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Abstract—We present an automated technique for synthesizing
adaptive attacks to extract information from program func-
tions that leak secret data through a side channel. We syn-
thesize attack steps dynamically and consider noisy program
environments. Our approach consists of an offline profiling
phase using symbolic execution, witness generation, and pro-
filing to construct a noise model. During our online attack
synthesis phase, we use weighted model counting and numeric
optimization to automatically synthesize attack inputs. We
experimentally evaluate the effectiveness of our approach on
DARPA benchmark programs created for testing side-channel
analysis techniques.

We present an automated technique for synthesizing
adaptive attacks to extract information from program func-
tions that leak secret data through a side channel. We syn-
thesize attack steps dynamically and consider noisy program
environments. Our approach consists of an offline profiling
phase using symbolic execution, witness generation, and
profiling to construct a noise model. During our online
attack synthesis phase, we use weighted model counting
and numeric optimization to automatically synthesize attack
inputs. We experimentally evaluate the effectiveness of our
approach on DARPA benchmark programs created for test-
ing side-channel analysis techniques.

1. Introduction

Side-channel attacks are an important source of software
vulnerabilities. By measuring a software system’s process-
ing time, power usage, or memory, a malicious adversary
can gain information about private data. For instance, ex-
ploitable timing channel information flows were discovered
for Google’s Keyczar Library [22], the Xbox 360 [1], im-
plementations of RSA encryption [7], and the open autho-
rization protocol OAuth [2]. These vulnerabilities highlight
the need for preemptively discovering of the possibility of
side-channel attacks and their removal from software.

This material is based on research sponsored by DARPA under agreement
number FA8750-15-2-0087. The U.S. Government is authorized to repro-
duce and distribute reprints for Governmental purposes notwithstanding
any copyright notation thereon. The views and conclusions contained herein
are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or
implied, of DARPA or the U.S. Government.

In this paper, we present a method for automatically
and dynamically synthesizing adaptive side-channel attacks
under noisy observations against code segments that manip-
ulate secret data. To illustrate the main idea, consider the
following scenario. An adversary obtains the program source
code and system specification for a server application, but
does not have access to private values stored on the server
on which the application runs. We show that by analyzing
the source code and performing offline profiling on a mock
server under his control, an adversary can develop a prob-
abilistic model of the relationship between the inputs, side-
channel measurements, and secret values. Using this model,
the adversary can mount a side-channel attack against the
real platform, adaptively selecting inputs that leak secret
values.

In this work, we show how to automate the type of attack
just described. We give a solution for the problem based on
information theory and Bayesian inference. We use state-of-
the-art tools and techniques including symbolic execution,
symbolic model-counting, and numeric optimization. We
implemented our approach, targeting networked Java server
applications, and experimentally show that it works on a
set of benchmarks by either synthesizing an attack or by
reporting that an attack was not found.

There has been prior work: on secure information flow
providing methods for detecting insecure flows [34]; on
quantitative information flow presenting techniques for mea-
suring the amount of information leaked through indirect
flows [37]; and on analysis of adaptive side-channel ad-
versaries providing techniques for automatically reasoning
about malicious users [21]. However, despite influential
prior work in these areas, existing adaptive adversary models
for reasoning about malicious users (1) rely on explicit
strategy enumeration via exhaustive approaches [21], (2)
attempt to generate an entire strategy tree [26], and (3)
do not address environment measurement noise [26]. The
contribution of this paper is a novel approach based on
symbolic execution [18], weighted model counting [9], [6],
[35], and numeric optimization [41] for the online automatic
synthesis of attacks that leak maximum amount of private
information, and directly addresses the above issues by (1)
symbolically representing program behaviors, (2) generating
strategy steps dynamically, and (3) using Bayesian inference
to model adversary knowledge in a noisy environment.



Client:
send l;
receive r;

Server:
private h = 97014599;

private f(h, l):
if (h ≤ l) log.write(“bound error”);
else process(l);
return;

while(true):
receive l;
f(h, l);
send 0;

Figure 1: Example Client-Server application which contains
a side channel.

min = 0; max = 232;
while (min 6= max)

l = dmin+max
2

e
t = time { send l; receive r; }
if (t = 2 ms) min = l;
else max = l;

h = min;

Figure 2: Example side-channel attack to reveal the secret
value of h stored on the server in Figure 1.

Motivating example. Consider the pseudo-code in Figure 1.
A client sends a low security input l and gets back a
response, r. On the other end, a server runs forever waiting
to receive l and calls a private function f(h, l), where
h is initialized as a private high security integer variable
representing a secret resource bound, and then responds with
0. The function f compares h and l, writing to an error log
if l is too large.

Suppose a malicious adversary A wants to know the
server’s secret resource bound h. A reasons that sending an
input which causes the server to write an error to the log
should cause a longer round-trip time delay between send
and receive than an input which does not cause this error.
Now, imagine that the adversary is attacking an idealized
system in which this time difference will always be the
same, say, for the sake of the example, 2 ms when nothing is
written to the log and 4 ms when there is a write to the log.
This timing difference gives the adversary a side channel in
time which can be exploited to extract the value of h. A
can then try different values of l and decide if the value of
h is larger than l or not based on the elapsed time. This
enables a binary search on h. In Figure 2 we see pseudo-
code for such an attack, assuming h is a 32-bit unsigned
integer. This is an example of an adaptive attack, in which
A makes choices of l based on prior observations. In this
paper, we present techniques for automatically synthesizing
such attacks in the presence of system noise.

Existing works on automated adaptive attack synthesis
assume idealized conditions [21], [26]. However, due to
noise in the server and the network, an attack which works
for the idealized system is not applicable in practice. The
observable elapsed time for each path of f is not a discrete
constant value, but follows some probability distribution,
thereby obscuring the distinguishability of program paths.

In our example, suppose that, from the client side, the
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Figure 3: Distributions of timing measurements correspond-
ing to the two branches of the server’s function f from
Figure 1: h ≤ l (left) and h > l (right).

timing measurements from each branch follow distributions
approximately centered around 2 ms and 4 ms as in Figure 3.
If A sends l = 100, observing a 1 ms duration almost
certainly implies that h > 100 and observing a 5 ms duration
almost certainly implies that h ≥ 100. But, if A observes a
2.8 ms duration, it appears to be a toss-up—it could be that
either h > 100 or h ≤ 100 with nearly equal likelihood.

We present an approach by which an adversary automat-
ically synthesizes inputs to extract information about secret
program values despite noise in the system observables. At a
high level, we perform offline profiling of a shadow system
under our control which mimics the real system, in order
to estimate the observable probability distributions. Armed
with these distributions and some initial belief about the
distribution of the secret, we iteratively synthesize a sys-
tem input l∗ which yields the largest expected information
gain by solving an information-theoretic objective function
maximization problem. In each attack step, the synthesized
adversary 1) invokes the system with l∗, 2) makes an obser-
vation of the real system, 3) makes a Bayesian update on its
prior belief about the secret value, and repeats the process
for the next attack step.

2. Overview

In this section, we give an overview of our model for
the adversary-system interaction, make explicit the program
parameters over which we conduct our analysis, provide the
high-level steps of dynamic attack generation, and give a
discussion of relevant information theory concepts.

2.1. System Model

We use a model in which an adversary A interacts
with a system S that is decomposed into a program P and
a noise function N , illustrated in Figure 4. The program
and runtime environment form a probabilistic interactive
system acting as an information channel, modeled as the
probability of a noisy observation o given the inputs h and
l: p(O = o|H = h, L = l). An attacker who wants to learn
the secret input h is interested in “reverse engineering” that
probabilistic relationship. The adversary wants to compute
the probability of a secret input value h given knowledge
of his public input l and the side-channel observation o:
p(H = h|O = o, L = l). We use Bayesian inference to
formalize this process of reverse engineering. By solving a
numeric entropy optimization problem at each attack step, an
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Figure 4: Model of Adversary, program, inputs, and obser-
vations as a probabilistic system.

attacker selects optimal input l∗ with the goal that p(H = h)
converges to a distribution that assigns high probability to
the actual initially unknown value of h. Below we define
the components of our model.

Program under attack. We assume that P is a deterministic
program, which takes exactly two inputs h and l, and we
write P (h, l) to indicate the invocation of P on its inputs.
The ability of our model to handle programs with more
than two inputs is explained in the definitions of h and l.
We explain how our model can be relaxed to handle non-
deterministic programs in Section 4.7.

High security inputs. By H we denote the set of possible
high security values, with h being a specific member of H,
and H being a random variable which ranges over H . These
secret inputs on the real system are not directly accessible to
the adversary A whose goal is to learn as much as possible
about the value of h ∈ H. We assume that the choice of h
does not change over repeated invocations of P .

Low security inputs. By L we denote the set of low security
values, with l being a specific member of L, and L the
corresponding random variable. These inputs are under the
control of the adversary A who chooses a value for l and
invokes P with this input. A may choose different values
of l over repeated invocations of P .

Observations. The adversary is able to make side-channel
observations, like time measurements, when the program
is run. We denote the set of possible observations by O.
We assume that the set O is continuous for the purpose of
modeling timing side channels, with O a random variable.

Program traces. A trace t is a characterization of a single
program execution. We suppose that a run of P according
to a trace t is manifested, from A’s point of view, as a side-
channel observation o which may be distorted by noise.

The adversary. The adversary A has some current belief
p(H = h) about the value of the secret, chooses an input
l to provide to the system, and makes a side-channel ob-
servation, o, of the system for that input. A then makes a
Bayesian update on p(H = h) based on o and repeats the
process. The contribution of this paper is the synthesis of
the optimal inputs, l∗, which cause the system to leak the
most information about h.

2.2. Outline of Attack Synthesis

Our attack synthesis method is split into two phases. The
reader can refer to Figure 5 for this discussion.
Phase 1: Offline static analysis and profiling. The main
goal of the offline phase is to estimate a probabilistic rela-
tionship between program traces and side-channel observa-
tions. Informally, a program trace is a sequence of program
states, including control flow choices at each branch con-
dition. We group program traces into trace classes based
on indistinguishability via observation. We summarize the
main points of this phase below, and provide the detailed
discussions in Section 3.
1) We use symbolic execution to compute path constraints

(PCs) on the secret and public inputs for the program
source code. Path constraints are logical formulas over
inputs that characterize an initial partition estimate for
program traces. Each PC, φi, is associated with a trace
class Ti, (Section 3.2).

2) For each PC, φi, we generate a witness wi = (hi, li).
Each wi is assumed to be a characteristic representative
of all concrete secret and public inputs that cause P to
execute any of the traces in a trace class Ti.

3) For each wi, we repeatedly run the system with wi as
input and record observation samples. From the samples,
we estimate the conditional probability of observation
given trace class, denoted P (O|T = Ti) (Section 3.3).

4) PCs may generate too fine a partition of program trace
classes. That is, there may be two trace classes Ti and Tj
where P (O|T = Ti) and P (O|T = Tj) coincide to such
a degree that the traces are effectively indistinguishable
by measuring O. Thus, we merge PC’s and correspond-
ing distributions which are too similar according to a
metric known as the Hellinger distance (Section 3.4).

Phase 2: Online dynamic attack synthesis. The second
phase mounts an adaptive attack against the system, making
use of the estimated system profile from the offline phase,
assuming that the adversary has some initial belief about the
distribution of the secret. We summarize the main approach
for this phase below, with detailed discussions in Section 4.
1) We use the current belief about the secret along with path

constraints to compute, for each φi, a model-counting
function which is symbolic over the public inputs, de-
noted fi(l)(Section 4.2).

2) We use the model-counting functions to compute trace
class probabilities as symbolic functions over low se-
curity inputs. We then apply the mutual information
formula from information theory to get an information
leakage objective function, which is symbolic over the
public inputs (Section 4.3).

3) We use numeric optimization to compute the public
input l∗ that maximizes the symbolic information leakage
objective function (Section 4.4).

4) We provide the leakage-maximizing input, l∗, to the
system and record the observation.

5) We use Bayesian updates to refresh the current belief
about the secret using the observation and the noise
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Figure 5: Overview of our attack synthesis approach.

profile that was estimated during the offline phase (Sec-
tion 4.5). We repeat this process starting from Step 1.

2.3. Measuring Uncertainty

In order to maximize information leakage we must have
a way to quantify it. Here we give a brief background on
information-theoretic concepts we use in our approach. In-
tuitively, before invoking P , A has some initial uncertainty
about the value of h, while after observing o, some amount
of information is leaked, thereby reducing A’s remaining
uncertainty about h. The field of quantitative information
flow (QIF) [37] formalizes this intuition by casting the prob-
lem in the language of information theory using Shannon’s
information entropy which can be considered a measurement
of uncertainty [36]. We briefly give three relevant infor-
mation entropy measures [12]. Given a random variable X
which can take values in X with probabilities p(X = x),
the information entropy of X , denoted H(X) is given by

H(X) =
∑
x∈X

p(X = x) log2

1

p(X = x)
(1)

Given another random variable Y and a conditional proba-
bility distribution p(X = x|Y = y), the conditional entropy
of X given Y is

H(X|Y ) =
∑
y∈Y

p(Y = y)
∑
x∈X

p(X = x|Y = y) log2

1

p(X = x|Y = y)

(2)

Intuitively, H(X|Y ) is the expected information contained
in X given knowledge of Y . Given these two definitions,
we would like to compute the expected information gained
about X by observing Y . In our application, we target
timing side channels where we model time as a continuous
random variable, while the secret is a discrete value (i.e.,
an integer or a string). In order to measure the mutual
information between a discrete random variable Y and a
continuous random variable X , we use the Kullback–Leibler
(KL) divergence [12].

The KL divergence, DKL(p, q) is a statistical measure
of the discrepancy between two models, p(x) and q(x),
for a probabilistic event X over a continuous domain. It
is computed via the formula:

DKL(p, q) =

∫ ∞
−∞

p(x) log
p(x)

q(x)
dx. (3)

Then, the mutual information between a discrete random
variable Y and a continuous random variable X is defined
as the expected information gain with expectation taken over
all possible events in Y :

I(Y ;X) =
∑
y∈Y

p(Y = y)DKL(p(X|Y = y), p(X)) (4)

Intuitively, DKL(p(X|Y = y), p(X)) is a measure of in-
formation gain between the prior distribution p(X) and the
posterior distribution p(X|Y = y).

We consider the high security input, low security input,
and observable as random variables H , L, and O, where H
and L are discrete and O is continuous. We interpret p(H) as
the adversary’s initial belief about h and H(H) as the initial
uncertainty. The conditional entropy H(H|O,L = l) quan-
tifies A’s remaining uncertainty after providing input L = l
and observing output O. Finally, we interpret I(H;O|L = l)
as the amount of information leaked.

The goal of the adversary is to maximize the value of
I(H;O|L = l) at every step, which we call the leakage
for that step, measured in bits of information. Our attack
synthesis technique relies on choosing an optimal input
L = l∗ at each step which maximizes the expression given
in Equation 4. At a high level, we compute a symbolic ex-
pression for I(H;O|L = l) using symbolic weighted model
counting and then use off-the-shelf numeric maximization
routines to choose l∗ (detailed in Section 4).

3. Offline Profiling

The first phase of our attack synthesis relies on offline
pre-computation of equivalence classes of program traces
and corresponding noise distributions. We accomplish this
through the use of symbolic execution, dynamic profiling
using a small representative set of witness inputs, and sta-
tistical measures for merging indistinguishable distributions.
The results of this offline phase are then used during the
online attack synthesis phase described in Section 4.



3.1. Trace Equivalence Classes

Let T denote the set of execution traces of program P .
A trace is a characterization of a single program execution.
From adversary A’s point of view, invoking P induces
execution of a single trace t. Knowing the input l and the
executed program trace t, A can gain information about h.
However, A does not which program trace t was executed,
but can make a side-channel observation o ∈ O, which may
be distorted by system noise. There are two challenges:

1) Observation noise: the same execution trace t may
lead to different observations o1 and o2 in different
runs of P .

2) Observation collision: two different traces t1 and t2
may lead to the same observation o in some runs of P .

We address these two challenges by defining trace
classes, which identify observationally equivalent traces in
the presence of noise. Let T be a random variable that
ranges over T and p(O|T ) be the conditional probability
density function on observations conditioned on which trace
is executed. We define an equivalence relation ∼= on T in
which t1 ∼= t2 if p(O|T = t1) = p(O|T = t2) and we say
t1 and t2 are observationally equivalent. Let partition T be
the set of equivalence classes of T defined by ∼=. Then, we
call each Ti ∈ T a trace class.
A gains information about h by knowing which trace t

was executed when P is run with l. But due to noise and
collisions, the best A can hope for with a single run of the
program is to determine the likelihood that t ∈ Ti for each
trace class Ti. So, given l and o, A would like to know
p(T ∈ Ti|O = o, L = l). In the remainder of this section
we show how A can compute a characterization of T and
efficiently estimate p(O|T ∈ Ti). We explain in Section 4
how p(O|T ∈ Ti) is used during the online attack phase to
compute p(T ∈ Ti|O = o, L = l).

3.2. Trace Class Discovery via Symbolic Execution

We now describe how symbolic execution can be used
as a first approximation of trace classes. First, we briefly
describe symbolic execution and then explain how symbolic
execution’s path constraints are associated with trace classes.

Symbolic execution [18] is a static analysis technique
by which a program is executed on symbolic (as opposed
to concrete) input values which represent all possible con-
crete values. Symbolically executing a program yields a
set of path constraints Φ = {φ1, φ2, . . . , φn}. Each φi is
a conjunction of constraints on the symbolic inputs that
characterize all concrete inputs that would cause a path to
be followed. All the φi’s are disjoint. Whenever symbolic
execution hits a branch condition c, both branches are ex-
plored and the constraint is updated: φ becomes φ∧c in the
true branch and φ ∧ ¬c in the false branch. Path constraint
satisfiability is checked using constraint solvers such as
Z3 [16]. If a path constraint is found to be unsatisfiable, that
path is no longer analyzed. For a satisfiable path constraint,
the solver can return a model (concrete input) that will cause

that path to be executed. To deal with loops and recursion,
a bound is typically enforced on exploration depth.

We use the path constraints generated by symbolic exe-
cution as an initial characterization of trace classes, where
we consider any secret inputs as a vector of symbolic high
security variables h and remaining inputs as a vector of
symbolic low security variables l. Then symbolic execution
results in a set of path constraints over the domains H and
L, which we write as Φ = {φ1(h, l), φ2(h, l), . . . , φn(h, l)}.
In general, we find it useful to think of each φi(h, l) as a
logical formula which returns true or false, but sometimes it
is convenient to think of φi(h, l) as a characteristic function
that returns 1 when the path constraint is satisfied by h and
l and 0 otherwise. A witness wi = (hi, li) for a given φi
is a concrete choice of h = hi and l = li so that φi(hi, li)
evaluates to true, and we write wi � φi(h, l).

We assume that inputs that satisfy the same path condi-
tion φi induce traces that are observationally equivalent, and
hence belong to the same trace class Ti. I.e., for inputs (h, l)
and (h′, l′), if (h, l) � φi and (h′, l′) � φi, then running
P (h, l) and P (h′, l′) results in traces t1 and t2 that reside
in the same trace class Ti. Thus, our characterization of
trace classes is defined by the set of path constraints Φ,
where each path constraint φi is associated with a trace class
Ti. Recalling the example from Figure 1, the trace class
characterization based on path constraints is {h ≤ l, h > l}.

In the following two subsections we discuss how we
address the issues of observation noise and observation
collision for the trace classes induced by path constraints.

3.3. Estimating Observation Noise

In order to estimate the trace-observation noise, for
each φi we find a witness that satisfies φi and profile the
program running in the environment with that input. Witness
generation is a common practice in symbolic execution in
order to provide concrete inputs that demonstrate a partic-
ular program behavior. Many satisfiability solvers support
witness generation. Our method relies on the assumption
that any witness wi = (hi, li) for a path condition φi has a
side-channel observation characteristic that is representative
of all other inputs that satisfy φi. That is,

(h, l) � φi ⇒ p(O|H = h, L = l) = p(O|H = hi, L = li)

Trace-class sampling. Assuming that P is deterministic,
every (h, l) pair results in exactly one trace, and the side-
channel observation relationship for every (h, l) pair is
characterized by a witness wi for the path constraint φi
that corresponds to trace class Ti. Hence, we assume that
p(O|T ∈ Ti) = p(O|H = hi, L = li). Thus, in order to es-
timate the effect of system noise on a trace class, we repeat-
edly collect observation samples using wi as a representative
input (Procedure 1).
Distribution estimation. Given a sample set of observa-
tions, A can estimate the probability of an as-yet-unseen
observation with well-known density function interpolation
methods using smooth kernel density estimation. Suppose
{o1, o2, . . . , on} is a set of independent and identically



Procedure 1 System S, Path Constraints Φ, # of Samples m

1: procedure PROFILE(S, Φ, n)
2: for each φi ∈ Φ
3: (hi, li)← GENERATEWITNESS(φi)
4: for j from 1 to m
5: SAMPLE(i, j)← S(h, l)
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Figure 6: Histogram of 1000 timing samples for trace classes
T1 and T2 (left) and the smooth kernel density estimates for
p(O|T ∈ Ti) (right).

distributed samples drawn from the unknown distribution
p(O|T ∈ Ti) for a specific trace class Ti. We want to
estimate the value of p(O = o|T ∈ Ti) for an unseen sample
o. The kernel density estimator p̂(O|T ∈ Ti) is

p̂(O = o|T ∈ Ti) =
1

nh

n∑
i=1

K
(o− oi

h

)
(5)

where K is a smoothing kernel and h is a smoothing
parameter called the bandwidth [33], [25]. We use a Gaus-
sian distribution for the smoothing kernel K and we use a
bandwidth that is inversely proportional to the sample size.
Using Procedure 1 and Equation 5, we have an estimate for
the effect of the noise on each trace class Ti.

For the example from the introduction, there are two
trace classes T1 and T2 corresponding to path conditions
φ1(h, l) = h ≤ l and φ2(h, l) = h > l. We use a constraint
solver to find witnesses w1 = (4, 10) and w2 = (9, 3) so
that w1 |= φ1 and w1 |= φ2. Then, running the system
with w1 and w2 for 1000 timing samples results in the his-
tograms and the the corresponding smooth kernel estimate
distributions shown in Figure 6.

3.4. Trace Class Merging Heuristic

It is possible that the set of path constraints Φ that
characterize T are an over-refinement of the actual trace
classes of P . It may be that two trace classes are effec-
tively indiscernible via observation due to system noise. For
this reason, we employ a heuristic which combines path
constraints when their corresponding estimated probability
distributions are too similar. We measure the similarity
of two distributions using the Hellinger distance dH(p, q)
between density functions p and q given by

dH(p, q) =

√
1

2

∫ ∞
−∞

(√
p(x)−

√
q(x)

)2
dx

The Hellinger distance is such that 0 ≤ dH(p1, p2) ≤ 1.
Intuitively, dH(p1, p2) measures distance by the amount of
“overlap” between p and q: dH(p, q) is 0 if there is perfect
overlap and 1 if the two distributions are completely disjoint
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Figure 7: Three pairs of probability distributions and their
Hellinger distances. With a threshold of τ = 0.1, the dis-
tributions in (a) are indistinguishable while the distributions
in (b) and (c) are distinguishable.

(see Figure 7). We merge path conditions φi and φj if
dH(p̂(O|T ∈ Ti), p̂(O|T ∈ Tj)) ≤ τ for a threshold τ .

4. Online Attack Synthesis

In this section we describe how to automatically synthe-
size an attack for the adversary.

4.1. Adversary Strategy

Recall the system model described in Section 1 and
Figure 4 in which the adversary A repeatedly interacts with
the system, trying to discover information about h. We
define the strategy for the adversary A in Procedure 2 and
summarize the steps taken in our model of A.

Procedure 2 System S, Current belief p(H)

1: procedure ATTACK(S , p(H))
2: l← CHOOSELOWINPUT(p(H))
3: o← S(h, l)
4: p(H)← p(H|O = o, L = l)
5: ATTACK(S, p(H))

1) Input choice. A executes an attack step by choosing
an input l∗ that will maximize the expected information
leakage. The method for choosing l∗ is the core of
our technique, involving the numeric maximization of
an objective leakage function which is symbolic over l,
computed via symbolic weighted model counting. Sec-
tions 4.2, 4.3, and 4.4 detail this step.

2) Program invocation. The adversary submits input l so
that P (h, l) is invoked.

3) Record observation. As a result of invoking the system,
A records a side-channel observation o.

4) Belief update. A uses the current belief p(H) and
trace class probabilities to make a Bayesian update
on the current belief about h given input l∗ and
observation o. That is, A sets the current belief
p(H = h)← p(H = h|O = o, L = l) (Section 4.5).

5) Repeat. Run the attack on S with the updated belief.
The step l ← CHOOSELOWINPUT(p(H)) is an entropy

maximization procedure consisting of several components.
We use weighted model counting to generate expressions
that quantify the probabilities of trace classes given an input
l, which is kept symbolic, and the current belief about the



secret, p(H). These probability expressions can be used
along with the estimated noise distributions to express the
mutual information I(O;H|L = l). Alternatively, one may
consider the mutual information with regard to trace classes,
I(T ;H|L = l). In either case, we use numeric routines
to find the input which maximizes I. Our experiments
demonstrate that maximizing I(T ;H|L = l) is considerably
faster and still generates efficient attacks.

4.2. Trace Class Probabilities via Symbolic
Weighted Model Counting

When A selects an input l, the system runs P (h, l)
resulting in a trace which cannot be directly known to A
using side-channel observations. However, A can compute
the probability that the trace belongs to trace class Ti,
i.e., p(T ∈ Ti|L = l), relative to his current belief about
the distribution of the secret p(H). If P is deterministic,
for a concrete choice of l the probability of a particular
trace t relative to the current belief about h is simply
the probability of the particular value of h that induces
t; p(T = ti|L = l) = p(H = h). Furthermore, recall from
Section 3.2 that each trace class Ti is associated with a path
constraint on the inputs φi(h, l), and think of φi(h, l) as a
characteristic function that returns 1 if running P (h, l) re-
sults in a trace t from trace class Ti and returns 0 otherwise.
Then, we have the following equivalence between trace class
probabilities with respect to a choice of l, the current belief
p(H) and the path constraints Φ:

p(T ∈Ti|L=l) =
∑
t∈Ti

p(T = ti|L=l) =
∑
h∈H

p(H=h)φi(h, l) (6)

The resulting expression on the right hand side is an
instance of a weighted model counting problem. Unweighted
model counting is the problem of counting the number
of models of a formula. If one assigns a weight to each
model, one may compute the sum of the weights of all
models. Thus, the unweighted model counting problem is
a special instance of the weighted model counting problem
obtained by setting all weights equal to 1. In our case, we
are interested in counting models of φi where the weight of
each model (h, l) is given by p(H = h).

Clearly, one may compute Equation (6) by summing
over H but this would be inefficient. For instance, H may
be large and Equation (6) will need to be recomputed
every time p(H) is updated. In addition, in the numeric
maximization procedure, which we describe later, we would
like to be able to evaluate Equation (6) for many different
values of l. Hence, we seek an efficient way to compute the
weighted model count. This is accomplished by using sym-
bolic weighted model counting. We first give an example.

Recall the path constraints from the example in Figure 1
where φ1(h, l) = h ≤ l and φ2(h, l) = h > l corresponding
to two trace classes T1 and T2. Additionally, suppose that
A’s current belief is that 1 ≤ h ≤ 24 and that larger values
of h are more likely to occur. A models his initial belief as
a probability distribution

p(H = h) =

{
h

300
1 ≤ h ≤ 24

0 otherwise

We can compute symbolic formulas for p(T ∈ Ti|L = l)
as functions of his choice of input l:

p(T ∈ T1|L = l) =


0 l < 1
l2+l
600

1 ≤ l ≤ 24

1 l > 24

p(T ∈ T2|L = l) =


1 l < 1

1− l2+l
600

1 ≤ l ≤ 24

0 l > 24

When A wants to compute the probability that the pro-
gram will execute a trace from any trace class for a particular
choice of l, he may simply evaluate these functions for that
choice of l. For example, if A inputs l = 10 he expects
to observe a trace from T1 with probability 11/60 and a
trace from T2 with probability 49/60. Using trace class
probability functions that depend on l, A can efficiently
compare the likelihood that the program executes a trace
from any trace class depending on the choice of l. These
symbolic probability functions are used in the next section
to generate a symbolic information gain function which is
used as the objective of numeric maximization.

We compute a symbolic function for p(T ∈ Ti|L = l)
by using a model-counting constraint solver. Our implemen-
tation targets functions whose path constraints can be repre-
sented as boolean combinations of linear integer arithmetic
constraints and we use the model counting tool Barvinok [6],
[39] for this purpose. For programs that operate on strings,
we interpret strings as arrays of integers that are bounded
to be valid byte values of ASCII characters.

Barvinok performs weighted model counting by rep-
resenting a linear integer arithmetic constraint φ on vari-
ables X = {x1, . . . , xn} with weight function W (X) as
a symbolic polytope Q ⊆ Rn. Let Y ⊆ X be a set of
parameterization variables and Y ′ be the remaining free
variables of X . Barvinok’s polynomial-time algorithm gen-
erates a (multivariate) piecewise polynomial F such that
F (Y ) evaluates to the weighted count of the assignments
of integer values to Y ′ that lie in the interior of Q. We are
interested in computing the probability of a trace class given
a choice of l and the current belief about the high security
inputs. Thus, we let Y = L, Y ′ = H, and W be p(H = h).

4.3. Leakage Objective Function

Here we describe how to generate an objective function
that quantifies the amount of information that A can gain
by observing o after sending input l. The major point of this
section is to show that it is possible to express the informa-
tion leakage as a symbolic function using weighted model-
counting functions and the estimated noise distributions.

Mutual Information Between Secret and Observation.
For a given choice of l we can quantify I(H;O|L = l)
by directly applying the definition of mutual information,
Equation (4).



∑
h∈H

p(H = h)DKL(p(O = o|H = h, L = l), p(O = o|L = l))

Because the path constraints Φ are disjoint, and cover all
paths of the program, for a particular l, Φ determines a
partition on h. Thus, we can rewrite I(H;O|L = l) by
summing over path conditions:
n∑

i=1

∑
h∈H

p(H=h)φi(h, l)DKL(p(O=o|H=h, L=l), p(O=o|L=l))

Since φi(h, l) = 0 unless input (h, l) induces trace class Ti
and the observation probability is conditioned on the trace
class, we rewrite the expression in terms of trace classes:

n∑
i=1

DKL(p(O=o|T ∈Ti), p(O=o|L= l))
∑
h∈H

p(H=h)φi(h, l)

Observe that the sum over H is exactly what is computed
via symbolic weighted model counting in Equation (6); thus,
I(H;O|L = l) can be expressed as

n∑
i=1

DKL(p(O=o|T ∈Ti), p(O=o|L= l))p(T ∈Ti|L=l) (7)

where DKL is computed with Equation (3) and the proba-
bility of the observation conditioned on the low input choice
is a straightforward conditional probability computation

p(O = o|L = l) =

n∑
i=1

p(O = o|T ∈ Ti) · p(T ∈ Ti|L = l) (8)

Thus, I(H;O|L = l) can be computed via Equations (7)
and (8) using only p(O = o|T ∈ Ti) (estimated via sampling
and smooth kernel interpolation) and p(T ∈ Ti|L = l)
(computed via symbolic weighted model counting).

Mutual information between secret and trace classes.
The approach to mutual information quantification based
on Equation (7) relies on integrating over the domain O,
an expensive computation. Alternatively, as a heuristic, one
may compute the mutual information between the secret and
the trace classes given the low input.

I(H;T |L = l) = H(T |L = l)−H(T |H,L = l)

Note that if P is deterministic, T is completely deter-
mined by H and L and so H(T |H,L = l) = 0. Thus,

I(H;T |L= l) =

n∑
i=1

p(T ∈Ti|L= l) log
1

p(T ∈Ti|L= l)
(9)

While this is not guaranteed to give the optimal attack,
it can be computed much more efficiently than Equation (7).
Equation (9) can be quickly evaluated for many choices
of l using the symbolic functions for p(T ∈ Ti|L = l) be-
cause they are computed by Barvinok as symbolic weighted
model-counting functions. In Section 5 we will see that
quantifying information leakage in this way allows for more
efficient generation of attack inputs.
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Figure 8: Mutual information between secret H and obser-
vation O or trace classes T as a function of low input L = l
for the example from Figure 1.

Procedure 3 Noise Entropy Aware Input Choice.
Current belief p(H), path constraints Φ, noise p(O|L)

1: procedure CHOOSELOWINPUT(p(H), Φ, p(O = o|L = l))
2: for each φi ∈ Φ
3: p(T ∈ Ti|L = l)← BARVINOK(p(H),Φ)
4: f(l)← I(H;O|L = l) via Eq. 7
5: // or f(l)← I(H;T |L = l) via Eq. 9
6: l∗ ← NMAXIMIZE(f(l))
7: return l∗

Recall the example from Figure 1. After using sym-
bolic execution to determine path constraints associated
with trace classes, estimating the noise, and performing
symbolic weighted model counting, we can compute both
I(H;O|L = l) and I(H;T |L = l), plotted in Figure 8.
Observe that the expected information leakage computed
from Equation (7) is strictly less than the one computed
using only trace classes based on Equation (9). So, the
trace class information gain bounds the actual information
gain. However, both maxima occur at the same value of
l∗ = 17. Hence, both methods agree on the optimal choice
of input. While we do not claim that the two maxima co-
incide in general, our experiments support that maximizing
I(H;T |L = l) rather than I(H;O|L = l) is significantly
faster per attack step, but may result in slight longer attacks.

4.4. Input Choice via Numeric Optimization

Now, using Equation (7) or Equation (9), A can apply
numeric optimization procedures to choose an input l∗ that
maximizes the information gain. A can compute

l∗=arg maxl I(H;T |L=l) or l∗=arg maxl I(H;O|L= l)

These are non-linear combinatorial optimization prob-
lems. We can use black-box objective function maximization
routines to find the values of l that maximize the leakage.
These routines are typically stochastic, and guaranteed to
produce a local optimum, but not necessarily a global one.
Regardless of how l∗ is chosen, A can still efficiently and
precisely update p(H) based on l∗ and the resulting system
side-channel observation which we detail in Section 4.5. The
two methods are given as Procedure 3 using Eq. 7 or Eq. 9.
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Figure 9: A sequence of attack steps indicating A’s changing belief about the secret p(H = h) after making input l∗i and
observing oi at the ith step. The current uncertainty, Hi (bits), is indicated.

4.5. Belief Update for Secret Distribution

After providing input l∗ and making side-channel ob-
servation o, A will need to refresh his current belief
about the secret p(H = h) by performing the up-
date p(H=h)← p(H=h|O=o, L= l). Although this is a
straightforward Bayesian update, we provide the formula
in order to illustrate how p(T ∈Ti|L= l), computed via
weighted model counting, and p(O=o|T ∈Ti), estimated
via Procedure 1, are involved in the update. By applying
Bayes’ rule and the definitions of conditional probability
and summing over trace classes we have that

p(H=h|O=o, L= l∗) =

n∑
i=1

p(H=h)φi(h, l)
p(O=o|T ∈Ti)

p(O=o|L=l∗)

(10)

where p(O=o|L=l) is computed from p(T ∈Ti|L= l) and
p(O=o|L= l) using Equation (8). Equation (10) allows A
to easily update p(H) by simply plugging the value of l∗
that was used as input and the resulting observation o.

4.6. Example

Recall the example from Figure 1 and suppose A has
an initial belief about the secret: p(H = h) = h/300 if
1 ≤ h ≤ 24 and 0 otherwise (Figure 9, far left). There are
two path constraints φ1(h, l) = h ≤ l and φ2(h, l) = h >
l, which result in trace class probability functions p(T ∈
Ti|L = l) as in Section 4.2.

As we saw in Section 4.3, the optimal input of the first
step of an attack is l∗1 = 17. In Figure 9 we show 6 steps
of an attack in which the secret is h = 20 and we start
by making input l∗ = 17. Suppose that when making the
input, A makes a timing measurement and observes o1 =
3.1ms Then, A updates his belief about h as shown in the
second step of Figure 9. Recalling the noise estimates in
Figure 6, we see that for a timing measurement of 3.1ms, it
is more likely that a trace from trace class T2 corresponding
to φ2(h, l) = h > 17 occurred, than a trace from trace class
T1 corresponding to φ1(h, l) = h ≤ 17. Consequently, after
performing the Bayesian update, the probability mass to the
right of h = 17 increases and the probability mass to the
left decreases proportionally according to Equation (10).
A continues choosing inputs and making observations

for 6 steps. We see that at different steps of the attack, the

optimal input is repeated from a previous step: l4 = l6 = 19,
for instance; this technique automatically performs a form
of repeated sampling in order to improve confidence. After
6 steps the probability mass of p(H = h) is concentrated on
h = 20 and the corresponding uncertainty isH6 = 0.07 bits,
and so A may reasonably conclude that h = 20 with high
probability. Finally, we note that CHOOSELOWINPUT gives
identical attacks if provided the same observation sequences
from Figure 9 using either Eq. 7 and Eq. 9.

4.7. Handling Non-deterministic Programs

Although our model assumes a deterministic program,
we are able to handle non-deterministic programs in some
cases. Programs may contain explicit randomization through
the use of random number generators. Indeed, there are
attempts to mitigate side-channel leakage by introducing
randomization into the program [24], [13]. If a program
has a random component that does not affect the branch
conditions on h and l, then the randomization is essentially
decoupled from the computation on h and l. Thus, running
symbolic execution on such a program will yield path con-
straints on h and l that can be used to characterize trace
classes. Then, dynamic profiling with witnesses for each
path constraint will capture the effect of non-deterministic
choices in the code on the observation. Hence, the determin-
istic component of the program that computes over h and l
and the random component can be factored into the static
analysis of symbolic execution and the dynamic analysis of
profiling, respectively. We demonstrate in our experiments
that we are indeed able to use our analysis on programs
which contain explicit non-determinism in the code.

4.8. Detecting Non-vulnerability

Some programs are not vulnerable to adaptive side-
channel attacks with respect to a chosen observable. We
demonstrate our ability to report non-vulnerability in our
experimental evaluation. Our approach is able to report non-
vulnerability in two ways:
1) If all trace classes initially defined by the path constraints

are determined to be observationally indistinguishable
using the Hellinger distance merging metric, we conclude
that there is only one trace class, and therefore, different
inputs cannot leak information about the secret.



2) If the first step of attack generation determines that there
is no input l∗ which results in positive information gain,
then again we conclude that there is no attack.

Note that trace-class constraints are generated with respect
to a semantic model of a program which is an abstraction of
real system behavior. In our implementation, our semantic
model is based on path constraints generated from branch
instructions in Java byte-code, and so our abstraction does
not capture lower level details like thread scheduling or
caching. The power of our technique is relative to the
abstraction level used in constraint generation and the cost
model. Hence, our reports of non-vulnerability are made
with respect to the chosen level of semantic abstraction.

5. Implementation and Experiments

We implemented our technique according to the high-
level diagram shown in Figure 5 and described in Sec-
tion 2.2. We ran our attack synthesis system on client-
server programs created by DARPA (Defense Advanced
Research Projects Agency) for the ongoing STAC (Space/-
Time Analysis for Cybersecurity) [14] research program.
We evaluated the effectiveness of our approach on several
programs taken from their publicly available repository [32].
These programs were crafted to test and evaluate techniques
for detecting side-channel vulnerabilities in networked Java
applications.

5.1. Experimental Setup

Reference platform. For all experiments, the system under
test (SUT) was run on the official DARPA STAC Reference
Platform [32], which specifies an Intel NUC 5i5RYH com-
puter with an Intel Core i5-5250 CPU running at 1.60 GHz,
16 GB of DDR3 RAM, and its built-in Intel 1000 Mbps Eth-
ernet interface. The reference operating system is CentOS 7,
release 7.1.1503, with a Linux 3.10.0-229 64-bit kernel. We
used the OpenJDK 64-bit Java VM, build 1.8.0 121.

Trace class extraction. We infer trace classes by symbol-
ically executing the SUT source code. We used Symbolic
Path Finder (SPF), an extension to NASA’s Java Path Finder
v8.51 using the Z3 SMT-solver [16], version 4.4.1.

Automated profiling. This involves two components: a
client-side PROFILER and a server-side APPSERVER. The
server component is a wrapper for DARPA STAC canonical
challenge programs. Although their interfaces were slightly
modified to achieve a homogeneous input/output format, the
core implementation of each challenge program was left
unmodified. The client-side PROFILER is a Python script
that invokes the server while taking measurements. Given a
list of trace-class witnesses, and the number of samples per
witness, the PROFILER configures the server and repeatedly
interacts with it over the network, carefully timing each
interaction. For our experiments, each trace class witness
is used to sample the system 1000 times.

Model counting. Symbolic weighted model-counting func-
tions are computed by sending the path constraints and
p(H=h) to the Barvinok model counter [39], version v0.39.
Numeric and symbolic computing. Many computation-
ally intensive numeric and symbolic operations are handled
by Mathematica, including smooth kernel probability den-
sity estimation from timing samples, symbolic manipula-
tion of model-counting and information-theoretic functions,
numeric integration, objective function maximization, and
Bayesian updating. All experiments were run using Wolfram
Mathematica v11 [40] on a Linux 64-bit system.
Entropy maximization. We used Mathematica’s NMAXI-
MIZE function [41] in Differential Evolution mode, which
uses a fast and robust genetic algorithm [15], [42].

5.2. Experimental Evaluation

Our experiments show that our approach is able to
dynamically synthesize attack input sequences for vulner-
able programs and to report non-vulnerability for programs
for which an attack is not feasible. In Table 1, we label
the DARPA benchmark programs with a number that is
consistent with the numbering from their repository along
with ‘(v)’ or ‘(nv)’ to indicate vulnerable or non-vulnerable
programs according to DARPA’s classification. |Φ| denotes
the number of path conditions, |T | denotes the number of
trace classes after performing Hellinger-based merging, and
Dim(h) indicates the size of the symbolic integer vector
used to represent h. For STAC programs 1, 3, and 11,
we varied the secret search domain (28, 216, 224, 231), while
keeping the code the same, and so only a single offline phase
was needed. For instance, row 1 of Table 1 corresponds to
the offline phase of 4 different online attacks.

The STAC benchmark also contains programs that are
not related to side-channel problems, so we did not analyze
them. We analyzed only problems marked by DARPA as
side-channel related and that fit our model. There were two
side-channel problems that require a different cost observa-
tion model than ours, so we did not analyze those programs.
Initial secret distributions in our experiments are uniform.
Non-vulnerable programs. In Table 1 we present results
of running our attack synthesizer on two programs. We see
that STAC–1(nv) is not vulnerable to an adaptive timing
side-channel attack because there is only one trace class
and so there are no attack steps taken. On the other hand,
our tool tells us that STAC–3(nv) is not vulnerable, despite
having 3 observationally distinguishable trace classes, be-
cause after 1 attack step there are no inputs which can
leak any information. Thus, we agree with the DARPA non-
vulnerable classification. For both programs we observe that
the majority of the analysis time is spent in offline profiling.
Optimizing observation vs trace-class entropy. We ap-
plied both CHOOSELOWINPUT1, which optimizes based on
observation entropy, and CHOOSELOWINPUT2, which opti-
mizes based on trace class entropy, for two STAC programs.
STAC–1(v) is similar to our running example with a branch
condition h≤ l in which extra computation is done.



TABLE 1: Experimental data for publicly available STAC benchmarks [32].

Offline Phase Time (seconds)
Benchmark Dim(H) |H| |Φ| |T | Vulnerable? Sym. Ex. Noise Est. Merging Total

1 STAC-1(nv) 1 2{8,16,24,31} 2 1 no 0.57616 22.2824 0.81452 23.67309
2 STAC-3(nv) 1 2{8,16,24,31} 6 3 no 0.64201 36.1853 4.89276 41.72007

3 STAC-1(v) 1 2{8,16,24,31} 2 2 yes 0.56815 31.5264 0.4860 32.5805
4 STAC-3(v) 1 2{8,16,24,31} 6 4 yes 0.57977 34.0982 5.1727 39.8507

5 STAC-11A(v) 1 2{8,16,24,31} 3 2 yes 0.58217 25.6543 1.3256 27.5621
6 STAC-11B(v) 1 2{8,16,24,31} 3 2 yes 0.57314 26.6361 1.2993 28.5086

7 STAC-4(v) 1 26 10 2 yes 0.73373 14.7962 7.10060 22.63053
8 STAC-4(v) 2 702 27 3 yes 1.19927 44.5297 2.28398 48.01295
9 STAC-4(v) 3 18278 55 5 yes 2.67069 100.554 64.9471 168.1724

10 STAC-12(v) 1 26 17 4 yes 0.94751 26.3065 18.5799 45.83391
11 STAC-12(v) 2 702 39 5 yes 0.99083 57.4673 48.6784 107.13653
12 STAC-12(v) 3 18278 77 6 yes 1.62901 125.499 132.635 259.76301
13 STAC-12(v) 4 475254 149 7 yes 3.06844 258.488 293.578 555.13444

TABLE 2: Synthesized input strings for STAC12(v) where the secret is ‘ciqa’. Partial matches indicated in bold.

Phase 0 Phase 1 Phase 2 Phase 3 Phase 4
prefix = ε prefix = c prefix = ci prefix = ciq prefix = ciqa
ε fzgk maau cnte cved ciub ciij cimq citz ciqz ciqi ciqz ciqz ciqu ciqz ciqa
daaz zgap vzsc ctdo ciil ciaz ciok cida cijw cihs ciqc ciqz ciqe ciqr ciqr ciqa
uaak bnza qyas cvfo ceyu cigz cisu cisp cine ciqk ciqk ciqd ciqd ciqr ciqz ciqg
ecjq zmna asvr csja civf cifl cild cicz cile cieb ciqz ciqq ciqo ciqi ciqa ciqa
tzar zmna cmxq cwcs cikt cipa cibn cirx ciqa ciqs ciqz ciqx ciqv

STAC–3(v) is a program that contains 6 different
branches and an internal parameter n which, depending on h
and l, causes 2 branches to run in O(1) time, 1 branch to run
in O(n) time, 1 branch to run in O(n2) time, and 2 branches
to run in O(n3) time. The low input to the program consists
of 2 values. The offline phase merged the path constraints
for branches with the same time complexities into the same
trace classes. The online attack phase automatically chose
inputs which caused the program to always either execute
the O(n) or O(n2) branch in order to leverage the timing
difference and fully leak the secret.

The offline phase data are shown in Table 1 and online
attack phase data in Figures 10 and 11. The online attack
phase was run over different secret domain sizes. For each
domain size we ran until p(H = h) converged with certainty
to a single value, which we manually verified was the correct
secret. We observe that in all cases, optimizing for trace
class entropy generates an attack that takes either the same
number of steps or is slightly longer. However, optimizing
for trace class entropy synthesizes attack steps much more
quickly. For both STAC–1(v) and STAC–3(v), we were
able to synthesize attacks for domains of size 231 in under
2 minutes, including offline and online phases. Because
optimizing trace class entropy is significantly faster and
generates strong attacks, the remaining experiments were
run only with CHOOSELOWINPUT2.

Attack synthesis with programmatic non-determinism.
Program STAC–11(v) has 2 versions, A and B. Both ver-
sions contain explicit recursive randomization that affects
the running time of the application. In both cases, SPF is
able to extract path conditions which depend only on h and

l and do not depend on any randomly generated variables.
Thus, as discussed in 4.7, the effect of the randomization
on the running time is independent of the path conditions
on h and l and can be determined using profiling during the
offline phase which is presented in Table 1. In Figure 12 we
see the running time and number of attack steps required to
completely leak the secret for both versions of STAC–11(v).

Programs with segment oracle side channels. STAC–
4(v) and STAC–12(v) are programs with segment oracle
side channel [5]. Segment oracle side channels allow an
attacker to use timing measurements to incrementally leak
information about contiguous segments of arrays or strings.
The relevant source code for STAC–12(v) is shown in Fig-
ure 14. The function under test is verifyCredentials,
which, using the function checkChar, is a (somewhat
obfuscated) way of comparing a candidate password to an
actual secret password as part of a log-in system where
valid strings consist of lowercase letters. DARPA challenge
problems sometimes contain delay functions which mimic
additional computational work. At a high level, this function
compares individual characters of the secret and candidate
password one at a time in a loop from left to right, and the
running time of the function is proportional to the number
of characters which match.

For example, if the password is ‘ciqa’, the running time
will be slightly longer if an attacker inputs ‘ciqg’ (first 3
characters match) vs. ‘ciao’ (first 2 characters match). Thus,
an attacker can use a timing side channel to reveal prefixes
of the secret, and reduce the O(kn) brute-force search space
to O(k · n). Segment oracle attacks were responsible for
several real-world vulnerabilities [22], [1], [2].
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Figure 10: STAC–1(v): Comparing attacks generated by
optimization based on observation vs. trace class entropy.
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Figure 11: STAC–3(v): Comparing attacks generated by
optimization based on observation vs. trace class entropy.
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Figure 12: STAC–11(v). Two versions, A and B.
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Figure 13: STAC–4(v) and STAC–12(v)

1 private static String password;
2 private static int subsequentCorrect;
3 private static int exceedPasswordLen;
4 private static void delay() {
5 for (int x=0 ; x < 75000 ; x++) {}
6 }
7 private static void

checkChar(String candidate, int charNumber){
8 if(charNumber > password.length())
9 exceedPasswordLen++;
10 else if(password.charAt(charNumber - 1) ==

candidate.charAt(charNumber - 1)){
11 if(subsequentCorrect+1 == charNumber){
12 subsequentCorrect++;
13 delay();
14 }
15 }
16 }
17 private static boolean

verifyCredentials(String candidate){
18 subsequentCorrect = exceedPasswordLen = 0;
19 for (int x=0; x < candidate.length(); x++){
20 checkChar(candidate,x+1);
21 }
22 return subsequentCorrect == password.length()

&& exceedPasswordLen == 0;
23 }

Figure 14: Relevant source code of STAC-12(v).

Our method automatically synthesizes segment oracle
attacks. We ran our attack synthesis method on STAC–4(v)
and STAC–12(v) where the secret domain is strings of low-
ercase letters. We set an online phase timeout of 20 minutes
and ran attack synthesis for increasing string lengths. We
generated attack steps for STAC–4(v) up to string length
3 before timing out. For STAC–12(v) we generated attack
steps up to string length 4. The offline phase data for STAC–
4(v) and STAC–12(v) are shown in Table 1 and online phase
data is shown in Figure 13.

We give some details of one synthesized attack. For
STAC12(v), length 4 (Table 1, benchmark 13) the secret
was a randomly generated string, ‘ciqa’. In Table 2 we
manually separated the synthesized input strings into phases
where the ith phase roughly corresponds to inputs that match
a secret prefix of length i. For instance, in phase 0, the
attacker does not know any prefix of the secret password,
first tests the system with ε, then begins testing inputs with
different characters. At the end of phase 0, the attacker has
discovered using side-channel measurements that the first
character is ‘c’. Thus, in phase 2, the attacker keeps the first
character ‘c’ constant and tests other inputs until the side-
channel observation indicates that the first 2 characters, ‘ci’,
match. This continues similarly for phases 3 and 4, until all
characters are discovered. This required 77 steps overall to
discover a secret from a search space of size 475254.

Observe that some strings were tested multiple times.
For instance, the string ‘ciqz’ was synthesized several times
over Phases 2 and 3, and the final secret ‘ciqa’ was tested
several times during the last phase. Thus, we observe that
our online attack synthesis technique appears to automati-
cally discover the fact that repeated sampling can be used to
eliminate spurious observations due to noise and reduce un-
certainty. Indeed, real-world manually written attacks often



employ repeated sampling in an attempt to eliminate noise.
Finally, note that, once our automated attack synthesis

approach generates a segment oracle attack for a program
for a small secret length, it is easy to generalize such an
attack to larger secrets by inspecting the generated attack.

5.3. Case Study: Law Enforcement Database

We applied our method to a larger application provided
by DARPA. LawDB (Law Enforcement Database) is a net-
work service that stores and manipulates a database used
to store law enforcement personnel data associated with
user IDs. Users can issue the command SEARCH minID
maxID to query the database for IDs within a range. IDs
are internally stored as public or restricted. Only public IDs
within the search range will be shown to the user; restricted
IDs are secret. Using our approach, we were able to syn-
thesize a timing side-channel attack for this application that
enables a public user to determine a restricted ID.

Symbolically executing the entire LawDB appli-
cation (51 classes, 202 methods) was not feasible.
By examining the source code, it was straightfor-
ward to locate the method for the SEARCH oper-
ation, which corresponds to case 8 of the method
channelRead0 of class UDPServerHandler (Fig-
ure 15). We noticed a possible side channel because the
UDP request handler writes the message “SEARCH ON
RESTRICTED KEY OCCURRED” to a log file and throws a
RestrictedAccessException depending on whether
a user has entered a search query range which encompasses
a restricted secret ID.

We extracted the UDPServerHandler class (Fig-
ure 15) and its closure of dependencies from the source
code. Symbolic execution was not able to handle the pro-
vided log writing, so we supplied our own simplified code
which writes the same message to a log file in order to
mimic the original behavior of the function. We wrote a
small driver (20 LOC) to interface our symbolic execution
system and profiling server with the UDPServerHandler
class. The driver initializes the database by inserting n unre-
stricted IDs and inserts one restricted ID, h. The driver then
executes queries with range: SEARCH lminID lmaxID. We
symbolically execute the driver with h, lminID, and lmaxID

all symbolic and then profile the driver with the generated
witnesses to conduct the offline phase. Then our online
attack phase automatically synthesizes adaptive SEARCH
range queries that eventually reveal the restricted ID.
Initial Exploratory Experiment. We initialized the database
with two concrete unrestricted IDs (with values 64 and 85)
and constrained allowed IDs to the range [1, 100]. The result
of running attack synthesis on this configuration can be seen
in Table 3 and intermediate snapshots of online attack inputs
and belief updates are shown in Figure 16. We see that there
are 42 path constraints generated by symbolic execution
which reduce to 3 trace classes after profiling and merging.
The offline phase takes less than 1 minute and the online
attack phase of 25 steps takes less than 3 minutes.The secret
ID was set to be a randomly generated number, 92.

Figure 16 illustrates interesting self-correcting behavior
of the automated search. Due to observation noise, in step
5 a timing observation was made that caused the belief
distribution to become highly concentrated in the range
[64, 76]. The subsequently synthesized inputs are queries
which search this interval and eventually eliminate that con-
centration of probability mass. Steps 12 through 25 generate
queries that concentrate the belief on the secret ID, 92.
Larger Experiments. After seeing that we can automatically
synthesize an adaptive range-query attack against LawDB
for small domains, we increased the valid range of IDs that
are allowed in the database to [1, 10000] and inserted 3,
4, and 8 randomly generated public IDs. In Table 3 we
see that we are able to synthesize attacks in a reasonable
amount of time. We observe that as the number of path
constraints increases, the cost of the offline phase grows,
with the majority of offline time spent in trace class merging.
However, trace class merging is crucial since it reduces
the difficulty and the cost of model counting and entropy
computations. For instance, for LawDB-4 model counting
and entropy computation may be performed over 9 trace
classes rather than 855 path constraints, resulting in efficient
online attack synthesis.

6. Related Work

There is a considerable amount of fairly recent work
related to quantifying information leakage for a single run of
a program [4], [17], [30], [20], [27], [29], [28], but none of
these considers multiple runs of the program. Work in [31]
addresses computing side-channel leakage for multiple runs
of a program using symbolic execution but does not address
adaptively chosen input sequences.

The most closely related work in this area uses a fully
static approach for synthesizing adaptive attack strategy
trees over all possible secrets [26]. This earlier approach
makes use of MaxSMT and Barvinok for choosing inputs,
but (i) since it tries to generate the complete attack tree
statically for all possible secrets, it is not scalable to gen-
eration of attacks on realistic systems, and (ii) it does not
take system noise into account. Note that precomputing the
attack tree for all possible secrets is always exponential
in the length of the attack. Additionally, in this earlier
approach each Java bytecode is modeled to have the same
contribution to side-channel observations, which is not a
realistic assumption. Moreover, an observation abstraction
is used to merge path constraints with similar observations,
which uses a naive manual discretization. Other closely
related work also assumes noiselessness, does not handle
weighted belief updates, precomputes a full attack tree, and
uses explicit (non-symbolic) domain representation [21].

Hence, our key contributions with respect to the most
closely related works [21], [26] are: 1) handling noise in
observations, 2) weighted belief update via weighted model
counting, accounting for the probabilistic nature of observa-
tions, 3) online attack generation without generating a com-
plete attack tree, 4) automated identification of trace classes



1 public class UDPServerHandler {
2 // Constructors and local variables ...
3
4 public void channelRead0(int t, int key,
5 int min, int max) {
6 switch (t) {
7 ...
8 case 8: {
9 DSystemHandle sys = new

10 DSystemHandle("127.0.0.1", 6666);
11 List<String> filestoCheck=new ArrayList<String>();
12 final DFileHandle fh1 =
13 new DFileHandle("config.security", sys);
14 filestoCheck.add("config.security");
15 final List<Integer> range =
16 this.btree.toList(min, max);
17 if (range.size() <= 0 || !this.restricted.
18 isRestricted((int) range.get(0))) {
19 filestoCheck = new ArrayList<String>();
20 }
21 int ind = 0;
22 while (ind < range.size()) {
23 try {
24 final Integer nextkey=(Integer)range.get(ind);
25 if (this.restricted.isRestricted(nextkey)) {
26 BufferedWriter bw = null;
27 FileWriter fw = null;
28 try {
29 String data =
30 "SEARCH ON RESTRICTED KEY OCCURRED:" +
31 (Integer.toString((int) nextkey) + "\n");
32 File file = new File(LOGFILE);
33 if (!file.exists()) {
34 file.createNewFile();
35 }
36 fw = new FileWriter(file.getAbsoluteFile(),
37 true);
38 bw = new BufferedWriter(fw);
39 bw.write(data);
40 }
41 catch (IOException e) {
42 e.printStackTrace();
43 }

44 finally {
45 try {
46 if (bw != null)
47 bw.close();
48 if (fw != null)
49 fw.close();
50 } catch (IOException ex) {
51 ex.printStackTrace();
52 }
53 }
54 throw new RestrictedAccessException();
55 }
56 if (sys == null) {
57 sys = new DSystemHandle("127.0.0.1", 6666);
58 }
59 at.add("lastaccessinfo.log",
60 Integer.toString(nextkey), nextkey);
61 ++ind;
62 } catch (RestrictedAccessException rae) {
63 for (Integer getkey = (Integer) range.get(ind);
64 this.restricted.isRestricted(getkey)
65 && ind < range.size();
66 getkey = (Integer) range.get(ind)) {
67 if (sys == null) {
68 sys = new DSystemHandle("127.0.0.1", 6666);
69 }
70 if (++ind < range.size()) {
71 }
72 }
73 } finally {
74 if (atx != null) {
75 System.out.println("Cleaning resources");
76 atx.clean();
77 atx = null;
78 }
79 }
80 }
81 at.clean();
82 sys = new DSystemHandle("127.0.0.1", 6666);
83 break;
84 }
85
86 // Remaining switch cases...

Figure 15: Extracted search function for LawDB.

TABLE 3: Experimental data for 4 different instantiations of the LawDB case study.

Offline Phase Time(s) Online Phase
Benchmark # IDs in DB |H| |Φ| |T | Sym. Ex. Noise Est. Merging Total Time(s) # Steps

14 LawDB-1 3 100 42 3 1.17 5.45 51.10 57.736 158.78 25
15 LawDB-2 4 10000 90 4 1.81 11.83 127.59 141.24 163.28 45
16 LawDB-3 5 10000 165 5 2.91 23.39 365.13 391.45 188.85 48
17 LawDB-4 9 10000 855 9 20.57 152.09 2436.84 2609.5 271.16 77

from noisy observations using profiling and automatic path
constraint merging.

A model of belief update for information flow to an ad-
versary who makes observations of a probabilistic program
was presented in [11]. Their work specifically addresses sin-
gle runs of a program, but the authors indicate that Bayesian
belief updates may be used over multiple runs of the pro-
gram. In [8], the authors illustrate methods for detecting
the possibility of side channels in client-server application
traffic. Work in [?] also addresses DARPA STAC programs.
Their effort is concentrated on showing safety properties
of non-vulnerable programs and is able to indicate possible
side-channel vulnerabilities by detecting observationally im-
balanced program branches, but does not generate attacks.
Two works [23], [3] describe how to quantify information

leakage in interactive systems in which the secret changes
over repeated runs of the application. In [24] a method is
given to quantify the trade-off between program reliability
and security when adding noise to a program in order to
reduce side-channel vulnerability. In [5] a method is given
to quantify the vulnerability of a program to a given segment
attack, similar to that of STAC–4(v) and STAC–12(v) for
which our work synthesizes an attack. In [10] the problem of
performing Bayesian inference via weighted model count-
ing is described with applications to statistical prediction.
In [19] a method is given for performing precise quantitative
information flow analysis using symbolic weighted model
counting. Improving scalability of our approach is impor-
tant, although we note that the state-of-the-art techniques for
synthesizing or analyzing adaptive attacks [6,21,29,31,32]
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Figure 16: Example snapshots of A’s belief about the restricted ID for the LawDB-1 case study. In step 5, a noisy observation
causes an erroneous belief update, but the synthesized queries eliminate the incorrect belief, to eventually converge to the
true value of the restricted ID, 92.

do not handle noise, do not synthesize attacks against a
live server, and yet, still, are not more scalable than our
approach.

7. Conclusion

We presented a technique to automatically generate on-
line side-channel attacks and we experimentally showed that
we are able to adaptively synthesize a sequence of inputs to
discover the secret via observations in a noisy environment.
We leverage static code analysis using symbolic execution
and offline dynamic profiling. We use symbolic weighted
model counting for performing Bayesian inferences about
the secret value stored in the program and we cast the prob-
lem as an entropy objective function maximization problem
which we solve using numeric optimization.

There are several avenues for future work in adaptive
attack synthesis. Our method uses constraints to characterize
trace classes. We employ symbolic execution to generate
such constraints, but other methods can also be used (ab-
stract interpretation, invariant generation, software model
checking) and we intend to investigate and compare them.
We observed that programs may have many path constraints,
but few trace classes, and so any technique which can more
directly produce trace classes without merging finer parti-
tions (like path constraints) will yield improvement. Thus,
our overall approach is not constrained by the limitations
of symbolic execution, only by the ability to discover trace
classes. Additionally, incorporating dynamic techniques like
fuzzing [38] for trace class discovery, in order to move
toward a more black-box or gray-box approach, can supplant
the need to use symbolic execution and constraint solving,
thereby reducing the overhead of the static offline phase.
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