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public boolean passwordChecker(String h, 
String l) {

for (int i = 0; i < h.length(); i++) {

if (h[i] != l[i])
return false

}

return true
}

Public input 
(l) 

Secret input 
(h) 

false/true 

distinguishable execution time
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distinguishable execution time

Let’s consider one loop iteration takes 1 millisecond

public boolean passwordChecker(String h, 
String l) {

for (int i = 0; i < h.length(); i++) {

if (h[i] != l[i])
return false

}

return true
}

Public input 
(l) 

Secret input 
(h) 

false/true 



Timing Side-channel in Password Checking Function
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public boolean passwordChecker(String h, 
String l) {

for (int i = 0; i < h.length(); i++) {
if (h[i] != l[i])

return false
}
return true

}

l = “XXXXXXXXXX” 

h = “PATHFINDER” 

Execution time = 5 milliseconds

public boolean passwordChecker(String h, 
String l) {

for (int i = 0; i < h.length(); i++) {

if (h[i] != l[i])
return false

}

return true
}

false 
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public boolean passwordChecker(String h, 
String l) {

for (int i = 0; i < h.length(); i++) {
if (h[i] != l[i])

return false
}
return true

}

l = “MATHFINDER” 

h = “PATHFINDER” 

Execution time = 5 milliseconds

public boolean passwordChecker(String h, 
String l) {

for (int i = 0; i < h.length(); i++) {

if (h[i] != l[i])
return false

}

return true
}

false 
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public boolean passwordChecker(String h, 
String l) {

for (int i = 0; i < h.length(); i++) {
if (h[i] != l[i])

return false
}
return true

}

l = “PXXXXXXXXX” 

h = “PATHFINDER” 

Execution time = 6 milliseconds

public boolean passwordChecker(String h, 
String l) {

for (int i = 0; i < h.length(); i++) {

if (h[i] != l[i])
return false

}

return true
}

false 
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public boolean passwordChecker(String h, 
String l) {

for (int i = 0; i < h.length(); i++) {
if (h[i] != l[i])

return false
}
return true

}

l = “PAXXXXXXXX” 

h = “PATHFINDER” 

Execution time = 7 milliseconds

public boolean passwordChecker(String h, 
String l) {

for (int i = 0; i < h.length(); i++) {

if (h[i] != l[i])
return false

}

return true
}

false 
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public boolean passwordChecker(String h, 
String l) {

for (int i = 0; i < h.length(); i++) {
if (h[i] != l[i])

return false
}
return true

}

l = “PATXXXXXXX” 

h = “PATHFINDER” 

Execution time = 8 milliseconds

public boolean passwordChecker(String h, 
String l) {

for (int i = 0; i < h.length(); i++) {

if (h[i] != l[i])
return false

}

return true
}

false 
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public boolean passwordChecker(String h, 
String l) {

for (int i = 0; i < h.length(); i++) {
if (h[i] != l[i])

return false
}
return true

}

l = “PATHXXXXXX” 

h = “PATHFINDER” 

Execution time = 9 milliseconds

public boolean passwordChecker(String h, 
String l) {

for (int i = 0; i < h.length(); i++) {

if (h[i] != l[i])
return false

}

return true
}

false 
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public boolean passwordChecker(String h, 
String l) {

for (int i = 0; i < h.length(); i++) {
if (h[i] != l[i])

return false
}
return true

}

l = “PATHFINDER” 

h = “PATHFINDER” 

Execution time = 15 milliseconds

public boolean passwordChecker(String h, 
String l) {

for (int i = 0; i < h.length(); i++) {

if (h[i] != l[i])
return false

}

return true
}

true 



Timing Side-channel in Password Checking Function

● known as segment attack vulnerability:
○ attacker reveals the secret input segment (character) by segment 

(character)
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Timing Side-channel in Password Checking Function

● known as segment attack vulnerability: 
○ attacker reveals the secret input segment (character) by segment 

(character)

● this vulnerability was present in 
○ Google KeyCzar library
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Timing Side-channel in Password Checking Function

● known as segment attack vulnerability 
○ attacker reveals the secret input segment (character) by segment 

(character)

● this vulnerability was present in 
○ Google KeyCzar library, OpenID, etc. 
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Merge path 
constraints based 

on 
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cost
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Length of public input (l) = 4
Length of secret input (h) = 4 
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Goal: Attack Synthesis 
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Generate Sequence of inputs revealing 
information about the secret value
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Attack Synthesis 
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Attack Synthesis 
Unknown Secret: 

“PATH”  
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Attack Synthesis 
String range: AAAA ~ ZZZZUnknown Secret: 

“PATH”  

Get a Random Model
attack input: “ABCD”

Get a Random Model
attack input: “ABCD”

Solve Constraint
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Attack Synthesis 
String range: AAAA ~ ZZZZUnknown Secret: 
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Solve Constraint
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attack input: “ABCD”
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observation

Get a Random Model
attack input: “ABCD”

Infer constraint based on 
observation
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Attack Synthesis 
String range: AAAA ~ ZZZZUnknown Secret: 

“PATH”  

Solve Constraint

Get a Random Model
attack input: “ABCD”

Infer constraint based on 
observation

Inferred constraint:
h[0] != l[0]

Get a Random Model
attack input: “ABCD”

Infer constraint based on 
observation

Inferred constraint:
h[0] != l[0]
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Attack Synthesis 
String range: AAAA ~ ZZZZ

Solve Constraint

Unknown Secret: 
“PATH”  

Get a Random Model
attack input: “ABCD”

Updated constraint on h:
h[0] != ‘A’

Infer constraint based on 
observation

Inferred constraint:
h[0] != l[0]

Get a Random Model
attack input: “ABCD”

Updated constraint on h:
h[0] != ‘A’

Infer constraint based on 
observation

Inferred constraint:
h[0] != l[0]
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Attack Synthesis 
String range: AAAA ~ ZZZZUnknown Secret: 
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Attack Synthesis 
String range: AAAA ~ ZZZZUnknown Secret: 

“PATH”  

Get a Random Model
attack input: “ABCD”

Solve
Updated constraint on h:

h[0] != ‘A’ attack input: “PDEF”

Infer constraint based on 
observation

Inferred constraint:
h[0] == l[0] && h[1] != l[1]

Infer constraint based on 
observation

Inferred constraint:
h[0] != l[0]

Get a Random Model
attack input: “ABCD”

Solve
Updated constraint on h:

h[0] != ‘A’ attack input: “PDEF”

Infer constraint based on 
observation

Inferred constraint:
h[0] == l[0] && h[1] != l[1]

Infer constraint based on 
observation

Inferred constraint:
h[0] != l[0]

Solve Constraint
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Attack Synthesis 
String range: AAAA ~ ZZZZUnknown Secret: 

“PATH”  

Get a Random Model

SolveUpdated constraint on h:
h[0] != ‘A’ && h[0] == ‘P’ && 

h[1] != ‘D’
attack input: “PAGD”

attack input: “ABCD”

Solve
Updated constraint on h:

h[0] != ‘A’ attack input: “PDEF”

Infer constraint based on 
observation

Inferred constraint:
h[0] == l[0] && h[1] != l[1]

Infer constraint based on 
observation

Inferred constraint:
h[0] != l[0]

Get a Random Model
attack input: “ABCD”

SolveUpdated constraint on h:
h[0] != ‘A’ && h[0] == ‘P’ && 

h[1] != ‘D’
attack input: “PAGD”

Solve
Updated constraint on h:

h[0] != ‘A’ attack input: “PDEF”

Infer constraint based on 
observation

Inferred constraint:
h[0] == l[0] && h[1] != l[1]

Infer constraint based on 
observation

Inferred constraint:
h[0] != l[0]

Solve Constraint
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Attack Synthesis 
String range: AAAA ~ ZZZZUnknown Secret: 

“PATH”  

Get a Random Model
attack input: “ABCD”

Update constraints on h
SolveUpdated constraint on h:

h[0] != ‘A’ && h[0] == ‘P’ && 
h[1] != ‘D’

attack input: “PAGD”

Solve
Updated constraint on h:

h[0] != ‘A’ attack input: “PDEF”

Infer constraint based on 
observation

Inferred constraint:
h[0] == l[0] && h[1] != l[1]

Infer constraint based on 
observation

Inferred constraint:
h[0] != l[0]

Solve Constraint
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Attack Synthesis 
String range: AAAA ~ ZZZZUnknown Secret: 

“PATH”  

Get a Random Model
attack input: “ABCD”

Update constraints on h

Get next attack input

SolveUpdated constraint on h:
h[0] != ‘A’ && h[0] == ‘P’ && 

h[1] != ‘D’
attack input: “PAGD”

Solve
Updated constraint on h:

h[0] != ‘A’ attack input: “PDEF”

Infer constraint based on 
observation

Inferred constraint:
h[0] == l[0] && h[1] != l[1]

Infer constraint based on 
observation

Inferred constraint:
h[0] != l[0]

Solve Constraint



47

Attack Synthesis 
String range: AAAA ~ ZZZZUnknown Secret: 

“PATH”  

Get a Random Model

Sequence of attack inputs

attack input: “ABCD”

Update constraints on h

Get next attack input

SolveUpdated constraint on h:
h[0] != ‘A’ && h[0] == ‘P’ && 

h[1] != ‘D’
attack input: “PAGD”

Solve
Updated constraint on h:

h[0] != ‘A’ attack input: “PDEF”

Infer constraint based on 
observation

Inferred constraint:
h[0] == l[0] && h[1] != l[1]

Infer constraint based on 
observation

Inferred constraint:
h[0] != l[0]

Solve Constraint
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We call this Model-Based Attack 
Synthesis (M)

● We can automatically generate an attack using
○ Program path constraints
○ Observation from program execution
○ Generating constraints from observation
○ Updating constraints on secret value
○ Solving constraints to get attack input
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Why do we need meta-heuristics?

We can synthesize attacks using 
Model-Based (M) Attack Synthesis
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public String inequality(string i) {

if(s <= i)
do something simple; // 2 seconds

else
do something complex; // 5 seconds 

return 0;
}



String inequality Function
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observations

O = 1 ⇒ s <= i

O = 2 ⇒ s > i

public String inequality(string i) {

if(s <= i)
do something simple; // 2 seconds

else
do something complex; // 5 seconds 

return 0;
}
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O = 1 ⇒ s <= i O = 2 ⇒ s > i

S AAAA    AAAB    ...    ...    ...    ...      ZZZY    ZZZZ
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Attacker’s input and observation partitions domain of S

O = 1 ⇒ s <= i O = 2 ⇒ s > i

S

i = ZZZX

AAAA    AAAB    ...    ...    ...    ...      ZZZY    ZZZZ

AAAA    AAAB    ...    ...    ...    ...      ZZZY    ZZZZ

O = 1 ⇒ s <= ZZZX O = 2 ⇒ s > ZZZX 
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O = 1 ⇒ s <= i O = 2 ⇒ s > i

S

i = MNON

O = 1 O = 2

i = ZZZZ

Attacker’s input and observation sequences partitions domain of S

i = ZZZX

AAAA    AAAB    ...    ...    ...    ...      ZZZY    ZZZZ

AAAA    AAAB    ...    ...    ...    ...      ZZZY    ZZZZ

O = 1 ⇒ s <= ZZZX O = 2 ⇒ s > ZZZX 

AAAA    AAAB    ...    ...    ...    ...      ZZZY    ZZZZ
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How input and 
observation affects 

partitioning?
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O = 1 ⇒ s <= i O = 2 ⇒ s > i

AAAA    AAAB    ...    MNOO    MNOP    ...      ZZZY    ZZZZ
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O = 1 ⇒ s <= i O = 2 ⇒ s > i

i = ZZZX

AAAA    AAAB    ...    ...    ...    ...      ZZZY    ZZZZ

AAAA    AAAB    ...    ...    ...    ...        ZZZY    ZZZZ

O = 1 ⇒ s <= ZZZX O = 2 ⇒ s > ZZZX 
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O = 1 ⇒ s <= i O = 2 ⇒ s > i

i = UVWA
O = 1 O = 2

i = ZZZX

AAAA    AAAB    ...    ...    ...    ...      ZZZY    ZZZZ

AAAA    AAAB    ...    ...    ...    ...        ZZZY    ZZZZ

O = 1 ⇒ s <= ZZZX O = 2 ⇒ s > ZZZX 

AAAA    AAAB    ...    ...    ...       ...     UVWB ... ZZZX
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O = 1 ⇒ s <= i O = 2 ⇒ s > i

i = UVWA
O = 1 O = 2

i = ZZZX

AAAA    AAAB    ...    ...    ...    ...      ZZZY    ZZZZ

AAAA    AAAB    ...    ...    ...    ...        ZZZY    ZZZZ

O = 1 ⇒ s <= ZZZX O = 2 ⇒ s > ZZZX 

AAAA    AAAB    ...    ...    ...       ...     UVWB ... ZZZX

i = TAOM
O = 1 O = 2

AAAA    AAAB    ...    ...    ...       ...     TAON ... UVWA
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O = 1 ⇒ s <= i O = 2 ⇒ s > i

i = MMMM

AAAA    AAAB    ...    ...    ...    ...      ZZZY    ZZZZ

AAAA    AAAB    ...    ...      ...    ...    ZZZY    ZZZZ

O = 1 ⇒ s <= MMMM O = 2 ⇒ s > MMMM
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O = 1 ⇒ s <= i O = 2 ⇒ s > i

i = MMMM

AAAA    AAAB    ...    ...    ...    ...      ZZZY    ZZZZ

AAAA    AAAB    ...    ...      ...    ...    ZZZY    ZZZZ

O = 1 ⇒ s <= MMMM O = 2 ⇒ s > MMMM

i = FFFF

AAAA  AAAB ...    ...    ...      ...    ...  ...  ZZZY  ZZZZ

O = 1 O = 2

i = TTTT

O = 1 O = 2
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O = 1 ⇒ s <= i O = 2 ⇒ s > i

i = MMMM

AAAA    AAAB    ...    ...    ...    ...      ZZZY    ZZZZ

AAAA    AAAB    ...    ...      ...    ...    ZZZY    ZZZZ

O = 1 ⇒ s <= MMMM O = 2 ⇒ s > MMMM

i = FFFF

AAAA  AAAB ...    ...    ...      ...    ...  ...  ZZZY  ZZZZ

O = 1 O = 2

i = TTTT

O = 1 O = 2

i = CCCC

AAAA      ...    ...    ...      ...    ...  .  ...      ZZZZ

i = JJJJ i = QQQQ i = WWWW
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Worst case :

number of inputs = domain size = 264 = 456976

[number of alphabets = 26, length =4]

Imbalanced partitions

⇒
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Worst case :

number of inputs = log2(456976) = 18.8

[number of alphabets = 26, length =4]

Balanced partitions

⇒
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Maximizes information gain

Balanced partitions

⇒
  

Objective Function
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O = 1 ⇒ s <= i O = 2 ⇒ s > i

Maximize information gain ⇒ Binary Search



Objective Function
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O = 1 ⇒ s <= i O = 2 ⇒ s > i

Programs in general

Maximize information gain ⇒ Binary Search

Maximize information gain ⇒ Optimal Search
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Shannon Entropy Formula

information gain

⇒
  

Objective Function
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How to calculate Pj?

Shannon Entropy Formula

What is Pj?
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O1

O2
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p1

p4p3

p2
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P(s ∈    ) 

s
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P(s ∈    ) =  

s
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Number of secret inputs belong to this 
partition

Domain size
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Number of secret inputs consistent with 
partition’s path constraint

Domain size
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Count number of models for this constraint

Domain size

Model Counting Problem



Automata Based Model Counting (ABC)
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Automata Based Model Counting (ABC)

84

Count the number of strings consistent with PC



Automata Based Model Counting (ABC)
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Count the number of strings consistent with PC

ABC constructs an automaton recognizing solution to PC



Automata Based Model Counting (ABC)
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Count the number of strings consistent with PC

ABC constructs an automaton recognizing solution to PC

x in [A-Z]+  ^  charat(x,0)='A'



Automata Based Model Counting (ABC)
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Count the number of strings consistent with PC

ABC constructs an automaton recognizing solution to PC

Model count (|PC|) is the number of accepting paths in automaton

x in [A-Z]*  ^  charat(x,0)='A'
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Constraints ABC Model



Constraint-based Model Generation
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Constraints ABC Model

Constraints ABC Mutated Model



Constraint-based Model Generation
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Input Mutation Candidate input 
generation

Constraints ABC

Constraints ABC Mutated Model

Model
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String mutation

non-restricted (NR)

Constraints ABC

Constraints ABC Mutated Model

Model

Input Mutation Candidate input 
generation



Constraint-based Model Generation
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restricted (R)

Constraints ABC

Constraints ABC Mutated Model

Model

Input Mutation Candidate input 
generation

Mutated Model
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Maximize information gain ⇒ Optimal Search



Meta-heuristics Techniques
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Random Search

Simulated Annealing

Genetic Algorithm
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Random Search

Simulated Annealing

Genetic Algorithm

● We implement and 
experiment these popular 
meta-heuristics techniques 
as 

○ black box optimization 
procedures that 

■ make repeated 
calls to ABC

■ to evaluate  the 
information gain 
objective function
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Calculate information gain for random candidate inputs
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Calculate information gain for random candidate inputs

Select candidate input with maximum information gain

input

in
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Random Search
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Calculate information gain for random candidate inputs

Select candidate input with maximum information gain

Use the candidate as next attack input

attack input

input

in
fo
rm

at
io
n 
ga

in



Simulated Annealing

99

information gain for first candidate 
input

input

in
fo
rm

at
io
n 
ga

in



Simulated Annealing

100

information gain for first candidate 
input

information gain for new candidate input 

input

in
fo
rm

at
io
n 
ga

in



Simulated Annealing

101

information gain for first candidate 
input

information gain for new candidate input 

better information gain ⇒ select as 
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information gain for new candidate input 

better information gain ⇒ select as 
attack input 

less information gain ⇒ select with an 
acceptance probability
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information gain for first candidate 
input
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better information gain ⇒ select as 
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less information gain ⇒ select with an 
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Simulated Annealing
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information gain for first candidate 
input

information gain for new candidate input 

better information gain ⇒ select as 
attack input 

less information gain ⇒ select with an 
acceptance probability

input

in
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ga

in

attack input

Reduce acceptance probability as 
temperature cools down
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Population of candidate inputs

fitness (information gain) of 
these candidates

Select top candidates

Update population

Mutate and crossover 
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Genetic Algorithm
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Population of candidate inputs

fitness (information gain) of 
these candidates

Select top candidates

Update population

Mutate and crossover 

Select top candidate from 
population as attack input (l*) 

input

in
fo

rm
at
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n 
ga
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input

in
fo
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n 
ga

in attack input
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Number of path 
constraints

Number of merged 
path constraints
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Number of path 
constraints

Number of merged 
path constraints
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Initial uncertainty 
of secret input (in 
bits)

Number of alphabets = 26

Length of secret = 4

Domain size of h = 264 = 456976

Initial uncertainty = 
log2(456976) = 18.8
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Metrics:
● Time (in seconds)
● Number of attack steps
● Remaining Uncertainty

Remaining Uncertainty = 
Initial uncertainty - information gain
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Techniques:
● Model Based
● Random search
● Simulated Annealing 
● Genetic Algorithm
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Model Based:
● Shorter execution time 

per attack step
● More attack steps
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Simulated Annealing:
● Longer execution time 

per attack step
● Less attack steps
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Password Check Insecure:
● 1 hour timeout
● 5 observationally 

distinguishable path 
● Better information 

leakage
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Password Check Secure:
● 1 hour timeout
● 1 observationally 

distinguishable path 
● Hardly leaks 

information
● Attack becomes 

exhaustive 
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String Char Inequality:
● 1 hour timeout
● 80 path constraints
● 2 observationally 

distinguishable path 
● Information leakage 

rate is slower
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String Edit Distance:
● 1 hour timeout
● 2170 path constraints
● 22 observationally 

distinguishable path 
● Information leakage 

rate is slower
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● Faster execution time 
per attack step than 
Simulated Annealing

● Need more attack steps 
than Simulated 
annealing

Reason:
Random search leads to 
less optimal input
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● Faster than Simulated 
Annealing but

● Need more attack steps 
than Simulated 
annealing

Reason:
Mutation and crossover 
leads to non-restricted 
model
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● Meta-heuristics does not perform 
better than model based when

○ Every input in a particular 
attack step leaks same 
amount of information 

For example: Password Check 
Insecure
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● Model based attack:
○ simpler and faster 

execution of attack 
step

○ needs more attack step

● Meta-heuristics technique: 
○ slower 
○ need less attack step

● Simulated annealing:
○ performs better to leak 

information per attack 
step
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Symbolic 
Execution

String 
Functions
F(h,l)

Merged Path 
constraints
Ψ

Path 
constraints
ϕ

Model 
Counter

Probability 
Distribution 
of Paths

Entropy: 
Information

Gain

Objective 
Function

Meta-heuristics Attack input Sequences
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