Attack Synthesis for Strings using Meta-heuristics
 JPF Workshop 2018

Seemanta Saha*, Ismet Burak Kadron*, William Eiers*, Lucas Bang ${ }^{+}$, Tevfik Bultan*
*University of California Santa Barbara

+ Harvey Mudd College

Software Side-Channel Attack

Software Side-Channel Attack

Software Side-Channel Attack

Software Side-Channel Attack

Software Side-Channel Attack

Timing Side-Channel Attack

Timing Side-channel in Password Checking Function

Timing Side-channel in Password Checking Function

- known as segment attack vulnerability:
- attacker reveals the secret input segment (character) by segment (character)

Timing Side-channel in Password Checking Function

- known as segment attack vulnerability:
- attacker reveals the secret input segment (character) by segment (character)
- this vulnerability was present in
- Google KeyCzar library

Timing attack in Google Keyczar library

Filed under: Crypto, Hacking, Network, Protocols, python, Security — Nate Lawson @ 11:30 pm
I recently found a security flaw in the Google Keyczar crypto library. The impact was that an attacker could forge signatures for data that was "signed" with the SHA-1 HMAC algorithm (the defaul algorithm).
Firstly, I'm really glad to see more high-level libraries being developed so that programmers don't have to work directly with algorithms. Keyczar is definitely a step in the right direction. Thanks to all the people who developed it. Also, thanks to Stephen Weis for responding quickly to address this issue after I notified him (Python fix and Java fix).

Timing Side-channel in Password Checking Function

- known as segment attack vulnerability
- attacker reveals the secret input segment (character) by segment (character)
- this vulnerability was present in
- Google KeyCzar library, OpenID, etc.

Timing attack in Google Keyczar library

Filed under: Crypto, Hacking, Network, Protocols, python, Security — Nate Lawson @ 11:30 pm
I recently found a security flaw in the Google Keyczar crypto library. The impact was that an attacker could forge signatures for data that was "signed" with the SHA-1 HMAC algorithm (the default algorithm).
 responding quickly to address this issue after I notified him (Python fix and Java fix).

[security] Widespread Timing Vulnerabilities in Openid implementations

Taylor Nelson taylor at rootlabs.com
Tue Jul 13 20:32:50 UTC 2010

- Next message: [security] Widespread Timing Vulnerabilities in OpenID implementations
- Messages sorted by: ¿date 1 [thread 1 [subject 1 [author $]$

Attack Synthesis Overview

Static
Analysis
Phase

Attack
Synthesis
Phase

Attack Synthesis Overview

$\begin{aligned} & \text { String } \\ & \text { Function }(h, 1) \end{aligned} \square$	Static Analysis Phase	Attack Synthesis Phase

Attack Synthesis Overview

$\xrightarrow[\substack{\text { String } \\ \text { Function }(\mathrm{h}, 1) \\ \text { Fin }}]{\square}$	Static Analysis Phase	$\square \underbrace{}_{\substack{\text { Merged Path } \\ \text { constraints }}}$	Attack Synthesis Phase

Attack Synthesis Overview

Attack Synthesis Overview

Attack Synthesis Overview

Attack Synthesis Overview

Static Analysis Phase

String
Function
F (h, l)

Static Analysis Phase

Constraints on h : length and range bound

String
Function
$F(h, l)$

Static Analysis Phase

Static Analysis Phase

Static Analysis Phase

Static Analysis Phase

Path Constraints for Password Checking Function

i	Observation Constraint, ψ_{i}	o
1	$\operatorname{charat}(l, 0) \neq \operatorname{charat}(h, 0)$	63
2	$\operatorname{charat}(l, 0)=\operatorname{charat}(h, 0) \wedge \operatorname{charat}(l, 1) \neq \operatorname{charat}(h, 1)$	78
3	$\operatorname{charat}(l, 0)=\operatorname{charat}(h, 0) \wedge \operatorname{charat}(l, 1)=\operatorname{charat}(h, 1) \wedge$ $\operatorname{charat}(l, 2) \neq \operatorname{charat}(h, 2)$	93
4	$\operatorname{charat}(l, 0)=\operatorname{charat}(h, 0) \wedge \operatorname{charat}(l, 1)=\operatorname{charat}(h, 1) \wedge$ $\operatorname{charat}(l, 2)=\operatorname{charat}(h, 2) \wedge \operatorname{charat}(l, 3) \neq \operatorname{charat}(h, 3)$	108
5	$\operatorname{charat}(l, 0)=\operatorname{charat}(h, 0) \wedge \operatorname{charat}(l, 1)=\operatorname{charat}(h, 1) \wedge$ $\operatorname{charat}(l, 2)=\operatorname{charat}(h, 2) \wedge \operatorname{charat}(l, 3)=\operatorname{charat}(h, 3)$	123

$$
\begin{aligned}
& \text { Length of public input }(1)=4 \\
& \text { Length of secret input }(h)=4
\end{aligned}
$$

Goal: Attack Synthesis

Generate Sequence of inputs revealing information about the secret value

i	Observation Constraint, ψ_{i}	o
1	charat $(l, 0) \neq \operatorname{charat}(h, 0)$	63
2	$\operatorname{charat}(l, 0)=\operatorname{charat}(h, 0) \wedge \operatorname{charat}(l, 1) \neq \operatorname{charat}(h, 1)$	78
3	$\begin{aligned} & \operatorname{charat}(l, 0)=\operatorname{charat}(h, 0) \wedge \operatorname{charat}(l, 1)=\operatorname{charat}(h, 1) \wedge \\ & \operatorname{charat}(l, 2) \neq \operatorname{charat}(h, 2) \end{aligned}$	${ }^{93}$
4	$\operatorname{charat}(l, 0)=\operatorname{charat}(h, 0) \wedge \operatorname{charat}(l, 1)=\operatorname{charat}(h, 1) \wedge$ $\operatorname{charat}(l, 2)=\operatorname{charat}(h, 2) \wedge \operatorname{charat}(l, 3) \neq \operatorname{charat}(h, 3)$	108
5	$\begin{aligned} & \operatorname{charat}(l, 0)=\operatorname{charat}(h, 0) \wedge \operatorname{charat}(l, 1)=\operatorname{charat}(h, 1) \wedge \\ & \operatorname{charat}(l, 2)=\operatorname{charat}(h, 2) \wedge \operatorname{charat}(l, 3)=\operatorname{charat}(h, 3) \end{aligned}$	123

Attack Synthesis

Attack Synthesis

Attack Synthesis

String range: AAAA \sim ZZZZ

Attack Synthesis

String range: AAAA ~ ZZZZ
Unknown Secret: "PATH"

Solve Constraint
attack input: "ABCD"
Get a Random Model

Updated constraint on h : $h[0]$! = 'A'

Attack Synthesis

Solve Constraint

Get a Random Model

Attack Synthesis

Solve Constraint

Get a Random Model

${ }^{i}$	Observation Constraint, ψ_{i}	\bigcirc
1	$\operatorname{charat}(l, 0) \neq \operatorname{charat}(h, 0)$	63
2	$\operatorname{charat}(l, 0)=\operatorname{charat}(h, 0) \wedge \operatorname{charat}(l, 1) \neq \operatorname{charat}(h, 1)$	78
3	$\begin{aligned} & \operatorname{charat}(l, 0)=\operatorname{charat}(h, 0) \wedge \operatorname{charat}(l, 1)=\operatorname{charat}(h, 1) \wedge \\ & \operatorname{charat}(l, 2) \neq \operatorname{charat}(h, 2) \end{aligned}$	${ }^{93}$
4	$\begin{aligned} & \operatorname{charat}(l, 0)=\operatorname{charat}(h, 0) \wedge \operatorname{charat}(l, 1)=\operatorname{charat}(h, 1) \wedge \\ & \operatorname{charat}(l, 2)=\operatorname{charat}(h, 2) \wedge \operatorname{charat}(l, 3) \neq \operatorname{charat}(h, 3) \end{aligned}$	108
5	$\begin{aligned} & \operatorname{charat}(l, 0)=\operatorname{charat}(h, 0) \wedge \operatorname{charat}(l, 1)=\operatorname{charat}(h, 1) \wedge \\ & \operatorname{charat}(l, 2)=\operatorname{charat}(h, 2) \wedge \operatorname{charat}(l, 3)=\operatorname{charat}(h, 3) \end{aligned}$	123

Unknown Secret: "PATH"

Attack Synthesis

Unknown Secret: "PATH"

i	Observation Constraint, ψ_{i}	o
1	charat (l, 0$) \neq \operatorname{charat}(h, 0)$	63
2	$\operatorname{charat}(l, 0)=\operatorname{charat}(h, 0) \wedge \operatorname{charat}(l, 1) \neq \operatorname{charat}(h, 1)$	78
3	$\operatorname{charat}(l,, 0)=\operatorname{charat}(h, 0) \wedge \operatorname{charat}(l, 1)=\operatorname{charat}(h, 1) \wedge$	${ }^{93}$
4	$\begin{aligned} & \operatorname{charat}(l, 0)=\operatorname{charat}(h, 0) \wedge \operatorname{charat}(l, 1)=\operatorname{charat}(h, 1) \wedge \\ & \operatorname{charat}(l, 2)=\operatorname{charat}(h, 2) \wedge \operatorname{charat}(l, 3) \neq \operatorname{charat}(h, 3) \end{aligned}$	108
5	$\begin{aligned} & \operatorname{charat}(l, 0)=\operatorname{charat}(h, 0) \wedge \operatorname{charat}(l, 1)=\operatorname{charat}(h, 1) \wedge \\ & \operatorname{charat}(l, 2)=\operatorname{charat}(h, 2) \wedge \operatorname{charat}(l, 3)=\operatorname{charat}(h, 3) \end{aligned}$	123

Solve
attack input: "PAGD"

Attack Synthesis

Unknown Secret: "PATH"

Attack Synthesis

Unknown Secret: "PATH"

	Observation Constraint, ψ_{i}	o
1	charat (1,0) \neq charat ($h, 0$)	63
2	$\operatorname{charat}(l, 0)=\operatorname{charat}(h, 0) \wedge \operatorname{charat}(l, 1) \neq \operatorname{charat}(h, 1)$	78
3	$\operatorname{charat}(l, 0)=\operatorname{charat}(h, 0) \wedge \operatorname{charat}(l, 1)=\operatorname{charat}(h, 1) \wedge$	${ }^{93}$
4		108
5	$\begin{aligned} & \operatorname{charat}(l, 0)=\operatorname{charat}(h, 0) \wedge \operatorname{charat}(l, 1)=\operatorname{charat}(h, 1) \wedge \\ & \operatorname{charat}(l, 2)=\operatorname{charat}(h, 2) \wedge \operatorname{charat}(l, 3)=\operatorname{charat}(h, 3) \end{aligned}$	123

Attack Synthesis Phase

Attack Synthesis Phase

Attack Synthesis Phase

- We can automatically generate an attack using
- Program path constraints
- Observation from program execution
- Generating constraints from observation
- Updating constraints on secret value
- Solving constraints to get attack input

We call this Model-Based Attack Synthesis (M)

We can synthesize attacks using Model-Based (M) Attack Synthesis

Why do we need meta-heuristics?

String inequality Function

```
public String inequality(string i) {
    if(s <= i)
        do something simple; // 2 seconds
    else
        do something complex; // 5 seconds
    return 0;
}
```


String inequality Function

```
public String inequality(string i) {
    if(s <= i)
        do something simple; // 2 seconds
    else
        do something complex; // 5 seconds
    return 0;
}
\[
0=1 \Rightarrow s<=i
\]
```

$$
0=2 \Rightarrow s>i
$$

$$
\begin{aligned}
& 0=1 \Rightarrow \text { s <= i } \quad 0=2 \Rightarrow \text { s > i } \\
& \text { S AAAA AAAB ZZZY ZZZZ }
\end{aligned}
$$

Attacker's input and observation partitions domain of S

Attacker's input and observation sequences partitions domain of S

How input and observation affects partitioning?

$$
\begin{array}{cccccc}
0=1 \Rightarrow s<= & & 0=2 \Rightarrow s>i \\
\hline \text { AAAA } & \text { AAAB } \ldots & \text { MNOO MNOP } \ldots & \text { ZZZY } & \text { ZZZZ }
\end{array}
$$

Imbalanced partitions

Worst case :

number of inputs $=$ domain size $=26^{4}=456976$
[number of alphabets $=26$, length $=4]$

Balanced partitions

\Downarrow

> Worst case $:$
> number of inputs $=\log _{2}(456976)=18.8$
> [number of alphabets $=26$, length $=4$]

Objective Function

Balanced partitions

\Downarrow
Maximizes information gain

Objective Function

$$
0=1 \Rightarrow s<=i \quad 0=2 \Rightarrow s>i
$$

Maximize information gain \Rightarrow Binary Search

Objective Function

$$
0=1 \Rightarrow s<=i \quad 0=2 \Rightarrow s>i
$$

Maximize information gain \Rightarrow Binary Search

Programs in general

Maximize information gain \Rightarrow Optimal Search

Objective Function

information gain

Shannon Entropy Formula

$$
\mathscr{H}=\sum_{j=1}^{n} p_{j} \log _{2} \frac{1}{p_{j}}
$$

Shannon Entropy Formula

$$
\mathscr{H}=\sum_{j=1}^{n}\left(P_{j}\right) \log _{2} \frac{1}{\left(P_{i}\right)}
$$

What is P_{j} ?

How to calculate P_{j} ?

$i_{0} \in I$
secret $s \in S$

Θ
$i_{0} \in I$
$i_{1} \in I$
$i_{2} \in I$

Θ

secret $s \in S$

$i_{0} \in I$
$i_{1} \in I$
$i_{2} \in I$

$$
\mathscr{H}=\sum_{j=1}^{n} P_{j} \log _{2} \frac{1}{P_{j}}
$$

Θ
$i_{0} \in I$
$i_{1} \in I$
$i_{2} \in I$
secret $s \in S$

\longrightarrow Count number of models for this constraint

$$
\longrightarrow \text { Domain size }
$$

Model Counting Problem

Automata Based Model Counting (ABC)

Automata Based Model Counting (ABC)

Count the number of strings consistent with PC

Automata Based Model Counting (ABC)

Count the number of strings consistent with PC

ABC constructs an automaton recognizing solution to PC

Automata Based Model Counting (ABC)

Count the number of strings consistent with PC

ABC constructs an automaton recognizing solution to PC
x in $[A-Z]+$ ^ charat $(x, 0)=A^{\prime}$

Automata Based Model Counting (ABC)

Count the number of strings consistent with PC

ABC constructs an automaton recognizing solution to PC
x in $[A-Z] *$ ^ charat $(x, 0)=A^{\prime}$

Model count (|PC|) is the number of accepting paths in automaton

Constraint-based Model Generation

 Constraints $\Rightarrow A B C \Rightarrow$ Model
Constraint-based Model Generation

Constraint-based Model Generation

Constraint-based Model Generation


```
non-restricted (NR)
```

String mutation

Constraint-based Model Generation

Maximize information gain \Rightarrow Optimal Search

Meta-heuristics Techniques

Random Search

Simulated Annealing

Genetic Algorithm

Meta-heuristics Techniques

Random Search

Simulated Annealing

Genetic Algorithm

- We implement and experiment these popular meta-heuristics techniques as
- black box optimization procedures that
- make repeated calls to ABC
- to evaluate the information gain objective function

Random Search

Calculate information gain for random candidate inputs

Random Search

Calculate information gain for random candidate inputs

Select candidate input with maximum information gain

Random Search

Calculate information gain for random candidate inputs

Select candidate input with maximum information gain
Use the candidate as next attack input

Simulated Annealing

information gain for first candidate input

Simulated Annealing

information gain for first candidate input

information gain for new candidate input

Simulated Annealing

information gain for first candidate input
information gain for new candidate input
better information gain \Rightarrow select as attack input

Simulated Annealing

information gain for first candidate
input

\(\left.\begin{array}{c}better information gain \Rightarrow select as

attack input\end{array}\right]\)| less information gain \Rightarrow select with an |
| :---: |
| acceptance probability |

Simulated Annealing

information gain for first candidate
input

\(\left.\begin{array}{c}better information gain \Rightarrow select as

attack input\end{array}\right]\)| less information gain \Rightarrow select with an |
| :---: |
| acceptance probability |

Simulated Annealing

information gain for first candidate
input

better information gain \Rightarrow select as

```
less information gain }=>\mathrm{ select with an
        acceptance probability
```

reduce acceptance probability as temperature cools down

Simulated Annealing

information gain for first candidate
input

better information gain \Rightarrow select as

```
less information gain }=>\mathrm{ select with an
    acceptance probability
```


Reduce acceptance probability as temperature cools down

Simulated Annealing

information gain for first candidate
input

information gain for new candidate input
better information gain \Rightarrow select as

```
less information gain }=>\mathrm{ select with an
        acceptance probability
```

Reduce acceptance probability as temperature cools down

Genetic Algorithm

Population of candidate inputs

Genetic Algorithm

Population of candidate inputs
fitness (information gain) of these candidates

Genetic Algorithm

Population of candidate inputs

fitness (information gain) of these candidates

Select top candidates

Genetic Algorithm

Population of candidate inputs

fitness (information gain) of these candidates

Select top candidates

Mutate and crossover

Genetic Algorithm

Select top candidates
Mutate and crossover

Update population

Genetic Algorithm

```
Population of candidate inputs
```

fitness (information gain) of these candidates

Select top candidates

Mutate and crossover

Update population
Select top candidate from population as attack input (1*)

Experimental Results

Experimental Benchmark

Benchmark	ID	Operations	Low Length	High Length	$\|\Phi\|$	$\|\Psi\|$
passCheckInsec	PCI	charAt,length	4	4	5	5
passCheckSec	PCS	charAt,length	4	4	5	1
stringEquals	SE	charAt,length	4	4	9	9
stringInequality	SI	$<, \geq$	4	4	2	2
stringCharInequality	SCI	charAt,length, $<, \geq$	4	4	80	2
index0f	IO	charAt,length	1	8	9	9
compress	CO	begins,substring,length	4	4	5	5
editDistance	ED	charAt,length	4	4	2170	22

Experimental Benchmark

Benchmark	ID	Operations	Low Length	High Length	$\|\Phi\|$	$\|\Psi\|$
passCheckInsec	PCI	charAt,length	4	4	5	5
passCheckSec	PCS	charAt,length	4	4	5	1
stringEquals	SE	charAt,length	4	4	9	9
stringInequality	SI	$<, \geq$	4	4	2	2
stringCharInequality	SCI	charAt,length, $<, \geq$	4	4	80	2
indexOf	IO	charAt,length	1	8	9	9
compress	CO	begins,substring,length	4	4	5	5
editDistance	ED	charAt,length	4	4	2170	22

Experimental Benchmark

Benchmark	ID	Operations	Low Length	High Length	$\|\Phi\|$	$\|\Psi\|$
passCheckInsec	PCI	charAt,length	4	4	5	5
passCheckSec	PCS	charAt,length	4	4	5	1
stringEquals	SE	charAt,length	4	4	9	9
stringInequality	SI	$<, \geq$	4	4	2	2
stringCharInequality	SCI	charAt,length, $<, \geq$	4	4	80	2
index0f	IO	charAt,length	1	8	9	9
compress	CO	begins,substring,length	4	4	5	5
editDistance	ED	charAt,length	4	4	2170	22

Experimental Benchmark

Benchmark	ID	Operations	Low Length	High Length	$\|\Phi\|$	$\|\Psi\|$
passCheckInsec	PCI	charAt,length	4	4	5	5
passCheckSec	PCS	charAt, length	4	4	5	1
stringEquals	SE	charAt, length	4	4	9	
stringInequality	SI	$<, \geq$	4	4	2	2
stringCharInequality	SCI	charAt,length, $<, \geq$	4	A	80	2
index0f	IO	charAt, length	1	8	9	9
compress	CO	begins,substring,length	4	4	5	5
editDistance	ED	charAt, length	4	4	2170	22

Experimental Benchmark

Benchmark	ID	Operations	Low Length	High Length	$\|\Phi\|$	$\|\Psi\|$
passCheckInsec	PCI	charAt,length	4	4	5	5
passCheckSec	PCS	charAt,length	4	4	5	1
stringEquals	SE	charAt,length	4	4	9	9
stringInequality	SI	$<, \geq$	4	4	2	2
stringCharInequality	SCI	charAt,length, $<, \geq$	4	4	80	2
index0f	IO	charAt,length	1	8	9	9
compress	CO	begins,substring,length	4	4	5	5
editDistance	charAt,length	4	4	2170	22	

Experimental Benchmark

Benchmark	ID	Operations	Low Length	High Length	$\|\Phi\|$	$\|\Psi\|$
passCheckInsec	PCI	charAt,length	4	4	5	5
passCheckSec	PCS	charAt,length	4	4	5	1
stringEquals	SE	charAt,length	4	4	9	9
stringInequality	SI	$<, \geq$	4	4	2	2
stringCharInequality	SCI	charAt,length, $<, \geq$	4	4	80	2
index0f	IO	charAt,length	1	8	9	9
compress	CO	begins,substring,length	4	4	5	5
editDistance	charAt,length	4	4	2170	22	

Experimental Results

ID	$\mathcal{H}_{\text {init }}$	Metrics	M	RA	SA	GA
PCI	18.8	Time (s)	15.9	3600.0	3600.0	3600.0
		Steps	54.2	39.4	34.5	41.5
		$\mathcal{H}_{\text {final }}$	0.0	5.7	8.4	8.5
PCS	18.8	Time (s)	3600.0	3600.0	3600.0	3600.0
		Steps	118.0	41.4	33.2	38.0
		$\mathcal{H}_{\text {final }}$	18.8	18.8	18.8	18.8
SE	18.8	Time (s)	22.0	3600.0	3600.0	3600.0
		Steps	62.2	42.6	25.3	30.8
		$\mathcal{H}_{\text {final }}$	0.0	6.1	11.1	8.4
SI	18.8	Time (s)	6.1	78.3	268.2	218.5
		Steps	38.2	18.6	17.5	18.2
		$\mathcal{H}_{\text {final }}$	0.0	0.0	0.0	0.0
SCI	18.8	Time (s)	3600.0	3600.0	3600.0	3600.0
		Steps	34.6	4.0	2.0	2.0
		$\mathcal{H}_{\text {final }}$	12.9	16.2	17.7	17.5
IO	37.6	Time (s)	29.1	3600.0	3600.0	3600.0
		Steps	26.0	18.0	9.5	11.4
		$\mathcal{H}_{\text {final }}$	1.0	8.7	16.6	20.1
CO	18.8	Time (s)	3600.0	3600.0	3600.0	3600.0
		Steps	734.0	147.0	83.0	97.8
		$\mathcal{H}_{\text {final }}$	13.48	9.2	10.3	9.1
ED	18.8	Time (s)	3600.0	3600.0	3600.0	3600.0
		Steps	27.6	1.0	1.0	1.0
		$\mathcal{H}_{\text {final }}$	12.6	17.8	17.8	17.8

Initial uncertainty of secret input (in bits)

Number of alphabets $=26$
Length of secret $=4$

Domain size of $h=26^{4}=456976$

Initial uncertainty = $\log _{2}(456976)=18.8$

Experimental Results

ID	$\mathcal{H}_{\text {init }}$	Metrics	M	RA	SA	GA
PCI	18.8	Time (s)	15.9	3600.0	3600.0	3600.0
		Steps	54.2	-39.4	34.5	41.5
		$\mathcal{H}_{\text {final }}$	0.0	5.7	-8.4	8.5
PCS	18.8	Time (s)	3600.0	3600.0	3600.0	3600.0
		Steps	118.0	41.4	33.2	38.0
		$\mathcal{H}_{\text {final }}$	18.8	18.8	18.8	18.8
SE	18.8	Time (s)	22.0	3600.0	3600.0	3600.0
		Steps	62.2	42.6	25.3	30.8
		$\mathcal{H}_{\text {final }}$	0.0	6.1	11.1	8.4
SI	18.8	Time (s)	6.1	78.3	268.2	218.5
		Steps	38.2	18.6	17.5	18.2
		$\mathcal{H}_{\text {final }}$	0.0	0.0	0.0	0.0
SCI	18.8	Time (s)	3600.0	3600.0	3600.0	3600.0
		Steps	34.6	4.0	2.0	2.0
		$\mathcal{H}_{\text {final }}$	12.9	16.2	17.7	17.5
IO	37.6	Time (s)	29.1	3600.0	3600.0	3600.0
		Steps	26.0	18.0	9.5	11.4
		$\mathcal{H}_{\text {final }}$	1.0	8.7	16.6	20.1
CO	18.8	Time (s)	3600.0	3600.0	3600.0	3600.0
		Steps	734.0	147.0	83.0	97.8
		$\mathcal{H}_{\text {final }}$	13.48	9.2	10.3	9.1
ED	18.8	Time (s)	3600.0	3600.0	3600.0	3600.0
		Steps	27.6	1.0	1.0	1.0
		$\mathcal{H}_{\text {final }}$	12.6	17.8	17.8	17.8

Metrics:

- Time (in seconds)
- Number of attack steps
- Remaining Uncertainty

Remaining Uncertainty =
Initial uncertainty - information gain

Experimental Results

ID	$\mathcal{H}_{\text {init }}$	Metrics	M	RA	SA	GA
PCI	18.8	Time (s)	15.9	3600.0	2 SO	3600.0
		Steps	54.2	39.4	345	41.5
		$\mathcal{H}_{\text {final }}$	0.0	5.7	8.4	8.5
PCS	18.8	Time (s)	3600.0	3600.0	3600.0	36000
		Steps	118.0	41.4	33.2	38.0
		$\mathcal{H}_{\text {final }}$	18.8	18.8	18.8	18.8
SE	18.8	Time (s)	22.0	3600.0	3600.0	3600.0
		Steps	62.2	42.6	25.3	30.8
		$\mathcal{H}_{\text {final }}$	0.0	6.1	11.1	8.4
SI	18.8	Time (s)	6.1	78.3	268.2	218.5
		Steps	38.2	18.6	17.5	18.2
		$\mathcal{H}_{\text {final }}$	0.0	0.0	0.0	0.0
SCI	18.8	Time (s)	3600.0	3600.0	3600.0	3600.0
		Steps	34.6	4.0	2.0	2.0
		$\mathcal{H}_{\text {final }}$	12.9	16.2	17.7	17.5
IO	37.6	Time (s)	29.1	3600.0	3600.0	3600.0
		Steps	26.0	18.0	9.5	11.4
		$\mathcal{H}_{\text {final }}$	1.0	8.7	16.6	20.1
CO	18.8	Time (s)	3600.0	3600.0	3600.0	3600.0
		Steps	734.0	147.0	83.0	97.8
		$\mathcal{H}_{\text {final }}$	13.48	9.2	10.3	9.1
ED	18.8	Time (s)	3600.0	3600.0	3600.0	3600.0
		Steps	27.6	1.0	1.0	1.0
		$\mathcal{H}_{\text {final }}$	12.6	17.8	17.8	17.8

Techniques:

- Model Based
- Random search
- Simulated Annealing
- Genetic Algorithm

Experimental Results

ID	$\mathcal{H}_{\text {init }}$	Metrics	M	RA	SA	GA
PCI	18.8	Time (s)	15.9	3600.0	3600.0	3600.0
		Steps	54.2	39.4	34.5	41.5
		$\mathcal{H}_{\text {final }}$	0.0	5.7	8.4	8.5
PCS	18.8	Time (s)	3600.0	3600.0	3600.0	3600.0
		Steps	118.0	41.4	33.2	38.0
		$\mathcal{H}_{\text {final }}$	18.8	18.8	18.8	18.8
SE	18.8	Time (s)	22.0	3600.0	3600.0	3600.0
		Steps	62.2	42.6	25.3	30.8
		$\mathcal{H}_{\text {final }}$	0.0	6.1	11.1	8.4
SI	18.8	Time (s)	6.1	78.3	268.2	218.5
		Steps	38.2	18.6	17.5	18.2
		$\mathcal{H}_{\text {final }}$	0.0	0.0	0.0	0.0
SCI	18.8	Time (s)	3600.0	3600.0	3600.0	3600.0
		Steps	34.6	4.0	2.0	2.0
		$\mathcal{H}_{\text {final }}$	12.9	16.2	17.7	17.5
IO	37.6	Time (s)	29.1	3600.0	3600.0	3600.0
		Steps	26.0	18.0	9.5	11.4
		$\mathcal{H}_{\text {final }}$	1.0	8.7	16.6	20.1
CO	18.8	Time (s)	3600.0	3600.0	3600.0	3600.0
		Steps	734.0	147.0	83.0	97.8
		$\mathcal{H}_{\text {final }}$	13.48	9.2	10.3	9.1
ED	18.8	Time (s)	3600.0	3600.0	3600.0	3600.0
		Steps	27.6	1.0	1.0	1.0
		$\mathcal{H}_{\text {final }}$	12.6	17.8	17.8	17.8

Model Based:

- Shorter execution time per attack step
- More attack steps

Experimental Results

ID	$\mathcal{H}_{\text {init }}$	Metrics	M	RA	SA	GA
PCI	18.8	Time (s)	15.9	3600.0	3600.0	3600.0
		Steps	54.2	39.4	34.5	41.5
		$\mathcal{H}_{\text {final }}$	0.0	5.7	8.4	8.5
PCS	18.8	Time (s)	3600.0	3600.0	3600.0	3600.0
		Steps	118.0	41.4	33.2	38.0
		$\mathcal{H}_{\text {final }}$	18.8	18.8	18.8	18.8
SE	18.8	Time (s)	22.0	3600.0	3600.0	3600.0
		Steps	62.2	42.6	25.3	30.8
		$\mathcal{H}_{\text {final }}$	0.0	6.1	11.1	8.4
SI	18.8	Time (s)	6.1	78.3	268.2	218.5
		Steps	38.2	18.6	17.5	$\begin{array}{r}18.2 \\ \times \quad 0.0 \\ \hline\end{array}$
		$\mathcal{H}_{\text {final }}$	0.0	0.0	0.0	0.0
SCI	18.8	Time (s)	3600.0	3600.0	3600.0	3600.0
		Steps	34.6	4.0	2.0	2.0
		$\mathcal{H}_{\text {final }}$	12.9	16.2	17.7	17.5
IO	37.6	Time (s)	29.1	3600.0	3600.0	3600.0
		Steps	26.0	18.0	9.5	11.4
		$\mathcal{H}_{\text {final }}$	1.0	8.7	16.6	20.1
CO	18.8	Time (s)	3600.0	3600.0	3600.0	3600.0
		Steps	734.0	147.0	83.0	97.8
		$\mathcal{H}_{\text {final }}$	13.48	9.2	10.3	9.1
ED	18.8	Time (s)	3600.0	3600.0	3600.0	3600.0
		Steps	27.6	1.0	1.0	1.0
		$\mathcal{H}_{\text {final }}$	12.6	17.8	17.8	17.8

Simulated Annealing:

- Longer execution time per attack step
- Less attack steps

Experimental Results

ID	$\mathcal{H}_{\text {init }}$	Metrics	M	RA	SA	GA
PCI	18.8	Time (s)	15.9	3600.0	3600.0	3600.0
		Steps	54.2	39.4	34.5	11.5
		$\mathcal{H}_{\text {final }}$	0.0	5.7	8.4	8.5
PCS	18.8	Time (s)	3600.0	3600.0	3600.0	3600.0
		Steps	118.0	41.4	33.2	38.0
		$\mathcal{H}_{\text {final }}$	18.8	18.8	18.8	18.8
SE	18.8	Time (s)	22.0	3600.0	3600.0	3600.0
		Steps	62.2	42.6	25.3	30.8
		$\mathcal{H}_{\text {final }}$	0.0	6.1	11.1	8.4
SI	18.8	Time (s)	6.1	78.3	268.2	218.5
		Steps	38.2	18.6	17.5	18.2
		$\mathcal{H}_{\text {final }}$	0.0	0.0	0.0	0.0
SCI	18.8	Time (s)	3600.0	3600.0	3600.0	3600.0
		Steps	34.6	4.0	2.0	2.0
		$\mathcal{H}_{\text {final }}$	12.9	16.2	17.7	17.5
IO	37.6	Time (s)	29.1	3600.0	3600.0	3600.0
		Steps	26.0	18.0	9.5	11.4
		$\mathcal{H}_{\text {final }}$	1.0	8.7	16.6	20.1
CO	18.8	Time (s)	3600.0	3600.0	3600.0	3600.0
		Steps	734.0	147.0	83.0	97.8
		$\mathcal{H}_{\text {final }}$	13.48	9.2	10.3	9.1
ED	18.8	Time (s)	3600.0	3600.0	3600.0	3600.0
		Steps	27.6	1.0	1.0	1.0
		$\mathcal{H}_{\text {final }}$	12.6	17.8	17.8	17.8

Password Check Insecure:

- 1 hour timeout
- 5 observationally distinguishable path
- Better information leakage

Experimental Results

ID	$\mathcal{H}_{\text {init }}$	Metrics	M	RA	SA	GA
PCI	18.8	Time (s)	15.9	3600.0	3600.0	3600.0
		Steps	54.2	39.4	34.5	41.5
		$\mathcal{H}_{\text {final }}$	0.0	5.7	8.4	8.5
PCS	18.8	Time (s)	3600.0	3600.0	3600.0	3600.0
		Steps	118.0	41.4	33.2	38.0
		$\mathcal{H}_{\text {final }}$	18.8	18.8	18.8	18.8
SE	18.8	Time (s)	22.0	3600.0	3600.0	3600.0
		Steps	62.2	42.6	25.3	30.8
		$\mathcal{H}_{\text {final }}$	0.0	6.1	11.1	8.4
SI	18.8	Time (s)	6.1	78.3	268.2	218.5
		Steps	38.2	18.6	17.5	18.2
		$\mathcal{H}_{\text {final }}$	0.0	0.0	0.0	0.0
SCI	18.8	Time (s)	3600.0	3600.0	3600.0	3600.0
		Steps	34.6	4.0	2.0	2.0
		$\mathcal{H}_{\text {final }}$	12.9	16.2	17.7	17.5
IO	37.6	Time (s)	29.1	3600.0	3600.0	3600.0
		Steps	26.0	18.0	9.5	11.4
		$\mathcal{H}_{\text {final }}$	1.0	8.7	16.6	20.1
CO	18.8	Time (s)	3600.0	3600.0	3600.0	3600.0
		Steps	734.0	147.0	83.0	97.8
		$\mathcal{H}_{\text {final }}$	13.48	9.2	10.3	9.1
ED	18.8	Time (s)	3600.0	3600.0	3600.0	3600.0
		Steps	27.6	1.0	1.0	1.0
		$\mathcal{H}_{\text {final }}$	12.6	17.8	17.8	17.8

Password Check Secure:

- 1 hour timeout
- 1 observationally distinguishable path
- Hardly leaks information
- Attack becomes exhaustive

Experimental Results

ID	$\mathcal{H}_{\text {init }}$	Metrics	M	RA	SA	GA
PCI	18.8	Time (s)	15.9	3600.0	3600.0	3600.0
		Steps	54.2	39.4	34.5	41.5
		$\mathcal{H}_{\text {final }}$	0.0	5.7	8.4	8.5
PCS	18.8	Time (s)	3600.0	3600.0	3600.0	3600.0
		Steps	118.0	41.4	33.2	38.0
		$\mathcal{H}_{\text {final }}$	18.8	18.8	18.8	18.8
SE	18.8	Time (s)	22.0	3600.0	3600.0	3600.0
		Steps	62.2	42.6	25.3	30.8
		$\mathcal{H}_{\text {final }}$	0.0	6.1	11.1	8.4
SI	18.8	Time (s)	6.1	78.3	268.2	218.5
		Steps	38.2	18.6	17.5	18.2
		$\mathcal{H}_{\text {final }}$	0.0	0.0	0.0	0.0
SCI	18.8	Time (s)	3600.0	3600.0	3600.0	3600.0
		Steps	34.6	1.0	2.0	2.0
		$\mathcal{H}_{\text {final }}$	12.9	16.2	17.7	17.5
IO	37.6	Time (s)	29.1	3600.0	3600.0	3600.0
		Steps	26.0	18.0	9.5	11.4
		$\mathcal{H}_{\text {final }}$	1.0	8.7	16.6	20.1
CO	18.8	Time (s)	3600.0	3600.0	3600.0	3600.0
		Steps	734.0	147.0	83.0	97.8
		$\mathcal{H}_{\text {final }}$	13.48	9.2	10.3	9.1
ED	18.8	Time (s)	3600.0	3600.0	3600.0	3600.0
		Steps	27.6	1.0	1.0	1.0
		$\mathcal{H}_{\text {final }}$	12.6	17.8	17.8	17.8

String Char Inequality:

- 1 hour timeout
- 80 path constraints
- 2 observationally distinguishable path
- Information leakage rate is slower

Experimental Results

ID	$\mathcal{H}_{\text {init }}$	Metrics	M	RA	SA	GA
PCI	18.8	Time (s)	15.9	3600.0	3600.0	3600.0
		Steps	54.2	39.4	34.5	41.5
		$\mathcal{H}_{\text {final }}$	0.0	5.7	8.4	8.5
PCS	18.8	Time (s)	3600.0	3600.0	3600.0	3600.0
		Steps	118.0	41.4	33.2	38.0
		$\mathcal{H}_{\text {final }}$	18.8	18.8	18.8	18.8
SE	18.8	Time (s)	22.0	3600.0	3600.0	3600.0
		Steps	62.2	42.6	25.3	30.8
		$\mathcal{H}_{\text {final }}$	0.0	6.1	11.1	8.4
SI	18.8	Time (s)	6.1	78.3	268.2	218.5
		Steps	38.2	18.6	17.5	18.2
		$\mathcal{H}_{\text {final }}$	0.0	0.0	0.0	0.0
SCI	18.8	Time (s)	3600.0	3600.0	3600.0	3600.0
		Steps	34.6	4.0	2.0	2.0
		$\mathcal{H}_{\text {final }}$	12.9	16.2	17.7	17.5
IO	37.6	Time (s)	29.1	3600.0	3600.0	3600.0
		Steps	26.0	18.0	9.5	11.4
		$\mathcal{H}_{\text {final }}$	1.0	8.7	16.6	20.1
CO	18.8	Time (s)	3600.0	3600.0	3600.0	3600.0
		Steps	734.0	147.0	83.0	97.8
		$\mathcal{H}_{\text {final }}$	13.48	9.2	10.3	9.1
ED	18.8	Time (s)	3600.0	3600.0	3600.0	3600.0
		Steps	27.6	1.0	1.0	1.0
		$\mathcal{H}_{\text {final }}$	12.6	17.8	17.8	17.8

String Edit Distance:

- 1 hour timeout
- 2170 path constraints
- 22 observationally distinguishable path
- Information leakage rate is slower

Experimental Results

ID	$\mathcal{H}_{\text {init }}$	Metrics	M	RA	SA	GA
PCI	18.8	Time (s)	15.9	3600.0	3600.0	3600.0
		Steps	54.2	39.4	34.5	41.5
		$\mathcal{H}_{\text {final }}$	0.0	5.7	8.4	8.5
PCS	18.8	Time (s)	3600.0	3600.0	3600.0	3600.0
		Steps	118.0	41.4	33.2	38.0
		$\mathcal{H}_{\text {final }}$	18.8	18.8	18.8	18.8
SE	18.8	Time (s)	22.0	3600.0	3600.0	3600.0
		Steps	62.2	42.6	25.3	30.8
		$\mathcal{H}_{\text {final }}$	0.0	6.1	11.1	8.4
SI	18.8	Time (s)	6.1	78.3	268.2	2185
		Steps	38.2	18.6	17.5	18.2
		$\mathcal{H}_{\text {final }}$	0.0	0.0	0.0	0.0
SCI	18.8	Time (s)	3600.0	3600.0	3600.0	3600.0
		Steps	34.6	4.0	2.0	2.0
		$\mathcal{H}_{\text {final }}$	12.9	16.2	17.7	17.5
IO	37.6	Time (s)	29.1	3600.0	3600.0	3600.0
		Steps	26.0	18.0	9.5	11.4
		$\mathcal{H}_{\text {final }}$	1.0	8.7	16.6	20.1
CO	18.8	Time (s)	3600.0	3600.0	3600.0	3600.0
		Steps	734.0	147.0	83.0	97.8
		$\mathcal{H}_{\text {final }}$	13.48	9.2	10.3	9.1
ED	18.8	Time (s)	3600.0	3600.0	3600.0	3600.0
		Steps	27.6	1.0	1.0	1.0
		$\mathcal{H}_{\text {final }}$	12.6	17.8	17.8	17.8

- Faster execution time per attack step than Simulated Annealing
- Need more attack steps than Simulated annealing

Reason:
Random search leads to less optimal input

Experimental Results

ID	$\mathcal{H}_{\text {init }}$	Metrics	M	RA	SA	GA
PCI	18.8	Time (s)	15.9	3600.0	3600.0	3600.0
		Steps	54.2	39.4	34.5	41.5
		$\mathcal{H}_{\text {final }}$	0.0	5.7	8.4	8.5
PCS	18.8	Time (s)	3600.0	3600.0	3600.0	3600.0
		Steps	118.0	41.4	33.2	38.0
		$\mathcal{H}_{\text {final }}$	18.8	18.8	18.8	18.8
SE	18.8	Time (s)	22.0	3600.0	3600.0	3600.0
		Steps	62.2	42.6	25.3	30.8
		$\mathcal{H}_{\text {final }}$	0.0	6.1	11.1	8.4
SI	18.8	Time (s)	6.1	78.3	268.2	218.5
		Steps	38.2	18.6	17.5	18.2
		$\mathcal{H}_{\text {final }}$	0.0	0.0	0.0	0.0
SCI	18.8	Time (s)	3600.0	3600.0	3600.0	3600.0
		Steps	34.6	4.0	2.0	2.0
		$\mathcal{H}_{\text {final }}$	12.9	16.2	17.7	17.5
IO	37.6	Time (s)	29.1	3600.0	3600.0	3600.0
		Steps	26.0	18.0	9.5	11.4
		$\mathcal{H}_{\text {final }}$	1.0	8.7	16.6	20.1
CO	18.8	Time (s)	3600.0	3600.0	3600.0	3600.0
		Steps	734.0	147.0	83.0	97.8
		$\mathcal{H}_{\text {final }}$	13.48	9.2	10.3	9.1
ED	18.8	Time (s)	3600.0	3600.0	3600.0	3600.0
		Steps	27.6	1.0	1.0	1.0
		$\mathcal{H}_{\text {final }}$	12.6	17.8	17.8	17.8

- Faster than Simulated Annealing but
- Need more attack steps than Simulated annealing

Reason:
Mutation and crossover leads to non-restricted model

Experimental Results

ID	$\mathcal{H}_{\text {init }}$	Metrics	M	RA	SA	GA
PCI	18.8	Time (s)	15.9	3600.0	3600.0	3600.0
		Steps	54.2	39.4	34.5	41.5
		$\mathcal{H}_{\text {final }}$	0.0	5.7	8.4	8.5
PCS	18.8	Time (s)	3600.0	3600.0	3600.0	3600.0
		Steps	118.0	41.4	33.2	38.0
		$\mathcal{H}_{\text {final }}$	18.8	18.8	18.8	18.8
SE	18.8	Time (s)	22.0	3600.0	3600.0	3600.0
		Steps	62.2	42.6	25.3	30.8
		$\mathcal{H}_{\text {final }}$	0.0	6.1	11.1	8.4
SI	18.8	Time (s)	6.1	78.3	268.2	218.5
		Steps	38.2	18.6	17.5	18.2
		$\mathcal{H}_{\text {final }}$	0.0	0.0	0.0	0.0
SCI	18.8	Time (s)	3600.0	3600.0	3600.0	3600.0
		Steps	34.6	4.0	2.0	2.0
		$\mathcal{H}_{\text {final }}$	12.9	16.2	17.7	17.5
IO	37.6	Time (s)	29.1	3600.0	3600.0	3600.0
		Steps	26.0	18.0	9.5	11.4
		$\mathcal{H}_{\text {final }}$	1.0	8.7	16.6	20.1
CO	18.8	Time (s)	3600.0	3600.0	3600.0	3600.0
		Steps	734.0	147.0	83.0	97.8
		$\mathcal{H}_{\text {final }}$	13.48	9.2	10.3	9.1
ED	18.8	Time (s)	3600.0	3600.0	3600.0	3600.0
		Steps	27.6	1.0	1.0	1.0
		$\mathcal{H}_{\text {final }}$	12.6	17.8	17.8	17.8

- Meta-heuristics does not perform better than model based when
- Every input in a particular attack step leaks same amount of information

For example: Password Check Insecure

Experimental Results

ID	$\mathcal{H}_{\text {init }}$	Metrics	M	RA	SA	GA
PCI	18.8	Time (s)	15.9	3600.0	3600.0	3600.0
		Steps	54.2	39.4	34.5	41.5
		$\mathcal{H}_{\text {final }}$	0.0	5.7	8.4	8.5
PCS	18.8	Time (s)	3600.0	3600.0	3600.0	3600.0
		Steps	118.0	41.4	33.2	38.0
		$\mathcal{H}_{\text {final }}$	18.8	18.8	18.8	18.8
SE	18.8	Time (s)	22.0	3600.0	3600.0	3600.0
		Steps	62.2	42.6	25.3	30.8
		$\mathcal{H}_{\text {final }}$	0.0	6.1	11.1	8.4
SI	18.8	Time (s)	6.1	78.3	268.2	218.5
		Steps	38.2	18.6	17.5	18.2
		$\mathcal{H}_{\text {final }}$	0.0	0.0	0.0	0.0
SCI	18.8	Time (s)	3600.0	3600.0	3600.0	3600.0
		Steps	34.6	4.0	2.0	2.0
		$\mathcal{H}_{\text {final }}$	12.9	16.2	17.7	17.5
IO	37.6	Time (s)	29.1	3600.0	3600.0	3600.0
		Steps	26.0	18.0	9.5	11.4
		$\mathcal{H}_{\text {final }}$	1.0	8.7	16.6	20.1
CO	18.8	Time (s)	3600.0	3600.0	3600.0	3600.0
		Steps	734.0	147.0	83.0	97.8
		$\mathcal{H}_{\text {final }}$	13.48	9.2	10.3	9.1
ED	18.8	Time (s)	3600.0	3600.0	3600.0	3600.0
		Steps	27.6	1.0	1.0	1.0
		$\mathcal{H}_{\text {final }}$	12.6	17.8	17.8	17.8

- Model based attack:
- simpler and faster execution of attack step
- needs more attack step
- Meta-heuristics technique:
- slower
- need less attack step
- Simulated annealing:
- performs better to leak information per attack step

Attack Synthesis for Strings using Meta-heuristics

Thank You

