
Attack Synthesis for Strings
using Meta-heuristics

* University of California Santa Barbara
+ Harvey Mudd College

Seemanta Saha*, Ismet Burak Kadron*, William
Eiers*, Lucas Bang+, Tevfik Bultan*

JPF Workshop 2018

Software Side-Channel Attack

2

Software Side-Channel Attack

3

programinput Output

Software Side-Channel Attack

4

Secret input
program

Public input
Output

Software Side-Channel Attack

5

observations

Secret input
program

Public input
Output

Software Side-Channel Attack

6

Secret input
program

Public input Output
(main-channel)

observations
(side-channel)

Timing Side-Channel Attack

7

Distinguishable execution times
(timing side-channel)

Secret input
program

Public input Output
(main-channel)

Timing Side-channel in Password Checking Function

8

public boolean passwordChecker(String h,
String l) {

for (int i = 0; i < h.length(); i++) {

if (h[i] != l[i])
return false

}

return true
}

Public input
(l)

Secret input
(h)

false/true

distinguishable execution time

Timing Side-channel in Password Checking Function

9

distinguishable execution time

Let’s consider one loop iteration takes 1 millisecond

public boolean passwordChecker(String h,
String l) {

for (int i = 0; i < h.length(); i++) {

if (h[i] != l[i])
return false

}

return true
}

Public input
(l)

Secret input
(h)

false/true

Timing Side-channel in Password Checking Function

10

public boolean passwordChecker(String h,
String l) {

for (int i = 0; i < h.length(); i++) {
if (h[i] != l[i])

return false
}
return true

}

l = “XXXXXXXXXX”

h = “PATHFINDER”

Execution time = 5 milliseconds

public boolean passwordChecker(String h,
String l) {

for (int i = 0; i < h.length(); i++) {

if (h[i] != l[i])
return false

}

return true
}

false

Timing Side-channel in Password Checking Function

11

public boolean passwordChecker(String h,
String l) {

for (int i = 0; i < h.length(); i++) {
if (h[i] != l[i])

return false
}
return true

}

l = “MATHFINDER”

h = “PATHFINDER”

Execution time = 5 milliseconds

public boolean passwordChecker(String h,
String l) {

for (int i = 0; i < h.length(); i++) {

if (h[i] != l[i])
return false

}

return true
}

false

Timing Side-channel in Password Checking Function

12

public boolean passwordChecker(String h,
String l) {

for (int i = 0; i < h.length(); i++) {
if (h[i] != l[i])

return false
}
return true

}

l = “PXXXXXXXXX”

h = “PATHFINDER”

Execution time = 6 milliseconds

public boolean passwordChecker(String h,
String l) {

for (int i = 0; i < h.length(); i++) {

if (h[i] != l[i])
return false

}

return true
}

false

Timing Side-channel in Password Checking Function

13

public boolean passwordChecker(String h,
String l) {

for (int i = 0; i < h.length(); i++) {
if (h[i] != l[i])

return false
}
return true

}

l = “PAXXXXXXXX”

h = “PATHFINDER”

Execution time = 7 milliseconds

public boolean passwordChecker(String h,
String l) {

for (int i = 0; i < h.length(); i++) {

if (h[i] != l[i])
return false

}

return true
}

false

Timing Side-channel in Password Checking Function

14

public boolean passwordChecker(String h,
String l) {

for (int i = 0; i < h.length(); i++) {
if (h[i] != l[i])

return false
}
return true

}

l = “PATXXXXXXX”

h = “PATHFINDER”

Execution time = 8 milliseconds

public boolean passwordChecker(String h,
String l) {

for (int i = 0; i < h.length(); i++) {

if (h[i] != l[i])
return false

}

return true
}

false

Timing Side-channel in Password Checking Function

15

public boolean passwordChecker(String h,
String l) {

for (int i = 0; i < h.length(); i++) {
if (h[i] != l[i])

return false
}
return true

}

l = “PATHXXXXXX”

h = “PATHFINDER”

Execution time = 9 milliseconds

public boolean passwordChecker(String h,
String l) {

for (int i = 0; i < h.length(); i++) {

if (h[i] != l[i])
return false

}

return true
}

false

Timing Side-channel in Password Checking Function

16

public boolean passwordChecker(String h,
String l) {

for (int i = 0; i < h.length(); i++) {
if (h[i] != l[i])

return false
}
return true

}

l = “PATHFINDER”

h = “PATHFINDER”

Execution time = 15 milliseconds

public boolean passwordChecker(String h,
String l) {

for (int i = 0; i < h.length(); i++) {

if (h[i] != l[i])
return false

}

return true
}

true

Timing Side-channel in Password Checking Function

● known as segment attack vulnerability:
○ attacker reveals the secret input segment (character) by segment

(character)

17

Timing Side-channel in Password Checking Function

● known as segment attack vulnerability:
○ attacker reveals the secret input segment (character) by segment

(character)

● this vulnerability was present in
○ Google KeyCzar library

18

Timing Side-channel in Password Checking Function

● known as segment attack vulnerability
○ attacker reveals the secret input segment (character) by segment

(character)

● this vulnerability was present in
○ Google KeyCzar library, OpenID, etc.

19

Attack Synthesis Overview

20

Static
Analysis
Phase

Attack
Synthesis

Phase

Attack Synthesis Overview

21

Static
Analysis
Phase

String
Function
F(h, l)

Attack
Synthesis

Phase

Attack Synthesis Overview

22

Static
Analysis
Phase

String
Function
F(h, l)

Merged Path
constraints
Ψ

Attack
Synthesis

Phase

Attack Synthesis Overview

23

Static
Analysis
Phase

Attack
Synthesis

Phase

String
Function
F(h, l)

Merged Path
constraints
Ψ

Sequence
of Attack
inputs

Attack Synthesis Overview

24

Static
Analysis
Phase

Attack
Synthesis

Phase

String
Function
F(h, l)

Merged Path
constraints
Ψ

Sequence
of Attack
inputs

Model
Counting

Attack Synthesis Overview

25

Static
Analysis
Phase

Attack
Synthesis

Phase

String
Function
F(h, l)

Merged Path
constraints
Ψ

Sequence
of Attack
inputs

Model
Counting

Entropy
Function

Attack Synthesis Overview

26

Static
Analysis
Phase

Attack
Synthesis

Phase

String
Function
F(h, l)

Merged Path
constraints
Ψ

Sequence
of Attack
inputs

Model
Counting

Entropy
Function

Meta-heuristics

Static Analysis Phase

27

String
Function
F(h,l)

Static Analysis Phase

28

Constraints on h:
length and range
bound

String
Function
F(h,l)

Static Analysis Phase

29

Symbolic
Execution
(SPF)

Constraints on h:
length and range
bound

String
Function
F(h,l)

Static Analysis Phase

30

Symbolic
Execution
(SPF)

Cost Function:
number of
instructions
executed in byte

Constraints on h:
length and range
bound

String
Function
F(h,l)

Static Analysis Phase

31

Symbolic
Execution
(SPF)

Cost Function :
number of
instructions
executed in byte

Constraints on h:
length and range
bound

Path
constraints
and Cost

String
Function
F(h,l)

Static Analysis Phase

32

Merge path
constraints based

on
indistinguishable

cost

Symbolic
Execution
(SPF)

Cost Function :
number of
instructions
executed in byte

Constraints on h:
length and range
bound

Path
constraints
and Cost

String
Function
F(h,l)

Path Constraints for Password Checking Function

33

Length of public input (l) = 4
Length of secret input (h) = 4

34

Goal: Attack Synthesis

35

Generate Sequence of inputs revealing
information about the secret value

36

Attack Synthesis

37

Attack Synthesis
Unknown Secret:

“PATH”

38

Attack Synthesis
String range: AAAA ~ ZZZZUnknown Secret:

“PATH”

Get a Random Model
attack input: “ABCD”

Get a Random Model
attack input: “ABCD”

Solve Constraint

39

Attack Synthesis
String range: AAAA ~ ZZZZUnknown Secret:

“PATH”

Solve Constraint

Get a Random Model
attack input: “ABCD”

Infer constraint based on
observation

Get a Random Model
attack input: “ABCD”

Infer constraint based on
observation

40

Attack Synthesis
String range: AAAA ~ ZZZZUnknown Secret:

“PATH”

Solve Constraint

Get a Random Model
attack input: “ABCD”

Infer constraint based on
observation

Inferred constraint:
h[0] != l[0]

Get a Random Model
attack input: “ABCD”

Infer constraint based on
observation

Inferred constraint:
h[0] != l[0]

41

Attack Synthesis
String range: AAAA ~ ZZZZ

Solve Constraint

Unknown Secret:
“PATH”

Get a Random Model
attack input: “ABCD”

Updated constraint on h:
h[0] != ‘A’

Infer constraint based on
observation

Inferred constraint:
h[0] != l[0]

Get a Random Model
attack input: “ABCD”

Updated constraint on h:
h[0] != ‘A’

Infer constraint based on
observation

Inferred constraint:
h[0] != l[0]

42

Attack Synthesis
String range: AAAA ~ ZZZZUnknown Secret:

“PATH”

Get a Random Model
attack input: “ABCD”

Solve
Updated constraint on h:

h[0] != ‘A’ attack input: “PDEF”

Infer constraint based on
observation

Inferred constraint:
h[0] != l[0]

Get a Random Model
attack input: “ABCD”

Solve
Updated constraint on h:

h[0] != ‘A’ attack input: “PDEF”

Infer constraint based on
observation

Inferred constraint:
h[0] != l[0]

Solve Constraint

43

Attack Synthesis
String range: AAAA ~ ZZZZUnknown Secret:

“PATH”

Get a Random Model
attack input: “ABCD”

Solve
Updated constraint on h:

h[0] != ‘A’ attack input: “PDEF”

Infer constraint based on
observation

Inferred constraint:
h[0] == l[0] && h[1] != l[1]

Infer constraint based on
observation

Inferred constraint:
h[0] != l[0]

Get a Random Model
attack input: “ABCD”

Solve
Updated constraint on h:

h[0] != ‘A’ attack input: “PDEF”

Infer constraint based on
observation

Inferred constraint:
h[0] == l[0] && h[1] != l[1]

Infer constraint based on
observation

Inferred constraint:
h[0] != l[0]

Solve Constraint

44

Attack Synthesis
String range: AAAA ~ ZZZZUnknown Secret:

“PATH”

Get a Random Model

SolveUpdated constraint on h:
h[0] != ‘A’ && h[0] == ‘P’ &&

h[1] != ‘D’
attack input: “PAGD”

attack input: “ABCD”

Solve
Updated constraint on h:

h[0] != ‘A’ attack input: “PDEF”

Infer constraint based on
observation

Inferred constraint:
h[0] == l[0] && h[1] != l[1]

Infer constraint based on
observation

Inferred constraint:
h[0] != l[0]

Get a Random Model
attack input: “ABCD”

SolveUpdated constraint on h:
h[0] != ‘A’ && h[0] == ‘P’ &&

h[1] != ‘D’
attack input: “PAGD”

Solve
Updated constraint on h:

h[0] != ‘A’ attack input: “PDEF”

Infer constraint based on
observation

Inferred constraint:
h[0] == l[0] && h[1] != l[1]

Infer constraint based on
observation

Inferred constraint:
h[0] != l[0]

Solve Constraint

45

Attack Synthesis
String range: AAAA ~ ZZZZUnknown Secret:

“PATH”

Get a Random Model
attack input: “ABCD”

Update constraints on h
SolveUpdated constraint on h:

h[0] != ‘A’ && h[0] == ‘P’ &&
h[1] != ‘D’

attack input: “PAGD”

Solve
Updated constraint on h:

h[0] != ‘A’ attack input: “PDEF”

Infer constraint based on
observation

Inferred constraint:
h[0] == l[0] && h[1] != l[1]

Infer constraint based on
observation

Inferred constraint:
h[0] != l[0]

Solve Constraint

46

Attack Synthesis
String range: AAAA ~ ZZZZUnknown Secret:

“PATH”

Get a Random Model
attack input: “ABCD”

Update constraints on h

Get next attack input

SolveUpdated constraint on h:
h[0] != ‘A’ && h[0] == ‘P’ &&

h[1] != ‘D’
attack input: “PAGD”

Solve
Updated constraint on h:

h[0] != ‘A’ attack input: “PDEF”

Infer constraint based on
observation

Inferred constraint:
h[0] == l[0] && h[1] != l[1]

Infer constraint based on
observation

Inferred constraint:
h[0] != l[0]

Solve Constraint

47

Attack Synthesis
String range: AAAA ~ ZZZZUnknown Secret:

“PATH”

Get a Random Model

Sequence of attack inputs

attack input: “ABCD”

Update constraints on h

Get next attack input

SolveUpdated constraint on h:
h[0] != ‘A’ && h[0] == ‘P’ &&

h[1] != ‘D’
attack input: “PAGD”

Solve
Updated constraint on h:

h[0] != ‘A’ attack input: “PDEF”

Infer constraint based on
observation

Inferred constraint:
h[0] == l[0] && h[1] != l[1]

Infer constraint based on
observation

Inferred constraint:
h[0] != l[0]

Solve Constraint

Attack Synthesis Phase

48

Constraint
Solver
(ABC)

Use as
Attack
Input

Initial
Path

Constraints
Get a
model

Update path
constraints

Input sequence
revealing partial
or full secret
input value

Observation

Attack Synthesis Phase

49

Constraint
Solver
(ABC)

Use as
Attack
Input

Initial
Path

Constraints
Get a
model

Update path
constraints

Input sequence
revealing partial
or full secret
input value

Observation

Attack Synthesis Phase

50

Constraint
Solver
(ABC)

Use as
Attack
Input

Initial
Path

Constraints
Get a
model

Update path
constraints

Input sequence
revealing partial
or full secret
input value

Observation

51

We call this Model-Based Attack
Synthesis (M)

● We can automatically generate an attack using
○ Program path constraints
○ Observation from program execution
○ Generating constraints from observation
○ Updating constraints on secret value
○ Solving constraints to get attack input

52

Why do we need meta-heuristics?

We can synthesize attacks using
Model-Based (M) Attack Synthesis

String inequality Function

53

public String inequality(string i) {

if(s <= i)
do something simple; // 2 seconds

else
do something complex; // 5 seconds

return 0;
}

String inequality Function

54

observations

O = 1 ⇒ s <= i

O = 2 ⇒ s > i

public String inequality(string i) {

if(s <= i)
do something simple; // 2 seconds

else
do something complex; // 5 seconds

return 0;
}

55

O = 1 ⇒ s <= i O = 2 ⇒ s > i

S AAAA AAAB ZZZY ZZZZ

56

Attacker’s input and observation partitions domain of S

O = 1 ⇒ s <= i O = 2 ⇒ s > i

S

i = ZZZX

AAAA AAAB ZZZY ZZZZ

AAAA AAAB ZZZY ZZZZ

O = 1 ⇒ s <= ZZZX O = 2 ⇒ s > ZZZX

57

O = 1 ⇒ s <= i O = 2 ⇒ s > i

S

i = MNON

O = 1 O = 2

i = ZZZZ

Attacker’s input and observation sequences partitions domain of S

i = ZZZX

AAAA AAAB ZZZY ZZZZ

AAAA AAAB ZZZY ZZZZ

O = 1 ⇒ s <= ZZZX O = 2 ⇒ s > ZZZX

AAAA AAAB ZZZY ZZZZ

58

How input and
observation affects

partitioning?

59

O = 1 ⇒ s <= i O = 2 ⇒ s > i

AAAA AAAB ... MNOO MNOP ... ZZZY ZZZZ

60

O = 1 ⇒ s <= i O = 2 ⇒ s > i

i = ZZZX

AAAA AAAB ZZZY ZZZZ

AAAA AAAB ZZZY ZZZZ

O = 1 ⇒ s <= ZZZX O = 2 ⇒ s > ZZZX

61

O = 1 ⇒ s <= i O = 2 ⇒ s > i

i = UVWA
O = 1 O = 2

i = ZZZX

AAAA AAAB ZZZY ZZZZ

AAAA AAAB ZZZY ZZZZ

O = 1 ⇒ s <= ZZZX O = 2 ⇒ s > ZZZX

AAAA AAAB UVWB ... ZZZX

62

O = 1 ⇒ s <= i O = 2 ⇒ s > i

i = UVWA
O = 1 O = 2

i = ZZZX

AAAA AAAB ZZZY ZZZZ

AAAA AAAB ZZZY ZZZZ

O = 1 ⇒ s <= ZZZX O = 2 ⇒ s > ZZZX

AAAA AAAB UVWB ... ZZZX

i = TAOM
O = 1 O = 2

AAAA AAAB TAON ... UVWA

63

O = 1 ⇒ s <= i O = 2 ⇒ s > i

i = MMMM

AAAA AAAB ZZZY ZZZZ

AAAA AAAB ZZZY ZZZZ

O = 1 ⇒ s <= MMMM O = 2 ⇒ s > MMMM

64

O = 1 ⇒ s <= i O = 2 ⇒ s > i

i = MMMM

AAAA AAAB ZZZY ZZZZ

AAAA AAAB ZZZY ZZZZ

O = 1 ⇒ s <= MMMM O = 2 ⇒ s > MMMM

i = FFFF

AAAA AAAB ZZZY ZZZZ

O = 1 O = 2

i = TTTT

O = 1 O = 2

65

O = 1 ⇒ s <= i O = 2 ⇒ s > i

i = MMMM

AAAA AAAB ZZZY ZZZZ

AAAA AAAB ZZZY ZZZZ

O = 1 ⇒ s <= MMMM O = 2 ⇒ s > MMMM

i = FFFF

AAAA AAAB ZZZY ZZZZ

O = 1 O = 2

i = TTTT

O = 1 O = 2

i = CCCC

AAAA ZZZZ

i = JJJJ i = QQQQ i = WWWW

66

Worst case :

number of inputs = domain size = 264 = 456976

[number of alphabets = 26, length =4]

Imbalanced partitions

⇒

67

Worst case :

number of inputs = log2(456976) = 18.8

[number of alphabets = 26, length =4]

Balanced partitions

⇒

68

Maximizes information gain

Balanced partitions

⇒

Objective Function

Objective Function

69

O = 1 ⇒ s <= i O = 2 ⇒ s > i

Maximize information gain ⇒ Binary Search

Objective Function

70

O = 1 ⇒ s <= i O = 2 ⇒ s > i

Programs in general

Maximize information gain ⇒ Binary Search

Maximize information gain ⇒ Optimal Search

71

Shannon Entropy Formula

information gain

⇒

Objective Function

72

How to calculate Pj?

Shannon Entropy Formula

What is Pj?

73

74

O1

O2

75

76

77

p1

p4p3

p2

78

P(s ∈)

s

79

P(s ∈) =

s

80

Number of secret inputs belong to this
partition

Domain size

81

Number of secret inputs consistent with
partition’s path constraint

Domain size

82

Count number of models for this constraint

Domain size

Model Counting Problem

Automata Based Model Counting (ABC)

83

Automata Based Model Counting (ABC)

84

Count the number of strings consistent with PC

Automata Based Model Counting (ABC)

85

Count the number of strings consistent with PC

ABC constructs an automaton recognizing solution to PC

Automata Based Model Counting (ABC)

86

Count the number of strings consistent with PC

ABC constructs an automaton recognizing solution to PC

x in [A-Z]+ ^ charat(x,0)='A'

Automata Based Model Counting (ABC)

87

Count the number of strings consistent with PC

ABC constructs an automaton recognizing solution to PC

Model count (|PC|) is the number of accepting paths in automaton

x in [A-Z]* ^ charat(x,0)='A'

Constraint-based Model Generation

88

Constraints ABC Model

Constraint-based Model Generation

89

Constraints ABC Model

Constraints ABC Mutated Model

Constraint-based Model Generation

90

Input Mutation Candidate input
generation

Constraints ABC

Constraints ABC Mutated Model

Model

Constraint-based Model Generation

91

String mutation

non-restricted (NR)

Constraints ABC

Constraints ABC Mutated Model

Model

Input Mutation Candidate input
generation

Constraint-based Model Generation

92

restricted (R)

Constraints ABC

Constraints ABC Mutated Model

Model

Input Mutation Candidate input
generation

Mutated Model

93

Maximize information gain ⇒ Optimal Search

Meta-heuristics Techniques

94

Random Search

Simulated Annealing

Genetic Algorithm

Meta-heuristics Techniques

95

Random Search

Simulated Annealing

Genetic Algorithm

● We implement and
experiment these popular
meta-heuristics techniques
as

○ black box optimization
procedures that

■ make repeated
calls to ABC

■ to evaluate the
information gain
objective function

Random Search

96

Calculate information gain for random candidate inputs

input

in
fo
rm

at
io
n
ga

in

Random Search

97

Calculate information gain for random candidate inputs

Select candidate input with maximum information gain

input

in
fo
rm

at
io
n
ga

in

Random Search

98

Calculate information gain for random candidate inputs

Select candidate input with maximum information gain

Use the candidate as next attack input

attack input

input

in
fo
rm

at
io
n
ga

in

Simulated Annealing

99

information gain for first candidate
input

input

in
fo
rm

at
io
n
ga

in

Simulated Annealing

100

information gain for first candidate
input

information gain for new candidate input

input

in
fo
rm

at
io
n
ga

in

Simulated Annealing

101

information gain for first candidate
input

information gain for new candidate input

better information gain ⇒ select as
attack input

input

in
fo
rm

at
io
n
ga

in

Simulated Annealing

102

information gain for first candidate
input

information gain for new candidate input

better information gain ⇒ select as
attack input

less information gain ⇒ select with an
acceptance probability

input

in
fo
rm

at
io
n
ga

in

Simulated Annealing

103

information gain for first candidate
input

information gain for new candidate input

better information gain ⇒ select as
attack input

less information gain ⇒ select with an
acceptance probability

input

in
fo
rm

at
io
n
ga

in

Simulated Annealing

104

information gain for first candidate
input

information gain for new candidate input

better information gain ⇒ select as
attack input

less information gain ⇒ select with an
acceptance probability

reduce acceptance probability as
temperature cools down

input

in
fo
rm

at
io
n
ga

in

Simulated Annealing

105

information gain for first candidate
input

information gain for new candidate input

better information gain ⇒ select as
attack input

less information gain ⇒ select with an
acceptance probability

Reduce acceptance probability as
temperature cools down

input

in
fo
rm

at
io
n
ga

in

Simulated Annealing

106

information gain for first candidate
input

information gain for new candidate input

better information gain ⇒ select as
attack input

less information gain ⇒ select with an
acceptance probability

input

in
fo
rm

at
io
n
ga

in

attack input

Reduce acceptance probability as
temperature cools down

Genetic Algorithm

107

Population of candidate inputs

input

in
fo

rm
at
io
n
ga

in

Genetic Algorithm

108

Population of candidate inputs

input

in
fo

rm
at
io
n
ga

in

fitness (information gain) of
these candidates

Genetic Algorithm

109

Population of candidate inputs

fitness (information gain) of
these candidates

Select top candidates
input

in
fo

rm
at
io
n
ga

in

Genetic Algorithm

110

Population of candidate inputs

fitness (information gain) of
these candidates

Select top candidates

Mutate and crossover

input

in
fo

rm
at
io
n
ga

in

Genetic Algorithm

111

Population of candidate inputs

fitness (information gain) of
these candidates

Select top candidates

Update population

Mutate and crossover

input

in
fo

rm
at
io
n
ga

in

input

in
fo
rm

at
io
n
ga

in

Genetic Algorithm

112

Population of candidate inputs

fitness (information gain) of
these candidates

Select top candidates

Update population

Mutate and crossover

Select top candidate from
population as attack input (l*)

input

in
fo

rm
at
io
n
ga

in

input

in
fo
rm

at
io
n
ga

in attack input

113

Experimental Results

Experimental Benchmark

114

Experimental Benchmark

115

Experimental Benchmark

116

Experimental Benchmark

117

Number of path
constraints

Number of merged
path constraints

Experimental Benchmark

118

Number of path
constraints

Number of merged
path constraints

Experimental Benchmark

119

Number of path
constraints

Number of merged
path constraints

Experimental Results

120

Initial uncertainty
of secret input (in
bits)

Number of alphabets = 26

Length of secret = 4

Domain size of h = 264 = 456976

Initial uncertainty =
log2(456976) = 18.8

Experimental Results

121

Metrics:
● Time (in seconds)
● Number of attack steps
● Remaining Uncertainty

Remaining Uncertainty =
Initial uncertainty - information gain

Experimental Results

122

Techniques:
● Model Based
● Random search
● Simulated Annealing
● Genetic Algorithm

Experimental Results

123

Model Based:
● Shorter execution time

per attack step
● More attack steps

Experimental Results

124

Simulated Annealing:
● Longer execution time

per attack step
● Less attack steps

Experimental Results

125

Password Check Insecure:
● 1 hour timeout
● 5 observationally

distinguishable path
● Better information

leakage

Experimental Results

126

Password Check Secure:
● 1 hour timeout
● 1 observationally

distinguishable path
● Hardly leaks

information
● Attack becomes

exhaustive

Experimental Results

127

String Char Inequality:
● 1 hour timeout
● 80 path constraints
● 2 observationally

distinguishable path
● Information leakage

rate is slower

Experimental Results

128

String Edit Distance:
● 1 hour timeout
● 2170 path constraints
● 22 observationally

distinguishable path
● Information leakage

rate is slower

Experimental Results

129

● Faster execution time
per attack step than
Simulated Annealing

● Need more attack steps
than Simulated
annealing

Reason:
Random search leads to
less optimal input

Experimental Results

130

● Faster than Simulated
Annealing but

● Need more attack steps
than Simulated
annealing

Reason:
Mutation and crossover
leads to non-restricted
model

Experimental Results

131

● Meta-heuristics does not perform
better than model based when

○ Every input in a particular
attack step leaks same
amount of information

For example: Password Check
Insecure

Experimental Results

132

● Model based attack:
○ simpler and faster

execution of attack
step

○ needs more attack step

● Meta-heuristics technique:
○ slower
○ need less attack step

● Simulated annealing:
○ performs better to leak

information per attack
step

Attack Synthesis for Strings using Meta-heuristics

133

Symbolic
Execution

String
Functions
F(h,l)

Merged Path
constraints
Ψ

Path
constraints
ϕ

Model
Counter

Probability
Distribution
of Paths

Entropy:
Information

Gain

Objective
Function

Meta-heuristics Attack input Sequences

Thank You

134

