0	3600.0	3600.0	3600.0
SCI	18.8	Steps	34.6	4.0	2.0	2.0
		\mathcal{H}_{final}	12.9	16.2	17.7	17.5
		Time (s)	29.1	3600.0	3600.0	3600.0
IO	37.6	Steps	26.0	18.0	9.5	11.4
		\mathcal{H}_{final}	1.0	8.7	16.6	20.1
		Time (s)	3600.0	3600.0	3600.0	3600.0
CO	18.8	Steps	734.0	147.0	83.0	97.8
		\mathcal{H}_{final}	13.48	9.2	10.3	9.1
		Time (s)	3600.0	3600.0	3600.0	3600.0
ED	18.8	Steps	27.6	1.0	1.0	1.0
		\mathcal{H}_{final}	12.6	17.8	17.8	17.8

Metrics:

- Time (in seconds)
- Number of attack steps
- Remaining Uncertainty

Remaining Uncertainty = Initial uncertainty - information gain

ID	\mathcal{H}_{init}	Metrics	M	RA	SA	GA
		Time (s)	15.9	3600.0	2600.0	3600.0
PCI	18.8	Steps	54.2	39.4	34.5	41.5
		\mathcal{H}_{final}	0.0	5.7	8.4	8.5
		Time (s)	3600.0	3600.0	3600.0	3600.0
PCS	18.8	Steps	118.0	41.4	33.2	38.0
		\mathcal{H}_{final}	18.8	18.8	18.8	18.8
		Time (s)	22.0	3600.0	3600.0	3600.0
SE	18.8	Steps	62.2	42.6	25.3	30.8
		\mathcal{H}_{final}	0.0	6.1	11.1	8.4
		Time (s)	6.1	78.3	268.2	218.5
SI	18.8	Steps	38.2	18.6	17.5	18.2
		\mathcal{H}_{final}	0.0	0.0	0.0	0.0
		Time (s)	3600.0	3600.0	3600.0	3600.0
SCI	18.8	Steps	34.6	4.0	2.0	2.0
		\mathcal{H}_{final}	12.9	16.2	17.7	17.5
		Time (s)	29.1	3600.0	3600.0	3600.0
IO	37.6	Steps	26.0	18.0	9.5	11.4
		\mathcal{H}_{final}	1.0	8.7	16.6	20.1
		Time (s)	3600.0	3600.0	3600.0	3600.0
CO	18.8	Steps	734.0	147.0	83.0	97.8
		\mathcal{H}_{final}	13.48	9.2	10.3	9.1
		Time (s)	3600.0	3600.0	3600.0	3600.0
ED	18.8	Steps	27.6	1.0	1.0	1.0
		\mathcal{H}_{final}	12.6	17.8	17.8	17.8

Techniques:

- Model Based
- Random search
- Simulated Annealing
- Genetic Algorithm

ID	\mathcal{H}_{init}	Metrics	Μ	RA	SA	GA
		Time (s)	15.9	3600.0	3600.0	3600.0
PCI	18.8	Steps	54.2	39.4	34.5	41.5
		\mathcal{H}_{final}	0.0	5.7	8.4	8.5
		Time (s)	3600.0	3600.0	3600.0	3600.0
PCS	18.8	Steps	118.0	41.4	33.2	38.0
		\mathcal{H}_{final}	18.8	18.8	18.8	18.8
		Time (s)	22.0	3600.0	3600.0	3600.0
SE	SE 18.8	Steps	62.2	42.6	25.3	30.8
		\mathcal{H}_{final}	0.0	6.1	11.1	8.4
		Time (s)	6.1	78.3	268.2	218.5
SI	18.8	Steps	38.2	18.6	17.5	18.2
		\mathcal{H}_{final}	0.0	0.0	0.0	0.0
		Time (s)	3600.0	3600.0	3600.0	3600.0
SCI	18.8	Steps	34.6	4.0	2.0	2.0
		\mathcal{H}_{final}	12.9	16.2	17.7	17.5
		Time (s)	29.1	3600.0	3600.0	3600.0
IO	37.6	Steps	26.0	18.0	9.5	11.4
		\mathcal{H}_{final}	1.0	8.7	16.6	20.1
		Time (s)	3600.0	3600.0	3600.0	3600.0
CO	18.8	Steps	734.0	147.0	83.0	97.8
		\mathcal{H}_{final}	13.48	9.2	10.3	9.1
		Time (s)	3600.0	3600.0	3600.0	3600.0
ED	18.8	Steps	27.6	1.0	1.0	1.0
		\mathcal{H}_{final}	12.6	17.8	17.8	17.8

Model Based:

- Shorter execution time per attack step
- More attack steps

ID	\mathcal{H}_{init}	Metrics	Μ	RA	SA	GA]
		Time (s)	15.9	3600.0	3600.0	3600.0]
PCI	18.8	Steps	54.2	39.4	34.5	41.5	
		\mathcal{H}_{final}	0.0	5.7	8.4	8.5	
		Time (s)	3600.0	3600.0	3600.0	3600.0]
PCS	18.8	Steps	118.0	41.4	33.2	38.0	
		\mathcal{H}_{final}	18.8	18.8	18.8	18.8	
		Time (s)	22.0	3600.0	3600.0	3600.0	
SE	18.8	Steps	62.2	42.6	25.3	30.8	
		\mathcal{H}_{final}	0.0	6.1	11.1	8.4	
		Time (s)	6.1	78.3	268.2	218.5	
SI	18.8	Steps	38.2	18.6	17.5	↓ 18.2	
		\mathcal{H}_{final}	0.0	0.0	0.0	0.0	Simulated Annealing:
		Time (s)	3600.0	3600.0	3600.0	3600.0	
SCI	18.8	Steps	34.6	4.0	2.0	2.0	• Longer execution time
		\mathcal{H}_{final}	12.9	16.2	17.7	17.5]
		Time (s)	29.1	3600.0	3600.0	3600.0	Less attack steps
IO	37.6	Steps	26.0	18.0	9.5	11.4	
		\mathcal{H}_{final}	1.0	8.7	16.6	20.1	
		Time (s)	3600.0	3600.0	3600.0	3600.0	
CO	18.8	Steps	734.0	147.0	83.0	97.8	
		\mathcal{H}_{final}	13.48	9.2	10.3	9.1	
		Time (s)	3600.0	3600.0	3600.0	3600.0	
ED	18.8	Steps	27.6	1.0	1.0	1.0]
		\mathcal{H}_{final}	12.6	17.8	17.8	17.8],

ID	\mathcal{H}_{init}	Metrics	M	RA	SA	GA	
		Time (s)	15.9	3600.0	3600.0	3600.0	
PCI	18.8	Steps	54.2	39.4	34.5	41.5	
		\mathcal{H}_{final}	0.0	5.7	8.4	8.5	
		Time (s)	3600.0	3600.0	3600.0	3600.0	
PCS	18.8	Steps	118.0	41.4	33.2	38.0	
		\mathcal{H}_{final}	18.8	18.8	18.8	18.8	
		Time (s)	22.0	3600.0	3600.0	3600.0	
SE	18.8	Steps	62.2	42.6	25.3	30.8	1
		\mathcal{H}_{final}	0.0	6.1	11.1	8.4	
		Time (s)	6.1	78.3	268.2	218.5	
SI	18.8	Steps	38.2	18.6	17.5	18.2	1
		\mathcal{H}_{final}	0.0	0.0	0.0	0.0	
		Time (s)	3600.0	3600.0	3600.0	3600.0	
SCI	18.8	Steps	34.6	4.0	2.0	2.0	1
		\mathcal{H}_{final}	12.9	16.2	17.7	17.5	
		Time (s)	29.1	3600.0	3600.0	3600.0	
IO	37.6	Steps	26.0	18.0	9.5	11.4	
		\mathcal{H}_{final}	1.0	8.7	16.6	20.1	
		Time (s)	3600.0	3600.0	3600.0	3600.0	
CO	18.8	Steps	734.0	147.0	83.0	97.8	1
		\mathcal{H}_{final}	13.48	9.2	10.3	9.1	
		Time (s)	3600.0	3600.0	3600.0	3600.0	
ED	D 18.8	Steps	27.6	1.0	1.0	1.0	
		\mathcal{H}_{final}	12.6	17.8	17.8	17.8	

Password Check Insecure:

- 1 hour timeout
- 5 observationally distinguishable path
- Better information leakage

ID	\mathcal{H}_{init}	Metrics	M	RA	SA	GA]
		Time (s)	15.9	3600.0	3600.0	3600.0	1
PCI	18.8	Steps	54.2	39.4	34.5	41.5	1
		\mathcal{H}_{final}	0.0	5.7	8.4	8.5]
		Time (s)	3600.0	3600.0	3600.0	3600.0	1
PCS	18.8	Steps	118.0	41.4	33.2	38.0	1
		\mathcal{H}_{final}	18.8	18.8	18.8	18.8	ן
		Time (s)	22.0	3600.0	3600.0	3600.0	Ϊ,
SE	18.8	Steps	62.2	42.6	25.3	30.8	1
		\mathcal{H}_{final}	0.0	6.1	11.1	8.4]
	18.8	Time (s)	6.1	78.3	268.2	218.5	1
SI		Steps	38.2	18.6	17.5	18.2	1
		\mathcal{H}_{final}	0.0	0.0	0.0	0.0]
	18.8	Time (s)	3600.0	3600.0	3600.0	3600.0	1
SCI		Steps	34.6	4.0	2.0	2.0	1
		\mathcal{H}_{final}	12.9	16.2	17.7	17.5]
		Time (s)	29.1	3600.0	3600.0	3600.0	1
IO	37.6	Steps	26.0	18.0	9.5	11.4	1
		\mathcal{H}_{final}	1.0	8.7	16.6	20.1]
		Time (s)	3600.0	3600.0	3600.0	3600.0	1
CO	18.8	Steps	734.0	147.0	83.0	97.8	1
		\mathcal{H}_{final}	13.48	9.2	10.3	9.1]
		Time (s)	3600.0	3600.0	3600.0	3600.0	1
ED	18.8	Steps	27.6	1.0	1.0	1.0	1
		\mathcal{H}_{final}	12.6	17.8	17.8	17.8]

Password Check Secure:

- 1 hour timeout
- 1 observationally distinguishable path
- Hardly leaks information
- Attack becomes exhaustive

ID	\mathcal{H}_{init}	Metrics	M	RA	SA	GA
		Time (s)	15.9	3600.0	3600.0	3600.0
PCI	18.8	Steps	54.2	39.4	34.5	41.5
		\mathcal{H}_{final}	0.0	5.7	8.4	8.5
		Time (s)	3600.0	3600.0	3600.0	3600.0
PCS	18.8	Steps	118.0	41.4	33.2	38.0
		\mathcal{H}_{final}	18.8	18.8	18.8	18.8
		Time (s)	22.0	3600.0	3600.0	3600.0
SE	18.8	Steps	62.2	42.6	25.3	30.8
		\mathcal{H}_{final}	0.0	6.1	11.1	8.4
	18.8	Time (s)	6.1	78.3	268.2	218.5
SI		Steps	38.2	18.6	17.5	18.2
		\mathcal{H}_{final}	0.0	0.0	0.0	0.0
	18.8	Time (s)	3600.0	3600.0	3600.0	3600.0
SCI		Steps	34.6	4.0	2.0	2.0
		\mathcal{H}_{final}	12.9	16.2	17.7	17.5
	37.6	Time (s)	29.1	3600.0	3600.0	3600.0
IO		Steps	26.0	18.0	9.5	11.4
		\mathcal{H}_{final}	1.0	8.7	16.6	20.1
		Time (s)	3600.0	3600.0	3600.0	3600.0
CO	18.8	Steps	734.0	147.0	83.0	97.8
		\mathcal{H}_{final}	13.48	9.2	10.3	9.1
		Time (s)	3600.0	3600.0	3600.0	3600.0
ED	18.8	Steps	27.6	1.0	1.0	1.0
		\mathcal{H}_{final}	12.6	17.8	17.8	17.8

String Char Inequality:

- 1 hour timeout
- 80 path constraints
- 2 observationally distinguishable path
- Information leakage rate is slower

ID	\mathcal{H}_{init}	Metrics	M	RA	SA	GA
		Time (s)	15.9	3600.0	3600.0	3600.0
PCI	18.8	Steps	54.2	39.4	34.5	41.5
		\mathcal{H}_{final}	0.0	5.7	8.4	8.5
		Time (s)	3600.0	3600.0	3600.0	3600.0
PCS	18.8	Steps	118.0	41.4	33.2	38.0
		\mathcal{H}_{final}	18.8	18.8	18.8	18.8
		Time (s)	22.0	3600.0	3600.0	3600.0
SE	18.8	Steps	62.2	42.6	25.3	30.8
		\mathcal{H}_{final}	0.0	6.1	11.1	8.4
	18.8	Time (s)	6.1	78.3	268.2	218.5
SI		Steps	38.2	18.6	17.5	18.2
		\mathcal{H}_{final}	0.0	0.0	0.0	0.0
	18.8	Time (s)	3600.0	3600.0	3600.0	3600.0
SCI		Steps	34.6	4.0	2.0	2.0
		\mathcal{H}_{final}	12.9	16.2	17.7	17.5
	37.6	Time (s)	29.1	3600.0	3600.0	3600.0
IO		Steps	26.0	18.0	9.5	11.4
		\mathcal{H}_{final}	1.0	8.7	16.6	20.1
		Time (s)	3600.0	3600.0	3600.0	3600.0
CO	18.8	Steps	734.0	147.0	83.0	97.8
		\mathcal{H}_{final}	13.48	9.2	10.3	9.1
		Time (s)	3600.0	3600.0	3600.0	3600.0
ED	18.8	Steps	27.6	1.0	1.0	1.0
		\mathcal{H}_{final}	12.6	17.8	17.8	17.8

String Edit Distance:

- 1 hour timeout
- 2170 path constraints
- 22 observationally distinguishable path
- Information leakage rate is slower

ID	\mathcal{H}_{init}	Metrics	M	RA	SA	GA
		Time (s)	15.9	3600.0	3600.0	3600.0
PCI	18.8	Steps	54.2	39.4	34.5	41.5
		$ \mathcal{H}_{final}$	0.0	5.7	8.4	8.5
		Time (s)	3600.0	3600.0	3600.0	3600.0
PCS	18.8	Steps	118.0	41.4	33.2	38.0
		\mathcal{H}_{final}	18.8	18.8	18.8	18.8
		Time (s)	22.0	3600.0	3600.0	3600.0
SE	18.8	Steps	62.2	42.6	25.3	30.8
		\mathcal{H}_{final}	0.0	6.1	11.1	8.4
	18.8	Time (s)	6.1	78.3	268.2	218.5
SI		Steps	38.2	18.6	17.5	18.2
		\mathcal{H}_{final}	0.0	0.0	0.0	0.0
		Time (s)	3600.0	3600.0	3600.0	3600.0
SCI	18.8	Steps	34.6	4.0	2.0	2.0
		\mathcal{H}_{final}	12.9	16.2	17.7	17.5
	37.6	Time (s)	29.1	3600.0	3600.0	3600.0
IO		Steps	26.0	18.0	9.5	11.4
		\mathcal{H}_{final}	1.0	8.7	16.6	20.1
		Time (s)	3600.0	3600.0	3600.0	3600.0
CO	18.8	Steps	734.0	147.0	83.0	97.8
		\mathcal{H}_{final}	13.48	9.2	10.3	9.1
		Time (s)	3600.0	3600.0	3600.0	3600.0
ED	18.8	Steps	27.6	1.0	1.0	1.0
		\mathcal{H}_{final}	12.6	17.8	17.8	17.8

- Faster execution time per attack step than Simulated Annealing
- Need more attack steps than Simulated annealing

Reason:

Random search leads to less optimal input

ID	\mathcal{H}_{init}	Metrics	M	RA	SA	GA
		Time (s)	15.9	3600.0	3600.0	3600.0
PCI	18.8	Steps	54.2	39.4	34.5	41.5
		$ \mathcal{H}_{final}$	0.0	5.7	8.4	8.5
		Time (s)	3600.0	3600.0	3600.0	3600.0
PCS	18.8	Steps	118.0	41.4	33.2	38.0
		\mathcal{H}_{final}	18.8	18.8	18.8	18.8
		Time (s)	22.0	3600.0	3600.0	3600.0
SE	18.8	Steps	62.2	42.6	25.3	30.8
		\mathcal{H}_{final}	0.0	6.1	11.1	8.4
	18.8	Time (s)	6.1	78.3	268.2	218.5
SI		Steps	38.2	18.6	17.5	18.2
		\mathcal{H}_{final}	0.0	0.0	0.0	0.0
	18.8	Time (s)	3600.0	3600.0	3600.0	3600.0
SCI		Steps	34.6	4.0	2.0	2.0
		\mathcal{H}_{final}	12.9	16.2	17.7	17.5
	37.6	Time (s)	29.1	3600.0	3600.0	3600.0
IO		Steps	26.0	18.0	9.5	11.4
		\mathcal{H}_{final}	1.0	8.7	16.6	20.1
		Time (s)	3600.0	3600.0	3600.0	3600.0
CO	18.8	Steps	734.0	147.0	83.0	97.8
		\mathcal{H}_{final}	13.48	9.2	10.3	9.1
		Time (s)	3600.0	3600.0	3600.0	3600.0
ED	18.8	Steps	27.6	1.0	1.0	1.0
		\mathcal{H}_{final}	12.6	17.8	17.8	17.8

- Faster than Simulated Annealing but
- Need more attack steps than Simulated annealing

Reason: Mutation and crossover leads to non-restricted model

ID	\mathcal{H}_{init}	Metrics	M	RA	SA	GA
		Time (s)	15.9	3600.0	3600.0	3600.0
PCI	18.8	Steps	54.2	39.4	34.5	41.5
		\mathcal{H}_{final}	0.0	5.7	8.4	8.5
		Time (s)	3600.0	3600.0	3600.0	3600.0
PCS	18.8	Steps	118.0	41.4	33.2	38.0
		\mathcal{H}_{final}	18.8	18.8	18.8	18.8
		Time (s)	22.0	3600.0	3600.0	3600.0
SE	18.8	Steps	62.2	42.6	25.3	30.8
		\mathcal{H}_{final}	0.0	6.1	11.1	8.4
	18.8	Time (s)	6.1	78.3	268.2	218.5
SI		Steps	38.2	18.6	17.5	18.2
		\mathcal{H}_{final}	0.0	0.0	0.0	0.0
	18.8	Time (s)	3600.0	3600.0	3600.0	3600.0
SCI		Steps	34.6	4.0	2.0	2.0
		\mathcal{H}_{final}	12.9	16.2	17.7	17.5
	37.6	Time (s)	29.1	3600.0	3600.0	3600.0
IO		Steps	26.0	18.0	9.5	11.4
		\mathcal{H}_{final}	1.0	8.7	16.6	20.1
		Time (s)	3600.0	3600.0	3600.0	3600.0
CO	18.8	Steps	734.0	147.0	83.0	97.8
		\mathcal{H}_{final}	13.48	9.2	10.3	9.1
		Time (s)	3600.0	3600.0	3600.0	3600.0
ED	18.8	Steps	27.6	1.0	1.0	1.0
		\mathcal{H}_{final}	12.6	17.8	17.8	17.8

- Meta-heuristics does not perform better than model based when
 - Every input in a particular attack step leaks same amount of information

For example: Password Check Insecure

ID	\mathcal{H}_{init}	Metrics	M	RA	SA	GA
		Time (s)	15.9	3600.0	3600.0	3600.0
PCI	18.8	Steps	54.2	39.4	34.5	41.5
		\mathcal{H}_{final}	0.0	5.7	8.4	8.5
		Time (s)	3600.0	3600.0	3600.0	3600.0
PCS	18.8	Steps	118.0	41.4	33.2	38.0
		\mathcal{H}_{final}	18.8	18.8	18.8	18.8
		Time (s)	22.0	3600.0	3600.0	3600.0
SE	18.8	Steps	62.2	42.6	25.3	30.8
		\mathcal{H}_{final}	0.0	6.1	11.1	8.4
	18.8	Time (s)	6.1	78.3	268.2	218.5
SI		Steps	38.2	18.6	17.5	18.2
		\mathcal{H}_{final}	0.0	0.0	0.0	0.0
	18.8	Time (s)	3600.0	3600.0	3600.0	3600.0
SCI		Steps	34.6	4.0	2.0	2.0
		\mathcal{H}_{final}	12.9	16.2	17.7	17.5
	37.6	Time (s)	29.1	3600.0	3600.0	3600.0
IO		Steps	26.0	18.0	9.5	11.4
		\mathcal{H}_{final}	1.0	8.7	16.6	20.1
		Time (s)	3600.0	3600.0	3600.0	3600.0
CO	18.8	Steps	734.0	147.0	83.0	97.8
		\mathcal{H}_{final}	13.48	9.2	10.3	9.1
		Time (s)	3600.0	3600.0	3600.0	3600.0
ED	18.8	Steps	27.6	1.0	1.0	1.0
		\mathcal{H}_{final}	12.6	17.8	17.8	17.8

- Model based attack:
 - simpler and faster execution of attack step
 - \circ $\,$ needs more attack step $\,$
- Meta-heuristics technique:
 - \circ slower
 - \circ need less attack step
- Simulated annealing:
 - performs better to leak information per attack step

Attack Synthesis for Strings using Meta-heuristics

Thank You