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ABSTRACT

This paper presentsMetrinome, a tool for performing automatic
path complexity analysis of C functions. The path complexity of
a function is an expression that describes the number of paths
through the function up to a given execution depth.Metrinome
constructs the control flow graph (CFG) of a C function using
LLVM utilities, analyzes that CFG using algebraic graph theory and
analytic combinatorics, and produces a closed-form expression for
the path complexity as well as the asymptotic path complexity of
the function. Our experiments show that path complexity predicts
the growth rate of the number of execution paths that Klee, a
popular symbolic execution tool, is able to cover within a given
exploration depth. Metrinome is open-source, available as a Docker
image for immediate use, and all of our experiments and data are
available in our repository and included in our Docker image.
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1 INTRODUCTION

Confidence in modern automated software testing relies on the
ability of tools to achieve path coverage. Symbolic execution is
one of the most prominent automated verification techniques, but
suffers from the path explosion problem [9]. Path complexity is
a code metric that formalizes and quantifies the severity of path
explosion for a given function [1]. Given an execution depth bound
𝑛 for a function 𝑓 , the path complexity (PC) of 𝑓 is a function 𝑝𝑐 (𝑛)
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that provides an upper bound on the number of execution paths of 𝑓
with length up to𝑛. These expressions can be large and cumbersome.
Thus, we compute the more succinct asymptotic path complexity
(APC), the dominating term of the path complexity function. We
show that APC correlates with the number of paths explored by
symbolic execution within a given exploration depth bound.

This paper describes our implementation of APC in our Metri-
nome tool. Our experimental results indicate that APC is indeed
able to predict the behavior of the symbolic execution tool Klee [3]
on several algorithms implemented in C. Our source code, bench-
marks, experiment scripts, and experimental data are available in
our public repo1 as well as in a ready-to-run image on Dockerhub2.

To summarize, the contributions of this work are:
(1) A practical tool, Metrinome for computing path complexity
and asymptotic path complexity, as well as Cyclomatic complexity
and NPath complexity.Metrinome can compute code metrics for
C, C++, Java and Python, but we focus on C in this paper.
(2) Empirical demonstration that APC is a fast way to predict the
behavior of Klee before running it.

2 BACKGROUND

Various metrics for the complexity of a given piece of code have
been proposed. The most well-known are McCabe’s cyclomatic
complexity (the number of linearly independent paths) [11] and
Nejmeh’s NPATH complexity (the number of paths that take no edge
more than once) [12]. These metrics have been used to suggest code
refactoring or to predict the difficulty of testing or maintaining a
segment of code [7, 8]. Code complexity metrics typically look only
at the structure of the code, and so their computation is based on a
standard representation of the structure, the control flow graph.

Path complexity was proposed in 2015 by Bang et al., and imple-
mented as a tool called PAC for Java functions [1]. This previous
work demonstrated that path complexity is a more refined metric
than popular existing metrics, cyclomatic and NPATH complexity.

Our metrics, PC and APC, are both based on the CFG of a func-
tion. We define the path complexity of a function 𝑓 to be a function
𝑝𝑐 (𝑛) such that for any depth 𝑛 > 0, 𝑝𝑐 (𝑛) is the number of paths
from the start node to the exit node in the CFG of 𝑓 with length
(number of edges) less than or equal to 𝑛. We then define the as-
ymptotic path complexity 𝑎𝑝𝑐 (𝑛) as the dominating term of 𝑝𝑐 (𝑛).

Note that path complexity is exactly equal to the number of paths
of a given path length in the CFG, butmay be an over-approximation
of the number of paths through the function 𝑓 up to execution depth

1https://github.com/hmc-alpaqa/metrinome
2https://hub.docker.com/orgs/harveymudd/metrinome
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𝑛, since PC does not take into account the satisfiability of branch
conditions and so counts paths that may not be feasible. On the
other hand, PC is a sound upper bound on the number of paths
of execution depth 𝑛 through 𝑓 and is fast to compute because it
looks only at the graph structure and is computed by using efficient
linear algebra packages with the adjacency matrix of the CFG. APC
is obtained by taking the dominant term in the PC expression;
that term dictates the overall path complexity of the underlying
program. This makes comparing the complexity of two programs
easier: many programs have path complexities that contain many
polynomial and exponential terms and so reporting just the highest
order term is a succinct way to summarize the path complexity.
Path Complexity Examples. We provide three examples of C
code with their corresponding CFGs, PCs, and APCs in Figure 1.

3 COMPUTING PATH COMPLEXITY

We give a brief synopsis of the theory behind computing path
complexity [1] in order to present a self-contained paper. We use
techniques from algebraic graph theory and analytic combinatorics
to count the number of execution paths of a CFG [2, 13]. Given a
CFG𝐺 with nodes𝑁 and edges 𝐸, and a depth𝑛, we can compute the
generating function 𝑔(𝑧) such that the 𝑛𝑡ℎ Taylor series coefficient
of 𝑔(𝑧), denoted [𝑧𝑛]𝑔(𝑧), is equal to pc(𝑛):

𝑔(𝑧) = det(𝐼 − 𝑧𝑇 : |𝑁 |, 1)
(−1) |𝑁 |+1 det(𝐼 − 𝑧𝑇 )

. (1)

where𝑇 is the augmented transfer-matrix (an adjacency matrix with
𝑇 |𝑁 |, |𝑁 | = 1), (𝑀 : 𝑖, 𝑗) denotes the matrix obtained by removing
row 𝑖 and column 𝑗 from 𝑀 , and 𝐼 is the identity matrix. From
𝑔(𝑧) = 𝑝 (𝑧)/𝑞(𝑧) we can derive a closed-form function f(𝑛) as a
sum of products of simple polynomial and exponential terms such
that pc(𝑛) = Θ(𝑓 (𝑛)). The form of 𝑓 (𝑛) is determined by

𝑓 (𝑛) =
𝐷∑
𝑖=1

𝑚𝑖−1∑
𝑗=0

𝑐𝑖, 𝑗𝑛
𝑗

(
1
|𝑟𝑖 |

)𝑛
, (2)

where 𝑞(𝑧) had 𝐷 distinct roots, 𝑟𝑖 is the 𝑖𝑡ℎ root of 𝑞(𝑧),𝑚𝑖 is the
multiplicity of 𝑟𝑖 , and 𝑐𝑖 are coefficients determined by |𝑁 | terms
of the Taylor expansion of 𝑔(𝑧). Since 𝑝𝑎𝑡ℎ(𝑛) = [𝑧𝑛]𝑔(𝑧), we can
define a system of |𝑁 | equations and |𝑁 | unknowns. This system
can be solved for the coefficients 𝑐𝑖, 𝑗 via linear algebra. This gives a
closed form function for 𝑝𝑐 (𝑛). We define 𝑎𝑝𝑐 (𝑛) as𝑂 (𝑝𝑐 (𝑛)) using
standard asymptotic analysis. This allows us to determine if the PC
asymptotically behaves as a constant, polynomial, or exponential.

4 MEASURING SYMBOLIC PATH EXPLOSION

Bang et al. suggested that can be used as a predictor of path
explosion during symbolic execution, but did not empirically verify
this [1]. In the current work, we seek to examine this claim. In order
to do so, we needed to quantify the path explosion problem.

Klee is a popular open-source tool that uses symbolic execution
to discover bugs and automatically generate tests for a given C
program. This can be a computationally intensive process due to
the well-known path explosion problem of symbolic execution. For
a given test function, we useMetrinome’s built-in Klee utilities to
generate a symbolic execution driver that marks each function input
parameter as symbolic.We then useKlee’s max-depth parameter to

collect statistics on how the number of generated paths varies with
exploration depth bounds. Finally, we find the best-fit constant,
polynomial, or exponential function for the collected data. For
example, in Figure 2 we can see the results of this procedure for
two example functions: Selection Sort and Monotone Array
Check (checks if an array is monotonically increasing or decreasing).
The number of paths explored by Klee on Selection Sort grew
exponentially with the exploration depth, while Monotone Array
Check exhibited a clearly quadratic trend.

We usedMetrinome to compute APCs of𝑂 (1.27𝑛) and𝑂 (𝑛2) re-
spectively. Our experimental results show that APC either matches
or soundly upper bounds the asymptotic growth complexity class
in the number of paths generated by Klee.

5 IMPLEMENTATION

In the paper introducing path complexity, a tool was made for
computing PC and APC of Java programs. Our tool includes this
functionality and extends it substantially. Metrinome runs within
a Docker image which can be built locally or downloaded from
Dockerhub, ensuring all dependencies and examples are present
within the environment. Overall, Metrinome is implemented as
a REPL (read-eval-print-loop), which means that rather than exe-
cuting individual commands in the shell, it provides its own ‘path
complexity shell’ where a series of commands can be executed. In
order to implement this, we use Python’s built in Cmd module.

There are 4 main components to the architecture. The first of
these is the Command module. This handles the parsing of user
input and calling the necessary methods from other modules. The
second component is the set of converters, which turn source code
files into CFGs. Each converter follows the same Converter in-
terface (abstract class in Python), which means it is simple to add
converters for more languages in the future. The third component is
the ‘metrics component’, responsible for computing a single metric
from a CFG, and implementing the Metric interface. The fourth
component is the Klee handler, which converts standard C files
into files which can be used by Klee, and provides commands for
running Klee within the REPL.

Given that Metrinome is meant to process a large number of
files, performance is a strong priority. A key advantage of the REPL
is that it caches all objects in memory. For example, CFGs are stored
as Graph objects rather than files. This facilitates experiment execu-
tion and reduces runtime. In order to do symbolic computations in
Python, we use sympy. This is the main bottleneck for computing
APC as we need to obtain symbolic determinants. To work around
this, we modified the APC metric component to use a graph search
instead of one of the two determinants, significantly speeding up
metric computation.

6 EXPERIMENTS

Our experiments address the following research questions:

• RQ1: Is APC an effective way to predict the asymptotic rate
at which the number of paths explored by Klee grows with
respect to the symbolic execution exploration depth bound?

• RQ2: If APC is an effective predictor, is it efficient compared
to simply running Klee and counting the paths generated?
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int parity(int num) {
if (num % 2 == 0)

return 0;
else

return 1;
}

START

1 2

EXIT

Path complexity: 2
Asymptotic Path complexity: 𝑂 (1)

int palindrome(int num) {
int rev_num = 0, rem, temp;
temp = num;
while (temp != 0) {

rem = temp % 10;
rev_num = rev_num * 10 + rem;
temp /= 10;

}
return reverse_num == num;

}

START

1

EXIT 2

Path complexity: 0.5𝑛 + 0.5
Asymptotic Path complexity: 𝑂 (𝑛)

int gcd(int a, int b) {
while (a != b) {

if (a > b) {
a = a - b;

} else {
b = b - a;

}
}
return a;

}

START

1

EXIT 2

3 4

5

Path complexity: 2.21 × 1.19𝑛 + 6.05
Asymptotic Path complexity: 1.19𝑛

Figure 1: Examples with resulting CFGs and APCs. Left: finds the parity of input integer, with APC of 𝑂 (1). Center: checks if
input is a palindrome, with APC of 𝑂 (𝑛). Right: finds the GCD of two inputs, with APC of 𝑂 (1.19𝑛)

Table 1: APC and Klee data on C files showing lines of code (LoC), cyclomatic (Cyclo) and NPATH complexity, asymptotic

path complexity (APC), APC time, number of edges and nodes in the CFG (|𝐸 |, |𝑁 |), best fit curve for Klee’s path growth with

respect to search depth, Klee time, and indication of when APC matches the asymptotic complexity class of Klee’s fitted

path growth function (constant, same polynomial, or exponential growth) (!) or is a complexity class upper bound (U.B).

Function Under Test LoC Cyclo NPATH APC APC Time (s) |E| |N| Klee Best Fit Klee Time (s) Match?

Parity 7 2 2 𝑂 (1) 0.012 4 4 2 0.173 !

Sign 9 3 3 𝑂 (1) 0.17 7 6 3 0.161 !

Greatest of 3 9 5 7 𝑂 (1) 0.022 11 8 5 0.313 !

Lexicographic Array Compare 11 4 4 𝑂 (𝑛) 0.033 13 11 𝑛 1.833 !

Prime 8 3 3 𝑂 (𝑛) 0.091 9 8 𝑛 432.047 !

Check Array Sorted 9 3 3 𝑂 (𝑛) 0.092 9 8 𝑛 4.705 !

Check Arrays Equal 9 3 3 𝑂 (𝑛) 0.091 9 8 𝑛 2.243 !

Find in Array 9 3 3 𝑂 (𝑛) 0.090 9 8 𝑛 2.269 !

Check Heap Order 8 4 4 𝑂 (𝑛) 0.313 11 9 𝑛 2.98 !

Check Sorted or Reverse 18 6 18 𝑂 (𝑛2) 0.809 19 15 0.33𝑛2 196.375 !

Three Loops w/ variable bounds 14 4 8 𝑂 (𝑛3) 1.464 15 13 0.17𝑛3 301.162 !

Three Loops with variable break 23 7 27 𝑂 (𝑛3) 1.952 24 19 0.07𝑛3 301.117 !

Array Max 8 3 3 𝑂 (1.17𝑛 ) 0.752 8 7 1.41𝑛 301.112 !

Euclid GCD 11 3 3 𝑂 (1.19𝑛 ) 0.304 8 7 1.41𝑛 307.592 !

Binary Search 16 5 5 𝑂 (1.22𝑛 ) 0.832 16 13 1.27𝑛 119.797 !

Bubble Sort 13 4 4 𝑂 (1.27𝑛 ) 0.884 13 11 1.55𝑛 301.166 !

Selection Sort 13 4 4 𝑂 (1.27𝑛 ) 0.347 13 11 1.63𝑛 301.211 !

Edit Distance 25 8 9 𝑂 (1.29𝑛 ) 2.797 29 23 1.42𝑛 17.423 !

Insertion Sort 14 4 5 𝑂 (1.35𝑛 ) 1.153 12 10 1.58𝑛 301.218 !

Quick Sort 34 6 13 𝑂 (1.36𝑛 ) 1.514 18 14 1.17𝑛 539.516 !

Merge Sort 29 11 197 𝑂 (1.42𝑛 ) 13.000 41 32 1.78𝑛 47.263 !

Heap Sort 62 20 4971 𝑂 (1.41𝑛 ) 47.318 72 54 1.72𝑛 301.512 !
Palindrome 11 2 2 𝑂 (𝑛) 0.108 4 4 11 2.474 U.B.
Variance 11 3 4 𝑂 (𝑛2) 0.607 10 9 𝑛 4.585 U.B.
Position, Velocity, Acceleration 15 4 8 𝑂 (𝑛3) 1.697 15 13 𝑛 97.929 U.B.
Newton’s Method 20 4 5 𝑂 (1.12𝑛 ) 0.504 13 11 𝑛 2.116 U.B.
Fibonacci 16 3 3 𝑂 (1.15𝑛 ) 0.390 9 8 𝑛 1.99 U.B.
Sieve of Eratosthenes 10 5 8 𝑂 (1.22𝑛 ) 1.333 18 15 𝑛 18.168 U.B.
Longest Common Inc. Subsequence 18 10 66 𝑂 (1.36𝑛 ) 7.233 35 27 2𝑛 4.241 U.B.
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Figure 2: Paths explored by Klee by execution depth.

Experimental Benchmark.We computed APC withMetrinome
and Klee path statistics for 29 C functions (Table 1). When comput-
ing path complexity for a function,Metrinome is agnostic to the
complexities of any external calls. For each function under test we
ran Klee and collected the number of paths explored for increas-
ing exploration depth bound. We ran polynomial and exponential
regressions to generate the the best fitting curve of path count as
a function of Klee exploration depth and compared it to the APC
results. The benchmark source code and Klee drivers synthesized
by Metrinome are available in our repo and Docker image (see
repo README).
Experimental Results.We answered RQ1 and RQ2 in the affir-
mative. Overall, our results show that APC is an effective and fast
predictor of path explosion by Klee. APC always gave a complexity
class upper bound for Klee best fit, in the sense that constant <
quadratic < cubic < . . . < exponential complexity of any base. APC
had the same complexity class (up to differences in base for expo-
nential classes) as the Klee best fit expression in 22 cases. APC had
a higher complexity class than that of the Klee best fit expression
in 7 cases. We found no examples of APC having a smaller domi-
nant asymptotic class term than that of the Klee best fit expression.
The slight difference in exponential bases is explained by the fact
that APC considers path lengths as the number of edges in the
reduced control flow path, whereas Klee considers path lengths as
the number of branches. APC was significantly faster to compute
than Klee in 28 out of 29 cases, the exception being Longest Com-
mon Increasing Subsequence. The average runtime of APC was 49
times faster than that of Klee. Overall, APC can be used to quickly
predict the degree of path explosion when running Klee.

7 RELATEDWORK

Earlier work proposed APC and showed that it is a more re-
fined complexity metric than cyclomatic and NPATH [1]. That
work demonstrated that path complexity is scalable, analyzing the
path complexities of the entire Java SDK and Apache Commons
libraries, approx. 177,000 methods total, for an average rate of 14
methods per second. Future work was to demonstrate that APC
can be used to predict the difficulty of path exploration during sym-
bolic execution. We follow up on that line of work, and presented
the Metrinome tool, which contains significant improvements.
Trautsch et al. included our earlier replication package for comput-
ing APC for Java in their study of reproducibility of 34 software
analysis tools [14]. They lament the excessive difficulty of run-
ning cutting-edge research-based software analysis tools due to the

wide variation in system dependencies and configurations. Indeed,
PAC relied on outdated versions of Java and Mathematica (which
requires a paid-license). We alleviate these issues in Metrinome
by performing all symbolic algebra using sympy and providing a
Docker image on Dockerhub. Fazli et al. propose a method for gen-
erating prime paths of a control flow graph [4] (paths that do not
pass through a vertex more than once), which is closely related to
NPATH complexity, and so in that context, NPATH is the correct
metric to predict difficulty of prime path generation. We feel that
APC is the correct analogous metric for symbolic execution path
and test generation. In concurrent programming, metrics exist for
measuring the difficulty of achieving interleaving coverage [5, 6, 10],
analyzing process interleaving graphs rather than CFGs.

8 CONCLUSION

Metrinome enables computing complexity metrics for C, no-
tably asymptotic path complexity. It provides a framework that can
easily be extended to new languages, and incorporates a REPL en-
vironment to calculate the complexity metrics. The REPL also has
features for running Klee, a popular symbolic execution tool, and
generating Klee compatible files. Using the tool, we compared the
number of paths generated byKlee to APC. Our APCmetric quickly
and soundly predicts the growth rate of Klee paths generated as a
function of symbolic exploration depth.
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