
R–LINE: An Online Algorithm for the 2-Server
Problem on the Line with Improved Competitive

Ratio

Lucas Bang

University of Nevada, Las Vegas

bang@unlv.nevada.edu

8 April 2013

Thesis Defense

Lucas Bang R–LINE UNLV

Abstract

Thesis Result

I A randomized online algorithm for the 2-server problem on the
line.

I Competitiveness ≤ 1.901 against the oblivious adversary.

I Improves the previously best known competitiveness of
155
78 ≈ 1.987.

Lucas Bang R–LINE UNLV

Abstract

Thesis Result

I A randomized online algorithm for the 2-server problem on the
line.

I Competitiveness ≤ 1.901 against the oblivious adversary.

I Improves the previously best known competitiveness of
155
78 ≈ 1.987.

Lucas Bang R–LINE UNLV

Abstract

Thesis Result

I A randomized online algorithm for the 2-server problem on the
line.

I Competitiveness ≤ 1.901 against the oblivious adversary.

I Improves the previously best known competitiveness of
155
78 ≈ 1.987.

Lucas Bang R–LINE UNLV

Abstract

Thesis Result

I A randomized online algorithm for the 2-server problem on the
line.

I Competitiveness ≤ 1.901 against the oblivious adversary.

I Improves the previously best known competitiveness of
155
78 ≈ 1.987.

Lucas Bang R–LINE UNLV

Outline

1. Offline vs. online algorithms.

2. Competitive analysis and game theory.

3. The k-server problem.

4. Our 2-server algorithm, R–LINE (Randomized Line).

5. Future work.

Lucas Bang R–LINE UNLV

Offline Algorithms

Typically, one initially studies algorithms in the offline setting,
where all data is available to the algorithm at start-up.

Example: Traveling Salesman Problem.

Lucas Bang R–LINE UNLV

Offline Algorithms

Typically, one initially studies algorithms in the offline setting,
where all data is available to the algorithm at start-up.

Example: Traveling Salesman Problem.

Lucas Bang R–LINE UNLV

Offline Algorithms

Typically, one initially studies algorithms in the offline setting,
where all data is available to the algorithm at start-up.

Example: Traveling Salesman Problem.

Lucas Bang R–LINE UNLV

Offline Algorithms

Typically, one initially studies algorithms in the offline setting,
where all data is available to the algorithm at start-up.

Example: Traveling Salesman Problem.

Lucas Bang R–LINE UNLV

Offline Algorithms

Typically, one initially studies algorithms in the offline setting,
where all data is available to the algorithm at start-up.

Example: Traveling Salesman Problem.

Lucas Bang R–LINE UNLV

Offline Algorithms

Typically, one initially studies algorithms in the offline setting,
where all data is available to the algorithm at start-up.

Example: Traveling Salesman Problem.

Lucas Bang R–LINE UNLV

Offline Algorithms

Typically, one initially studies algorithms in the offline setting,
where all data is available to the algorithm at start-up.

Example: Traveling Salesman Problem.

Lucas Bang R–LINE UNLV

Online Algorithms

An online algorithm must make decisions with only partial
information.

Example: Canadian Traveler’s Problem

Lucas Bang R–LINE UNLV

Online Algorithms

An online algorithm must make decisions with only partial
information.

Example: Canadian Traveler’s Problem

Lucas Bang R–LINE UNLV

Online Algorithms

An online algorithm must make decisions with only partial
information.

Example: Canadian Traveler’s Problem

A

B

Lucas Bang R–LINE UNLV

Online Algorithms

An online algorithm must make decisions with only partial
information.

Example: Canadian Traveler’s Problem

?
?

A

B

Lucas Bang R–LINE UNLV

Online Algorithms

An online algorithm must make decisions with only partial
information.

Example: Canadian Traveler’s Problem

A

B

Lucas Bang R–LINE UNLV

Online Algorithms

An online algorithm must make decisions with only partial
information.

Example: Canadian Traveler’s Problem

A

B

Lucas Bang R–LINE UNLV

Online Algorithms

An online algorithm must make decisions with only partial
information.

Example: Canadian Traveler’s Problem

A

B

Lucas Bang R–LINE UNLV

Online Algorithms

An online algorithm must make decisions with only partial
information.

Example: Canadian Traveler’s Problem

A

B

Lucas Bang R–LINE UNLV

Online Algorithms

An online algorithm must make decisions with only partial
information.

Example: Canadian Traveler’s Problem

A

B
X

Lucas Bang R–LINE UNLV

Online Algorithms

An online algorithm must make decisions with only partial
information.

Example: Canadian Traveler’s Problem

A

B
X

Lucas Bang R–LINE UNLV

Online Algorithms

An online algorithm must make decisions with only partial
information.

Example: Canadian Traveler’s Problem

A

B
X

Lucas Bang R–LINE UNLV

Online Algorithms

An online algorithm must make decisions with only partial
information.

Example: Canadian Traveler’s Problem

A

B
X

Lucas Bang R–LINE UNLV

Online Algorithms

An online algorithm must make decisions with only partial
information.

Example: Canadian Traveler’s Problem

A

B
X

Lucas Bang R–LINE UNLV

Online Algorithms

An online algorithm must make decisions with only partial
information.

Example: Canadian Traveler’s Problem

A

B
X

Lucas Bang R–LINE UNLV

Online Algorithms

An online algorithm must make decisions with only partial
information.

Example: Canadian Traveler’s Problem

A

B
X

Lucas Bang R–LINE UNLV

Online Algorithms

An online algorithm must make decisions with only partial
information.

Example: Canadian Traveler’s Problem

A

B
X

Lucas Bang R–LINE UNLV

Online Algorithms

An online algorithm must make decisions with only partial
information.

Example: Canadian Traveler’s Problem

A

B
X

Lucas Bang R–LINE UNLV

Online Algorithms

An online algorithm must make decisions with only partial
information.

Example: Canadian Traveler’s Problem

A

B
X

Lucas Bang R–LINE UNLV

Online Algorithms

An online algorithm must make decisions with only partial
information.

Example: Canadian Traveler’s Problem

A

B
X

Lucas Bang R–LINE UNLV

Online Algorithms

Many important real-world problems are online.

Examples

1. Investment decisions, as in algorithmic stock trading.

2. Job scheduling, as in multi-core computing.

3. Memory cache page management.

4. and more....

Lucas Bang R–LINE UNLV

Online Algorithms

Online algorithms accept input one piece at a time and must
produce an output before more information is given.

1. Input I = I1, I2, . . . , In

2. Receive an input Ii , and produces an output Oi .

3. Each input has an associated cost(Ii).

4. We wish to minimize the total cost(I) =
∑

cost(Ii).

Lucas Bang R–LINE UNLV

Online Algorithms

Online algorithms accept input one piece at a time and must
produce an output before more information is given.

1. Input I = I1, I2, . . . , In

2. Receive an input Ii , and produces an output Oi .

3. Each input has an associated cost(Ii).

4. We wish to minimize the total cost(I) =
∑

cost(Ii).

Lucas Bang R–LINE UNLV

Online Algorithms

Online algorithms accept input one piece at a time and must
produce an output before more information is given.

1. Input I = I1, I2, . . . , In

2. Receive an input Ii , and produces an output Oi .

3. Each input has an associated cost(Ii).

4. We wish to minimize the total cost(I) =
∑

cost(Ii).

Lucas Bang R–LINE UNLV

Online Algorithms

Online algorithms accept input one piece at a time and must
produce an output before more information is given.

1. Input I = I1, I2, . . . , In

2. Receive an input Ii , and produces an output Oi .

3. Each input has an associated cost(Ii).

4. We wish to minimize the total cost(I) =
∑

cost(Ii).

Lucas Bang R–LINE UNLV

Online Algorithms

Online algorithms accept input one piece at a time and must
produce an output before more information is given.

1. Input I = I1, I2, . . . , In

2. Receive an input Ii , and produces an output Oi .

3. Each input has an associated cost(Ii).

4. We wish to minimize the total cost(I) =
∑

cost(Ii).

Lucas Bang R–LINE UNLV

Competitive Analysis

We measure the performance of an online algorithm A with the

Competitive Ratio

I For any request sequence I the competitive ratio C satisfies

costA(I) ≤ C · costOPT (I) + K

I If A is randomized then

E [costA(I)] ≤ C · costOPT (I) + K

Lucas Bang R–LINE UNLV

Competitive Analysis

We measure the performance of an online algorithm A with the

Competitive Ratio

I For any request sequence I the competitive ratio C satisfies

costA(I) ≤ C · costOPT (I) + K

I If A is randomized then

E [costA(I)] ≤ C · costOPT (I) + K

Lucas Bang R–LINE UNLV

Competitive Analysis

We measure the performance of an online algorithm A with the

Competitive Ratio

I For any request sequence I the competitive ratio C satisfies

costA(I) ≤ C · costOPT (I) + K

I If A is randomized then

E [costA(I)] ≤ C · costOPT (I) + K

Lucas Bang R–LINE UNLV

Competitive Analysis

We measure the performance of an online algorithm A with the

Competitive Ratio

I For any request sequence I the competitive ratio C satisfies

costA(I) ≤ C · costOPT (I) + K

I If A is randomized then

E [costA(I)] ≤ C · costOPT (I) + K

Lucas Bang R–LINE UNLV

Background

The k-server Problem

I Introduced by Manasse, McGeoch, and Sleator, 1990.

I Given k mobile servers in a metric space M.

I Serve requests online in the metric space.

I Move a single server to the request point.

I Goal: minimize total distance moved.

Lucas Bang R–LINE UNLV

Background

The k-server Problem

I Introduced by Manasse, McGeoch, and Sleator, 1990.

I Given k mobile servers in a metric space M.

I Serve requests online in the metric space.

I Move a single server to the request point.

I Goal: minimize total distance moved.

Lucas Bang R–LINE UNLV

Background

The k-server Problem

I Introduced by Manasse, McGeoch, and Sleator, 1990.

I Given k mobile servers in a metric space M.

I Serve requests online in the metric space.

I Move a single server to the request point.

I Goal: minimize total distance moved.

Lucas Bang R–LINE UNLV

Background

The k-server Problem

I Introduced by Manasse, McGeoch, and Sleator, 1990.

I Given k mobile servers in a metric space M.

I Serve requests online in the metric space.

I Move a single server to the request point.

I Goal: minimize total distance moved.

Lucas Bang R–LINE UNLV

Background

The k-server Problem

I Introduced by Manasse, McGeoch, and Sleator, 1990.

I Given k mobile servers in a metric space M.

I Serve requests online in the metric space.

I Move a single server to the request point.

I Goal: minimize total distance moved.

Lucas Bang R–LINE UNLV

Background

4-server Problem

Lucas Bang R–LINE UNLV

Background

4-server Problem

s

s
s

s

cost = . . .

Lucas Bang R–LINE UNLV

Background

4-server Problem

s

s
s

s

r1

cost = . . .

Lucas Bang R–LINE UNLV

Background

4-server Problem

s

s
s

s

r1

8

cost = 8 + . . .

Lucas Bang R–LINE UNLV

Background

4-server Problem

s

s

s

s
8

cost = 8 + . . .

Lucas Bang R–LINE UNLV

Background

4-server Problem

s

s

s

s
r 2

cost = 8 + . . .

Lucas Bang R–LINE UNLV

Background

4-server Problem

s

s

s

s
r 2

2

cost = 8 + 2 + . . .

Lucas Bang R–LINE UNLV

Background

4-server Problem

s

s

s

s

2

cost = 8 + 2 + . . .

Lucas Bang R–LINE UNLV

Background

4-server Problem

s

s

s

sr 3

cost = 8 + 2 + . . .

Lucas Bang R–LINE UNLV

Background

4-server Problem

s

s

s

sr 3 1

cost = 8 + 2 + 1 + . . .

Lucas Bang R–LINE UNLV

Background

4-server Problem

s

s

s

s1

cost = 8 + 2 + 1 + . . .

Lucas Bang R–LINE UNLV

Background

4-server Problem

s

s

s

s
r 4

cost = 8 + 2 + 1 + . . .

Lucas Bang R–LINE UNLV

Background

4-server Problem

s

s

s

s
r 4

4

cost = 8 + 2 + 1 + 4 + . . .

Lucas Bang R–LINE UNLV

Background

4-server Problem

s

s

s

s
4

cost = 8 + 2 + 1 + 4 + . . .

Lucas Bang R–LINE UNLV

Background

4-server Problem

s

s

s

s

cost = 8 + 2 + 1 + 4

Lucas Bang R–LINE UNLV

Background

4-server Problem

s

s

s

s

1

2

8
4

cost = 8 + 2 + 1 + 4 = 15

Lucas Bang R–LINE UNLV

Background

4-server Problem

Lucas Bang R–LINE UNLV

Background

4-server Problem

s

s
s

s

Lucas Bang R–LINE UNLV

Background

4-server Problem

s

s
s

s

r1

r 2
r 3

r 4

Lucas Bang R–LINE UNLV

Background

4-server Problem

s

s
s

s

r1

r 2
r 3

r 4

Lucas Bang R–LINE UNLV

Background

4-server Problem

s

s
s

s

r1

r 2
r 3

r 4

2

1

3
2

optimal cost = 3 + 2 + 1 + 2 = 8

Lucas Bang R–LINE UNLV

Background

4-server Problem

s

s
s

s

r 2
r 3

r 4

2

1

3
2

optimal cost = 3 + 2 + 1 + 2 = 8

Lucas Bang R–LINE UNLV

Background

4-server Problem

s

s
s

s

r 3
r 4

2

1

3
2

optimal cost = 3 + 2 + 1 + 2 = 8

Lucas Bang R–LINE UNLV

Background

4-server Problem

s

s
s

s

r 4

2

1

3
2

optimal cost = 3 + 2 + 1 + 2 = 8

Lucas Bang R–LINE UNLV

Background

4-server Problem

s

s
s

s

2

1

3
2

optimal cost = 3 + 2 + 1 + 2 = 8

Lucas Bang R–LINE UNLV

Cost ratio for this particular input sequence:

I cost = 15

I optimal cost = 8

I cost ≤ 2 · (optimal cost) + 1

I 15 ≤ 2 · 8 + 1

Compare with definition of competitive ratio:

costA(I) ≤ C · costOPT (I) + K

cost ≤ 2 · (optimal cost) + 1

If this holds for all possible input sequences, we could claim that
A is 2-competitive.

Lucas Bang R–LINE UNLV

Cost ratio for this particular input sequence:

I cost = 15

I optimal cost = 8

I cost ≤ 2 · (optimal cost) + 1

I 15 ≤ 2 · 8 + 1

Compare with definition of competitive ratio:

costA(I) ≤ C · costOPT (I) + K

cost ≤ 2 · (optimal cost) + 1

If this holds for all possible input sequences, we could claim that
A is 2-competitive.

Lucas Bang R–LINE UNLV

Cost ratio for this particular input sequence:

I cost = 15

I optimal cost = 8

I cost ≤ 2 · (optimal cost) + 1

I 15 ≤ 2 · 8 + 1

Compare with definition of competitive ratio:

costA(I) ≤ C · costOPT (I) + K

cost ≤ 2 · (optimal cost) + 1

If this holds for all possible input sequences, we could claim that
A is 2-competitive.

Lucas Bang R–LINE UNLV

Cost ratio for this particular input sequence:

I cost = 15

I optimal cost = 8

I cost ≤ 2 · (optimal cost) + 1

I 15 ≤ 2 · 8 + 1

Compare with definition of competitive ratio:

costA(I) ≤ C · costOPT (I) + K

cost ≤ 2 · (optimal cost) + 1

If this holds for all possible input sequences, we could claim that
A is 2-competitive.

Lucas Bang R–LINE UNLV

Cost ratio for this particular input sequence:

I cost = 15

I optimal cost = 8

I cost ≤ 2 · (optimal cost) + 1

I 15 ≤ 2 · 8 + 1

Compare with definition of competitive ratio:

costA(I) ≤ C · costOPT (I) + K

cost ≤ 2 · (optimal cost) + 1

If this holds for all possible input sequences, we could claim that
A is 2-competitive.

Lucas Bang R–LINE UNLV

Cost ratio for this particular input sequence:

I cost = 15

I optimal cost = 8

I cost ≤ 2 · (optimal cost) + 1

I 15 ≤ 2 · 8 + 1

Compare with definition of competitive ratio:

costA(I) ≤ C · costOPT (I) + K

cost ≤ 2 · (optimal cost) + 1

If this holds for all possible input sequences, we could claim that
A is 2-competitive.

Lucas Bang R–LINE UNLV

Cost ratio for this particular input sequence:

I cost = 15

I optimal cost = 8

I cost ≤ 2 · (optimal cost) + 1

I 15 ≤ 2 · 8 + 1

Compare with definition of competitive ratio:

costA(I) ≤ C · costOPT (I) + K

cost ≤ 2 · (optimal cost) + 1

If this holds for all possible input sequences, we could claim that
A is 2-competitive.

Lucas Bang R–LINE UNLV

Cost ratio for this particular input sequence:

I cost = 15

I optimal cost = 8

I cost ≤ 2 · (optimal cost) + 1

I 15 ≤ 2 · 8 + 1

Compare with definition of competitive ratio:

costA(I) ≤ C · costOPT (I) + K

cost ≤ 2 · (optimal cost) + 1

If this holds for all possible input sequences, we could claim that
A is 2-competitive.

Lucas Bang R–LINE UNLV

The Potential Method

A common method for proving the competitiveness of an online
algorithm. For the server problem, define a potential function

φ : Server Locations → R.

Show that at any step i ,

costA(ri) ≤ C · costOPT (ri)− (φi − φi−1)

Then, summing over the request sequence:

n∑
i=1

costA(ri) ≤
n∑

i=1

C · costOPT (ri)−
n∑

i=1

∆φi .

costA(R) ≤ C · costOPT (R) + K .

Lucas Bang R–LINE UNLV

The Potential Method

A common method for proving the competitiveness of an online
algorithm. For the server problem, define a potential function

φ : Server Locations → R.

Show that at any step i ,

costA(ri) ≤ C · costOPT (ri)− (φi − φi−1)

Then, summing over the request sequence:

n∑
i=1

costA(ri) ≤
n∑

i=1

C · costOPT (ri)−
n∑

i=1

∆φi .

costA(R) ≤ C · costOPT (R) + K .

Lucas Bang R–LINE UNLV

The Potential Method

A common method for proving the competitiveness of an online
algorithm. For the server problem, define a potential function

φ : Server Locations → R.

Show that at any step i ,

costA(ri) ≤ C · costOPT (ri)− (φi − φi−1)

Then, summing over the request sequence:

n∑
i=1

costA(ri) ≤
n∑

i=1

C · costOPT (ri)−
n∑

i=1

∆φi .

costA(R) ≤ C · costOPT (R) + K .

Lucas Bang R–LINE UNLV

The Potential Method

A common method for proving the competitiveness of an online
algorithm. For the server problem, define a potential function

φ : Server Locations → R.

Show that at any step i ,

costA(ri) ≤ C · costOPT (ri)− (φi − φi−1)

Then, summing over the request sequence:

n∑
i=1

costA(ri) ≤
n∑

i=1

C · costOPT (ri)−
n∑

i=1

∆φi .

costA(R) ≤ C · costOPT (R) + K .

Lucas Bang R–LINE UNLV

The Optimal Adversary Algorithm

How to model the optimal algorithm?

I We think of the optimal algorithm as a malevolent adversary.

I Adversary generates the input sequence I1, I2, . . . , In
I Adversary must also use its servers to satisfy requests.

I Adversary tries to maximize C by simultaneously making its
cost low and our cost high.

Lucas Bang R–LINE UNLV

Game Theory

We can now think of the server problem as a game between our
algorithm and the adversary algorithm. Consider the payoff matrix
for a two-person zero-sum game G .

Adversary Strategy 1 Adversary Strategy 2

Server Strategy 1 a11 a12
Server Strategy 2 a21 a22

v(G) =
det A

a11 − a12 − a21 + a22

Lucas Bang R–LINE UNLV

Game Theory

We can now think of the server problem as a game between our
algorithm and the adversary algorithm. Consider the payoff matrix
for a two-person zero-sum game G .

Adversary Strategy 1 Adversary Strategy 2

Server Strategy 1 a11 a12
Server Strategy 2 a21 a22

v(G) =
det A

a11 − a12 − a21 + a22

Lucas Bang R–LINE UNLV

Game Theory

Adversary Strategy 1 Adversary Strategy 2

Server Strategy 1 a11 a12
Server Strategy 2 a21 a22

Optimum row player strategy:

Play row 1 with p1 = a22−a21
a11−a12−a21+a22

Play row 2 with p2 = a11−a12
a11−a12−a21+a22

Optimum column player strategy:

Play column 1 with p1 = a22−a12
a11−a12−a21+a22

Play column 2 with p2 = a11−a21
a11−a12−a21+a22

Lucas Bang R–LINE UNLV

Generalization of the k-server problem

The (m, n)-server Problem

I Given m mobile servers in a metric space M.

I Serve requests online in the metric space.

I Each request requires n servers to move to the request point

I Goal: minimize total distance moved.

Lucas Bang R–LINE UNLV

Generalization of the k-server problem

The (m, n)-server Problem

I Given m mobile servers in a metric space M.

I Serve requests online in the metric space.

I Each request requires n servers to move to the request point

I Goal: minimize total distance moved.

Lucas Bang R–LINE UNLV

Generalization of the k-server problem

The (m, n)-server Problem

I Given m mobile servers in a metric space M.

I Serve requests online in the metric space.

I Each request requires n servers to move to the request point

I Goal: minimize total distance moved.

Lucas Bang R–LINE UNLV

Generalization of the k-server problem

The (m, n)-server Problem

I Given m mobile servers in a metric space M.

I Serve requests online in the metric space.

I Each request requires n servers to move to the request point

I Goal: minimize total distance moved.

Lucas Bang R–LINE UNLV

Generalization of the k-server problem

The (m, n)-server Problem

I Given m mobile servers in a metric space M.

I Serve requests online in the metric space.

I Each request requires n servers to move to the request point

I Goal: minimize total distance moved.

Lucas Bang R–LINE UNLV

Background

(4, 2)-server Problem

Lucas Bang R–LINE UNLV

Background

(4, 2)-server Problem

s

s
s

s

Lucas Bang R–LINE UNLV

Background

(4, 2)-server Problem

s

s
s

s

r1

Lucas Bang R–LINE UNLV

Background

(4, 2)-server Problem

s

s
s

s

r1

Lucas Bang R–LINE UNLV

Background

(4, 2)-server Problem

s

s

s
s

Lucas Bang R–LINE UNLV

Background

(4, 2)-server Problem

s

s

s
s

r2

Lucas Bang R–LINE UNLV

Background

(4, 2)-server Problem

s

s

s
s

r2

Lucas Bang R–LINE UNLV

Background

(4, 2)-server Problem

s
ss

s

Lucas Bang R–LINE UNLV

Background

(4, 2)-server Problem

s
ss

s

r3

Lucas Bang R–LINE UNLV

Background

(4, 2)-server Problem

s
ss

s

r3

Lucas Bang R–LINE UNLV

Background

(4, 2)-server Problem

s

s

s

s

Lucas Bang R–LINE UNLV

Background

(4, 2)-server Problem

s

s

s

s

Lucas Bang R–LINE UNLV

Background

(4, 2)-server Problem

s

s

s

s

Lucas Bang R–LINE UNLV

Useful Results

Theorem 1

C -competitive (2n, n)-server Algorithm
⇓

C -competitive 2-server Algorithm

Theorem 2

Optimal offline strategy for the (2n, n) server problem keeps the
servers in two blocks of size n.

Lucas Bang R–LINE UNLV

Useful Results

Theorem 1

C -competitive (2n, n)-server Algorithm
⇓

C -competitive 2-server Algorithm

Theorem 2

Optimal offline strategy for the (2n, n) server problem keeps the
servers in two blocks of size n.

Lucas Bang R–LINE UNLV

Useful Results

Theorem 1

C -competitive (2n, n)-server Algorithm
⇓

C -competitive 2-server Algorithm

Theorem 2

Optimal offline strategy for the (2n, n) server problem keeps the
servers in two blocks of size n.

Lucas Bang R–LINE UNLV

R–LINE

We give an online algorithm for the 2-server problem where the
metric space is the real line.

Outline

I Define a randomized online algorithm for the (2n, n)-server
problem.

I Use 2-person zero-sum game theory for randomized moves.

I Prove competitiveness by solving non-linear constrained
optimization problem and a suitable potential.

I Derive randomized 2-server algorithm from (2n, n)-server
algorithm, via Theorem 1.

I As n grows large, competitiveness decreases.

I For R–LINE, C ≤ 1.901

Lucas Bang R–LINE UNLV

R–LINE

We give an online algorithm for the 2-server problem where the
metric space is the real line.

Outline

I Define a randomized online algorithm for the (2n, n)-server
problem.

I Use 2-person zero-sum game theory for randomized moves.

I Prove competitiveness by solving non-linear constrained
optimization problem and a suitable potential.

I Derive randomized 2-server algorithm from (2n, n)-server
algorithm, via Theorem 1.

I As n grows large, competitiveness decreases.

I For R–LINE, C ≤ 1.901

Lucas Bang R–LINE UNLV

R–LINE

We give an online algorithm for the 2-server problem where the
metric space is the real line.

Outline

I Define a randomized online algorithm for the (2n, n)-server
problem.

I Use 2-person zero-sum game theory for randomized moves.

I Prove competitiveness by solving non-linear constrained
optimization problem and a suitable potential.

I Derive randomized 2-server algorithm from (2n, n)-server
algorithm, via Theorem 1.

I As n grows large, competitiveness decreases.

I For R–LINE, C ≤ 1.901

Lucas Bang R–LINE UNLV

R–LINE

We give an online algorithm for the 2-server problem where the
metric space is the real line.

Outline

I Define a randomized online algorithm for the (2n, n)-server
problem.

I Use 2-person zero-sum game theory for randomized moves.

I Prove competitiveness by solving non-linear constrained
optimization problem and a suitable potential.

I Derive randomized 2-server algorithm from (2n, n)-server
algorithm, via Theorem 1.

I As n grows large, competitiveness decreases.

I For R–LINE, C ≤ 1.901

Lucas Bang R–LINE UNLV

R–LINE

We give an online algorithm for the 2-server problem where the
metric space is the real line.

Outline

I Define a randomized online algorithm for the (2n, n)-server
problem.

I Use 2-person zero-sum game theory for randomized moves.

I Prove competitiveness by solving non-linear constrained
optimization problem and a suitable potential.

I Derive randomized 2-server algorithm from (2n, n)-server
algorithm, via Theorem 1.

I As n grows large, competitiveness decreases.

I For R–LINE, C ≤ 1.901

Lucas Bang R–LINE UNLV

R–LINE

We give an online algorithm for the 2-server problem where the
metric space is the real line.

Outline

I Define a randomized online algorithm for the (2n, n)-server
problem.

I Use 2-person zero-sum game theory for randomized moves.

I Prove competitiveness by solving non-linear constrained
optimization problem and a suitable potential.

I Derive randomized 2-server algorithm from (2n, n)-server
algorithm, via Theorem 1.

I As n grows large, competitiveness decreases.

I For R–LINE, C ≤ 1.901

Lucas Bang R–LINE UNLV

R–LINE

We give an online algorithm for the 2-server problem where the
metric space is the real line.

Outline

I Define a randomized online algorithm for the (2n, n)-server
problem.

I Use 2-person zero-sum game theory for randomized moves.

I Prove competitiveness by solving non-linear constrained
optimization problem and a suitable potential.

I Derive randomized 2-server algorithm from (2n, n)-server
algorithm, via Theorem 1.

I As n grows large, competitiveness decreases.

I For R–LINE, C ≤ 1.901

Lucas Bang R–LINE UNLV

R–LINE Details

T-Theory on the Line

I For R–LINE, we have our algorithms servers, s1, s2, ..., s2n, and

I Two adversary servers, a1 and a2 for a total of 2n + 2 points.

I Define αi ,j , the (i , j)th isolation index of a configuration, to be
the length of the longest interval that has exactly i algorithm
servers to the left and exactly j adversary servers to the left.

I Formally,

αi ,j = max{0,min{si+1, aj+1} −max{si , aj}}

I s0 = a0 = −∞ and s2n+1 = a3 =∞

Lucas Bang R–LINE UNLV

R–LINE Details

T-Theory on the Line

I For R–LINE, we have our algorithms servers, s1, s2, ..., s2n, and

I Two adversary servers, a1 and a2 for a total of 2n + 2 points.

I Define αi ,j , the (i , j)th isolation index of a configuration, to be
the length of the longest interval that has exactly i algorithm
servers to the left and exactly j adversary servers to the left.

I Formally,

αi ,j = max{0,min{si+1, aj+1} −max{si , aj}}

I s0 = a0 = −∞ and s2n+1 = a3 =∞

Lucas Bang R–LINE UNLV

R–LINE Details

T-Theory on the Line

I For R–LINE, we have our algorithms servers, s1, s2, ..., s2n, and

I Two adversary servers, a1 and a2 for a total of 2n + 2 points.

I Define αi ,j , the (i , j)th isolation index of a configuration, to be
the length of the longest interval that has exactly i algorithm
servers to the left and exactly j adversary servers to the left.

I Formally,

αi ,j = max{0,min{si+1, aj+1} −max{si , aj}}

I s0 = a0 = −∞ and s2n+1 = a3 =∞

Lucas Bang R–LINE UNLV

R–LINE Details

T-Theory on the Line

I For R–LINE, we have our algorithms servers, s1, s2, ..., s2n, and

I Two adversary servers, a1 and a2 for a total of 2n + 2 points.

I Define αi ,j , the (i , j)th isolation index of a configuration, to be
the length of the longest interval that has exactly i algorithm
servers to the left and exactly j adversary servers to the left.

I Formally,

αi ,j = max{0,min{si+1, aj+1} −max{si , aj}}

I s0 = a0 = −∞ and s2n+1 = a3 =∞

Lucas Bang R–LINE UNLV

R–LINE Details

T-Theory on the Line

I For R–LINE, we have our algorithms servers, s1, s2, ..., s2n, and

I Two adversary servers, a1 and a2 for a total of 2n + 2 points.

I Define αi ,j , the (i , j)th isolation index of a configuration, to be
the length of the longest interval that has exactly i algorithm
servers to the left and exactly j adversary servers to the left.

I Formally,

αi ,j = max{0,min{si+1, aj+1} −max{si , aj}}

I s0 = a0 = −∞ and s2n+1 = a3 =∞

Lucas Bang R–LINE UNLV

R–LINE Details

T-Theory on the Line

I For R–LINE, we have our algorithms servers, s1, s2, ..., s2n, and

I Two adversary servers, a1 and a2 for a total of 2n + 2 points.

I Define αi ,j , the (i , j)th isolation index of a configuration, to be
the length of the longest interval that has exactly i algorithm
servers to the left and exactly j adversary servers to the left.

I Formally,

αi ,j = max{0,min{si+1, aj+1} −max{si , aj}}

I s0 = a0 = −∞ and s2n+1 = a3 =∞

Lucas Bang R–LINE UNLV

R–LINE Details

T-Theory on the Line

I αi ,j is the length of the longest interval that has exactly i
algorithm servers to the left and exactly j adversary servers to
the left.

I αi ,j = max{0,min{si+1, aj+1} −max{si , aj}}
I Example,

ss
ss

as
s
a

α α α1,0 3,1 3,2

α3,0 = 0, α4,1 = 0, ...

Lucas Bang R–LINE UNLV

R–LINE Details

T-Theory on the Line

I αi ,j is the length of the longest interval that has exactly i
algorithm servers to the left and exactly j adversary servers to
the left.

I αi ,j = max{0,min{si+1, aj+1} −max{si , aj}}
I Example,

ss
ss

as
s
a

α α α1,0 3,1 3,2

α3,0 = 0, α4,1 = 0, ...

Lucas Bang R–LINE UNLV

R–LINE Details

Isolation Index Coefficients

I Every isolation index, α, has an associated coefficient, η.

I R-LINE is defined in terms of these constants, η.

I Define constants ηi ,j , the (i , j)th isolation index coefficient.

I The isolation index coefficients satisfy a symmetry property,

ηi ,j = η2n−i ,2−j

I We also have η0,0 = η2n,n = 0.

Lucas Bang R–LINE UNLV

R–LINE Details

Isolation Index Coefficients

I Every isolation index, α, has an associated coefficient, η.

I R-LINE is defined in terms of these constants, η.

I Define constants ηi ,j , the (i , j)th isolation index coefficient.

I The isolation index coefficients satisfy a symmetry property,

ηi ,j = η2n−i ,2−j

I We also have η0,0 = η2n,n = 0.

Lucas Bang R–LINE UNLV

R–LINE Details

Isolation Index Coefficients

I Every isolation index, α, has an associated coefficient, η.

I R-LINE is defined in terms of these constants, η.

I Define constants ηi ,j , the (i , j)th isolation index coefficient.

I The isolation index coefficients satisfy a symmetry property,

ηi ,j = η2n−i ,2−j

I We also have η0,0 = η2n,n = 0.

Lucas Bang R–LINE UNLV

R–LINE Details

Isolation Index Coefficients

I Every isolation index, α, has an associated coefficient, η.

I R-LINE is defined in terms of these constants, η.

I Define constants ηi ,j , the (i , j)th isolation index coefficient.

I The isolation index coefficients satisfy a symmetry property,

ηi ,j = η2n−i ,2−j

I We also have η0,0 = η2n,n = 0.

Lucas Bang R–LINE UNLV

R–LINE Details

Isolation Index Coefficients

I Every isolation index, α, has an associated coefficient, η.

I R-LINE is defined in terms of these constants, η.

I Define constants ηi ,j , the (i , j)th isolation index coefficient.

I The isolation index coefficients satisfy a symmetry property,

ηi ,j = η2n−i ,2−j

I We also have η0,0 = η2n,n = 0.

Lucas Bang R–LINE UNLV

R–LINE Details

Isolation Index Coefficients

I Every isolation index, α, has an associated coefficient, η.

I R-LINE is defined in terms of these constants, η.

I Define constants ηi ,j , the (i , j)th isolation index coefficient.

I The isolation index coefficients satisfy a symmetry property,

ηi ,j = η2n−i ,2−j

I We also have η0,0 = η2n,n = 0.

Lucas Bang R–LINE UNLV

R–LINE Details

Definition of the Potential, φ

I For any configuration, the potential is defined as the sum of
all isolation indices multiplied by their associated coefficients.

I Formally,

φ =
∑

ηi ,j · αi ,j

Lucas Bang R–LINE UNLV

R–LINE Details

Definition of the Potential, φ

I For any configuration, the potential is defined as the sum of
all isolation indices multiplied by their associated coefficients.

I Formally,

φ =
∑

ηi ,j · αi ,j

Lucas Bang R–LINE UNLV

R–LINE Details

Definition of the Potential, φ

I For any configuration, the potential is defined as the sum of
all isolation indices multiplied by their associated coefficients.

I Formally,

φ =
∑

ηi ,j · αi ,j

Lucas Bang R–LINE UNLV

R–LINE Details

Configurations

Notation

I We refer to si as the i th server and also its location.

I We number the servers left to right.

I s1 ≤ s2 ≤ ... ≤ s2n
I Current request is r .

I Previous request is r ′.

I WLOG r ′ < r .

I Servers do not pass each other.

Lucas Bang R–LINE UNLV

R–LINE Details

Configurations

Notation

I We refer to si as the i th server and also its location.

I We number the servers left to right.

I s1 ≤ s2 ≤ ... ≤ s2n
I Current request is r .

I Previous request is r ′.

I WLOG r ′ < r .

I Servers do not pass each other.

Lucas Bang R–LINE UNLV

R–LINE Details

Configurations

Notation

I We refer to si as the i th server and also its location.

I We number the servers left to right.

I s1 ≤ s2 ≤ ... ≤ s2n
I Current request is r .

I Previous request is r ′.

I WLOG r ′ < r .

I Servers do not pass each other.

Lucas Bang R–LINE UNLV

R–LINE Details

Configurations

Notation

I We refer to si as the i th server and also its location.

I We number the servers left to right.

I s1 ≤ s2 ≤ ... ≤ s2n
I Current request is r .

I Previous request is r ′.

I WLOG r ′ < r .

I Servers do not pass each other.

Lucas Bang R–LINE UNLV

R–LINE Details

Configurations

Notation

I We refer to si as the i th server and also its location.

I We number the servers left to right.

I s1 ≤ s2 ≤ ... ≤ s2n

I Current request is r .

I Previous request is r ′.

I WLOG r ′ < r .

I Servers do not pass each other.

Lucas Bang R–LINE UNLV

R–LINE Details

Configurations

Notation

I We refer to si as the i th server and also its location.

I We number the servers left to right.

I s1 ≤ s2 ≤ ... ≤ s2n
I Current request is r .

I Previous request is r ′.

I WLOG r ′ < r .

I Servers do not pass each other.

Lucas Bang R–LINE UNLV

R–LINE Details

Configurations

Notation

I We refer to si as the i th server and also its location.

I We number the servers left to right.

I s1 ≤ s2 ≤ ... ≤ s2n
I Current request is r .

I Previous request is r ′.

I WLOG r ′ < r .

I Servers do not pass each other.

Lucas Bang R–LINE UNLV

R–LINE Details

Configurations

Notation

I We refer to si as the i th server and also its location.

I We number the servers left to right.

I s1 ≤ s2 ≤ ... ≤ s2n
I Current request is r .

I Previous request is r ′.

I WLOG r ′ < r .

I Servers do not pass each other.

Lucas Bang R–LINE UNLV

R–LINE Details

Configurations

Notation

I We refer to si as the i th server and also its location.

I We number the servers left to right.

I s1 ≤ s2 ≤ ... ≤ s2n
I Current request is r .

I Previous request is r ′.

I WLOG r ′ < r .

I Servers do not pass each other.

Lucas Bang R–LINE UNLV

R–LINE Details

S-Configuration (Satisfying)

I There are n servers at the request point.

(6, 3) Example

r

s
s
s

s ss 51 2

3

4

6

Lucas Bang R–LINE UNLV

R–LINE Details

S-Configuration (Satisfying)

I There are n servers at the request point.

(6, 3) Example

r

s
s
s

s ss 51 2

3

4

6

Lucas Bang R–LINE UNLV

R–LINE Details

S-Configuration (Satisfying)

I There are n servers at the request point.

(6, 3) Example

r

s
s
s

s ss 51 2

3

4

6

Lucas Bang R–LINE UNLV

R–LINE Details

S-Configuration (Satisfying)

I There are n servers at the request point.

(6, 3) Example

r

s
s
s

s ss 51 2

3

4

6

Lucas Bang R–LINE UNLV

R–LINE Details

D-Configuration (Deterministic)

I 1. More than n algorithm servers either strictly to the left or
strictly to the right of r ; r > sn+1 or r < sn.

2. If fewer than n algorithm servers at r ′

2.1 No algorithm server strictly between r ′ and r
2.2 At least n algorithm servers at the points r ′ and r combined.

(6, 3) Example

r'

s
s
s

s ss

r

1

2

3

4 5 6

Lucas Bang R–LINE UNLV

R–LINE Details

D-Configuration (Deterministic)

I 1. More than n algorithm servers either strictly to the left or
strictly to the right of r ; r > sn+1 or r < sn.

2. If fewer than n algorithm servers at r ′

2.1 No algorithm server strictly between r ′ and r
2.2 At least n algorithm servers at the points r ′ and r combined.

(6, 3) Example

r'

s
s
s

s ss

r

1

2

3

4 5 6

Lucas Bang R–LINE UNLV

R–LINE Details

D-Configuration (Deterministic)

I 1. More than n algorithm servers either strictly to the left or
strictly to the right of r ; r > sn+1 or r < sn.

2. If fewer than n algorithm servers at r ′

2.1 No algorithm server strictly between r ′ and r
2.2 At least n algorithm servers at the points r ′ and r combined.

(6, 3) Example

r'

s
s

s s ss

r

1 2 3

4

5 6

Lucas Bang R–LINE UNLV

R–LINE Details

D-Configuration Moves

1. Must be m servers to the left of r , for some m > n.

2. Move sn+1...sm to r .

(6, 3) Example

Lucas Bang R–LINE UNLV

R–LINE Details

D-Configuration Moves

1. Must be m servers to the left of r , for some m > n.

2. Move sn+1...sm to r .

(6, 3) Example

Lucas Bang R–LINE UNLV

R–LINE Details

D-Configuration Moves

1. Must be m servers to the left of r , for some m > n.

2. Move sn+1...sm to r .

(6, 3) Example

Lucas Bang R–LINE UNLV

R–LINE Details

D-Configuration Moves

1. Must be m servers to the left of r , for some m > n.

2. Move sn+1...sm to r .

(6, 3) Example

r'

s
s
s

s ss

r

1

2

3

4 5 6

Lucas Bang R–LINE UNLV

R–LINE Details

D-Configuration Moves

1. Must be m servers to the left of r , for some m > n.

2. Move sn+1...sm to r .

(6, 3) Example

r'

s
s
s

s ss

r

1

2

3

4 5 6

Lucas Bang R–LINE UNLV

R–LINE Details

D-Configuration Moves

1. Must be m servers to the left of r , for some m > n.

2. Move sn+1...sm to r .

(6, 3) Example

r'

s
s
s

s ss

r

1

2

3

4 5 6

Lucas Bang R–LINE UNLV

R–LINE Details

D-Configuration Moves

1. Must be m servers to the left of r , for some m > n.

2. Move sn+1...sm to r .

(6, 3) Example

r'

s
s

s s ss

r

1 2 3

4

5 6

Lucas Bang R–LINE UNLV

R–LINE Details

D-Configuration Moves

1. Must be m servers to the left of r , for some m > n.

2. Move sn+1...sm to r .

(6, 3) Example

r'

s
s

s s ss

r

1 2 3

4

5 6

Lucas Bang R–LINE UNLV

R–LINE Details

D-Configuration Moves

1. Must be m servers to the left of r , for some m > n.

2. Move sn+1...sm to r .

(6, 3) Example

r'

s
s

s s ss

r

1 2 3

4

5 6

Lucas Bang R–LINE UNLV

R–LINE Details

R-Configurations (Randomized)

The adversary’s hidden server.

I The adversary has two servers.

I The current request, r .

I The other server’s location, a, is “hidden”.

I There are only two hidden server locations to consider.

(6, 3) Example

Lucas Bang R–LINE UNLV

R–LINE Details

R-Configurations (Randomized)

The adversary’s hidden server.

I The adversary has two servers.

I The current request, r .

I The other server’s location, a, is “hidden”.

I There are only two hidden server locations to consider.

(6, 3) Example

Lucas Bang R–LINE UNLV

R–LINE Details

R-Configurations (Randomized)

The adversary’s hidden server.

I The adversary has two servers.

I The current request, r .

I The other server’s location, a, is “hidden”.

I There are only two hidden server locations to consider.

(6, 3) Example

Lucas Bang R–LINE UNLV

R–LINE Details

R-Configurations (Randomized)

The adversary’s hidden server.

I The adversary has two servers.

I The current request, r .

I The other server’s location, a, is “hidden”.

I There are only two hidden server locations to consider.

(6, 3) Example

Lucas Bang R–LINE UNLV

R–LINE Details

R-Configurations (Randomized)

The adversary’s hidden server.

I The adversary has two servers.

I The current request, r .

I The other server’s location, a, is “hidden”.

I There are only two hidden server locations to consider.

(6, 3) Example

Lucas Bang R–LINE UNLV

R–LINE Details

R-Configurations (Randomized)

The adversary’s hidden server.

I The adversary has two servers.

I The current request, r .

I The other server’s location, a, is “hidden”.

I There are only two hidden server locations to consider.

(6, 3) Example

Lucas Bang R–LINE UNLV

R–LINE Details

R-Configurations (Randomized)

The adversary’s hidden server.

I The adversary has two servers.

I The current request, r .

I The other server’s location, a, is “hidden”.

I There are only two hidden server locations to consider.

(6, 3) Example

r

s
s
s

s ss 51 2

3

4

6

a

Lucas Bang R–LINE UNLV

R–LINE Details

R-Configurations (Randomized)

The adversary’s hidden server.

I The adversary has two servers.

I The current request, r .

I The other server’s location, a, is “hidden”.

I There are only two hidden server locations to consider.

(6, 3) Example

r

s
s
s

s ss 51 2

3

4

6

a

Lucas Bang R–LINE UNLV

R–LINE Details

R-Configuration (Randomized)

1. Exactly n algorithm servers on the same side of r as r ′. Either
r ′ = sn < r or r < r ′ = sn+1.

2. No algorithm server strictly between r ′ and r .

3. At least n algorithm servers at the points r ′ and r combined.

(6, 3) Example

Lucas Bang R–LINE UNLV

R–LINE Details

R-Configuration (Randomized)

1. Exactly n algorithm servers on the same side of r as r ′. Either
r ′ = sn < r or r < r ′ = sn+1.

2. No algorithm server strictly between r ′ and r .

3. At least n algorithm servers at the points r ′ and r combined.

(6, 3) Example

Lucas Bang R–LINE UNLV

R–LINE Details

R-Configuration (Randomized)

1. Exactly n algorithm servers on the same side of r as r ′. Either
r ′ = sn < r or r < r ′ = sn+1.

2. No algorithm server strictly between r ′ and r .

3. At least n algorithm servers at the points r ′ and r combined.

(6, 3) Example

Lucas Bang R–LINE UNLV

R–LINE Details

R-Configuration (Randomized)

1. Exactly n algorithm servers on the same side of r as r ′. Either
r ′ = sn < r or r < r ′ = sn+1.

2. No algorithm server strictly between r ′ and r .

3. At least n algorithm servers at the points r ′ and r combined.

(6, 3) Example

Lucas Bang R–LINE UNLV

R–LINE Details

R-Configuration (Randomized)

1. Exactly n algorithm servers on the same side of r as r ′. Either
r ′ = sn < r or r < r ′ = sn+1.

2. No algorithm server strictly between r ′ and r .

3. At least n algorithm servers at the points r ′ and r combined.

(6, 3) Example

r'

s
s

s ss

r

51

2

4 6

s3

Lucas Bang R–LINE UNLV

R–LINE Details

R-Configuration (Randomized) Moves

I There are two possible moves.

1. Move a single server.
2. Complete the request using the servers from r ′.

I Choose between the two alternatives using randomization, by
solving a 2-person zero-sum game.

Lucas Bang R–LINE UNLV

R–LINE Details

R-Configuration (Randomized) Moves

I There are two possible moves.

1. Move a single server.

2. Complete the request using the servers from r ′.

I Choose between the two alternatives using randomization, by
solving a 2-person zero-sum game.

Lucas Bang R–LINE UNLV

R–LINE Details

R-Configuration (Randomized) Moves

I There are two possible moves.

1. Move a single server.
2. Complete the request using the servers from r ′.

I Choose between the two alternatives using randomization, by
solving a 2-person zero-sum game.

Lucas Bang R–LINE UNLV

R–LINE Details

R-Configuration (Randomized) Moves

I There are two possible moves.

1. Move a single server.
2. Complete the request using the servers from r ′.

I Choose between the two alternatives using randomization, by
solving a 2-person zero-sum game.

Lucas Bang R–LINE UNLV

R–LINE Details

R-Configuration (Randomized) Moves

I There are two possible moves.

1. Move a single server.
2. Complete the request using the servers from r ′.

I Choose between the two alternatives using randomization, by
solving a 2-person zero-sum game.

r'

s
s

s ss

r

51

2

4 6

s3

Lucas Bang R–LINE UNLV

R–LINE Details

R-Configuration (Randomized) Moves

I There are two possible moves.

1. Move a single server.
2. Complete the request using the servers from r ′.

I Choose between the two alternatives using randomization, by
solving a 2-person zero-sum game.

r'

s
s

s ss

r

51

2

4 6

s3

Lucas Bang R–LINE UNLV

R–LINE Details

R-Configuration (Randomized) Moves

I There are two possible moves.

1. Move a single server.
2. Complete the request using the servers from r ′.

I Choose between the two alternatives using randomization, by
solving a 2-person zero-sum game.

r'

s
s

s s
s

r

5

1

2

4 6

s3

Lucas Bang R–LINE UNLV

R–LINE Details

R-Configuration (Randomized) Moves

I There are two possible moves.

1. Move a single server.
2. Complete the request using the servers from r ′.

I Choose between the two alternatives using randomization, by
solving a 2-person zero-sum game.

r'

s
s

s ss

r

51

2

4 6

s3

Lucas Bang R–LINE UNLV

R–LINE Details

R-Configuration (Randomized) Moves

I There are two possible moves.

1. Move a single server.
2. Complete the request using the servers from r ′.

I Choose between the two alternatives using randomization, by
solving a 2-person zero-sum game.

r'

s
s

s ss

r

51

2

4 6

s3

Lucas Bang R–LINE UNLV

R–LINE Details

R-Configuration (Randomized) Moves

I There are two possible moves.

1. Move a single server.
2. Complete the request using the servers from r ′.

I Choose between the two alternatives using randomization, by
solving a 2-person zero-sum game.

r'

s
s
s ss

r

51

2

4 6

s3

Lucas Bang R–LINE UNLV

R–LINE Details

Configurations: R-Configurations (Randomized)

s
s
s

sr s s1 s
s
s

sr s s

s
s
s

s

ra

s s

(∆φ+ cost)11 (∆φ+ cost)12

s
s
s

s

r a

s s

(∆φ+ cost)21 (∆φ+ cost)22

Lucas Bang R–LINE UNLV

R–LINE Details

Configurations: R-Configurations (Randomized)

s
s
s

sr s s1 s
s
s

sr s s

s
s
s

s

ra

s s

(∆φ+ cost)11 (∆φ+ cost)12

s
s
s

s

r a

s s

(∆φ+ cost)21 (∆φ+ cost)22

Lucas Bang R–LINE UNLV

R–LINE Details

Configurations: R-Configurations (Randomized)

(∆φ+ cost)11 (∆φ+ cost)12
(∆φ+ cost)21 (∆φ+ cost)22

I Entries game matrix computed in terms of the isolation index
coefficients, η.

I If currently p servers located at r :

(∆φ+ cost)11 = (ηn+p+1,2 − ηn+p,2 + 1) · (sn+p+1 − r)
(∆φ+ cost)12 = (ηp,1 − ηn,1 + n − p) · (r − sn)
(∆φ+ cost)21 = (ηn+p+1,1 − ηn+p,1 + 1) · (sn+p+1 − r)
(∆φ+ cost)22 = (ηp,0 − ηn,0 + n − p) · (r − sn)

Lucas Bang R–LINE UNLV

R–LINE Details

Configurations: R-Configurations (Randomized)

(∆φ+ cost)11 (∆φ+ cost)12
(∆φ+ cost)21 (∆φ+ cost)22

I Entries game matrix computed in terms of the isolation index
coefficients, η.

I If currently p servers located at r :

(∆φ+ cost)11 = (ηn+p+1,2 − ηn+p,2 + 1) · (sn+p+1 − r)
(∆φ+ cost)12 = (ηp,1 − ηn,1 + n − p) · (r − sn)
(∆φ+ cost)21 = (ηn+p+1,1 − ηn+p,1 + 1) · (sn+p+1 − r)
(∆φ+ cost)22 = (ηp,0 − ηn,0 + n − p) · (r − sn)

Lucas Bang R–LINE UNLV

R–LINE Details

Configurations: R-Configurations (Randomized)

(∆φ+ cost)11 (∆φ+ cost)12
(∆φ+ cost)21 (∆φ+ cost)22

I Entries game matrix computed in terms of the isolation index
coefficients, η.

I If currently p servers located at r :

(∆φ+ cost)11 = (ηn+p+1,2 − ηn+p,2 + 1) · (sn+p+1 − r)
(∆φ+ cost)12 = (ηp,1 − ηn,1 + n − p) · (r − sn)
(∆φ+ cost)21 = (ηn+p+1,1 − ηn+p,1 + 1) · (sn+p+1 − r)
(∆φ+ cost)22 = (ηp,0 − ηn,0 + n − p) · (r − sn)

Lucas Bang R–LINE UNLV

R–LINE Details

Configurations: R-Configurations (Randomized)

(∆φ+ cost)11 (∆φ+ cost)12
(∆φ+ cost)21 (∆φ+ cost)22

I Entries game matrix computed in terms of the isolation index
coefficients, η.

I If currently p servers located at r :

(∆φ+ cost)11 = (ηn+p+1,2 − ηn+p,2 + 1) · (sn+p+1 − r)
(∆φ+ cost)12 = (ηp,1 − ηn,1 + n − p) · (r − sn)
(∆φ+ cost)21 = (ηn+p+1,1 − ηn+p,1 + 1) · (sn+p+1 − r)
(∆φ+ cost)22 = (ηp,0 − ηn,0 + n − p) · (r − sn)

Lucas Bang R–LINE UNLV

R–LINE Details

Configurations: R-Configurations (Randomized)

(∆φ+ cost)11 (∆φ+ cost)12
(∆φ+ cost)21 (∆φ+ cost)22

I Entries game matrix computed in terms of the isolation index
coefficients, η.

I If currently p servers located at r :

(∆φ+ cost)11 = (ηn+p+1,2 − ηn+p,2 + 1) · (sn+p+1 − r)
(∆φ+ cost)12 = (ηp,1 − ηn,1 + n − p) · (r − sn)
(∆φ+ cost)21 = (ηn+p+1,1 − ηn+p,1 + 1) · (sn+p+1 − r)
(∆φ+ cost)22 = (ηp,0 − ηn,0 + n − p) · (r − sn)

Lucas Bang R–LINE UNLV

R–LINE Details

The Algorithm R–LINE

For a given round of execution:

1. Start in S-Config. Receive a request.

2. If D–Config, make deterministic moves.

2.1 If result is S–Config, done.
2.2 Otherwise result is R–Config.

3. If R–Config, make randomized moves until S–Config.

S
request

D

R

S

≤ n

Lucas Bang R–LINE UNLV

R–LINE Details

The Algorithm R–LINE

For a given round of execution:

1. Start in S-Config. Receive a request.

2. If D–Config, make deterministic moves.

2.1 If result is S–Config, done.
2.2 Otherwise result is R–Config.

3. If R–Config, make randomized moves until S–Config.

S
request

D

R

S

≤ n

Lucas Bang R–LINE UNLV

R–LINE Details

The Algorithm R–LINE

For a given round of execution:

1. Start in S-Config. Receive a request.

2. If D–Config, make deterministic moves.

2.1 If result is S–Config, done.
2.2 Otherwise result is R–Config.

3. If R–Config, make randomized moves until S–Config.

S
request

D

R

S

≤ n

Lucas Bang R–LINE UNLV

Proof of Competitiveness

Overview of Proof

1. Provide a system of inequalities, S, involving the isolation
index coefficients, ηi ,j , and the competitiveness, C .

2. Show that if there exists an assignment of values to every ηi ,j
that satisfies S, then R–LINE is C -competitive.

3. Use numeric methods to find a solution to S that minimizes C .

Lucas Bang R–LINE UNLV

Proof of Competitiveness

Sufficient Inequalities, Sn

∀ 0 ≤ i ≤ 2n : |ηi,1 − ηi,0| ≤ n · C (1)

∀ 1 ≤ i ≤ n and ∀ 1 ≤ j ≤ 2 : ηi,j + 1 ≤ ηi−1,j (2)

∀ 1 ≤ i ≤ n and ∀ 1 ≤ j ≤ 2 : ηi−1,j−1 ≤ ηi,j−1 + 1 (3)

∀ 1 ≤ i ≤ n : (ηi−1,1 − ηi,1 + 1)(ηn−i,1 − ηn,1 + i) ≤ (ηi−1,0 − ηi,0 + 1)(ηn−i,0 − ηn,0 + i) (4)

Lucas Bang R–LINE UNLV

Proof of Competitiveness

Overview of Proof Steps

Show that if the system of inequalities, Sn, is satisfied, then the
following properties hold:

1. For adversary moves: ∆φ ≤ C · costAdv .

2. For R–LINE deterministic moves: ∆φ+ cost ≤ 0.

3. WLOG, adversary’s hidden server is at one of at most two
possible locations.

4. For R–LINE randomized moves: E(∆φ+ cost) ≤ 0.

Adding all of the inequalities over a request round:

E (costA(σ)) ≤ C · costADV(σ) + K

Lucas Bang R–LINE UNLV

Proof of Competitiveness

Overview of Proof Steps

Show that if the system of inequalities, Sn, is satisfied, then the
following properties hold:

1. For adversary moves: ∆φ ≤ C · costAdv .

2. For R–LINE deterministic moves: ∆φ+ cost ≤ 0.

3. WLOG, adversary’s hidden server is at one of at most two
possible locations.

4. For R–LINE randomized moves: E(∆φ+ cost) ≤ 0.

Adding all of the inequalities over a request round:

E (costA(σ)) ≤ C · costADV(σ) + K

Lucas Bang R–LINE UNLV

Proof of Competitiveness

Overview of Proof Steps

Show that if the system of inequalities, Sn, is satisfied, then the
following properties hold:

1. For adversary moves: ∆φ ≤ C · costAdv .

2. For R–LINE deterministic moves: ∆φ+ cost ≤ 0.

3. WLOG, adversary’s hidden server is at one of at most two
possible locations.

4. For R–LINE randomized moves: E(∆φ+ cost) ≤ 0.

Adding all of the inequalities over a request round:

E (costA(σ)) ≤ C · costADV(σ) + K

Lucas Bang R–LINE UNLV

Proof of Competitiveness

Overview of Proof Steps

Show that if the system of inequalities, Sn, is satisfied, then the
following properties hold:

1. For adversary moves: ∆φ ≤ C · costAdv .

2. For R–LINE deterministic moves: ∆φ+ cost ≤ 0.

3. WLOG, adversary’s hidden server is at one of at most two
possible locations.

4. For R–LINE randomized moves: E(∆φ+ cost) ≤ 0.

Adding all of the inequalities over a request round:

E (costA(σ)) ≤ C · costADV(σ) + K

Lucas Bang R–LINE UNLV

Proof of Competitiveness

Overview of Proof Steps

Show that if the system of inequalities, Sn, is satisfied, then the
following properties hold:

1. For adversary moves: ∆φ ≤ C · costAdv .

2. For R–LINE deterministic moves: ∆φ+ cost ≤ 0.

3. WLOG, adversary’s hidden server is at one of at most two
possible locations.

4. For R–LINE randomized moves: E(∆φ+ cost) ≤ 0.

Adding all of the inequalities over a request round:

E (costA(σ)) ≤ C · costADV(σ) + K

Lucas Bang R–LINE UNLV

Proof of Competitiveness

Overview of Proof Steps

Show that if the system of inequalities, Sn, is satisfied, then the
following properties hold:

1. For adversary moves: ∆φ ≤ C · costAdv .

2. For R–LINE deterministic moves: ∆φ+ cost ≤ 0.

3. WLOG, adversary’s hidden server is at one of at most two
possible locations.

4. For R–LINE randomized moves: E(∆φ+ cost) ≤ 0.

Adding all of the inequalities over a request round:

E (costA(σ)) ≤ C · costADV(σ) + K

Lucas Bang R–LINE UNLV

Solving the Inequalities

Given the system Sn

I Find a solution to Sn that minimizes C .

I Transform Sn into a new system S′n to simplify the solution.

Lucas Bang R–LINE UNLV

Solving the Inequalities

Given the system Sn

I Find a solution to Sn that minimizes C .

I Transform Sn into a new system S′n to simplify the solution.

Lucas Bang R–LINE UNLV

Solving the Inequalities

Introduce variables εi and δi for all 0 ≤ i < n. Then S′n consists of
the following constraints:

(2i + εn−i)(2− εi + εi−1) = 4i ∀ 0 < i < n
(2n + ε0)(2 + εn−1) ≥ 4n

δ = −ε0/2
C = (2n − δ)/n
δi = εi + 2δ ∀ 0 ≤ i < n

ηi ,0 = 3i − δi ∀ 0 ≤ i < n
ηi ,0 = 2n + i − 2δ ∀ n ≤ i ≤ 2n
ηi ,1 = 2n − i − δ ∀ 0 ≤ i < n
ηi ,1 = i − δ ∀ n ≤ i ≤ 2n
ηi ,2 = η2n−i ,0 ∀ 0 ≤ i ≤ 2n

Lucas Bang R–LINE UNLV

Solving the Inequalities

Introduce variables εi and δi for all 0 ≤ i < n. Then S′n consists of
the following constraints:

(2i + εn−i)(2− εi + εi−1) = 4i ∀ 0 < i < n
(2n + ε0)(2 + εn−1) ≥ 4n

δ = −ε0/2
C = (2n − δ)/n
δi = εi + 2δ ∀ 0 ≤ i < n

ηi ,0 = 3i − δi ∀ 0 ≤ i < n
ηi ,0 = 2n + i − 2δ ∀ n ≤ i ≤ 2n
ηi ,1 = 2n − i − δ ∀ 0 ≤ i < n
ηi ,1 = i − δ ∀ n ≤ i ≤ 2n
ηi ,2 = η2n−i ,0 ∀ 0 ≤ i ≤ 2n

Lucas Bang R–LINE UNLV

Solving the Inequalities

Converting to a Differential Equation

I As n→∞, S′n → D

I D is given by:

(x + 1 + f (−x)) · (1− f ′(x)) = x + 1

−1 ≤ x ≤ 1

Lucas Bang R–LINE UNLV

Solving the Inequalities

Euler Method for Reflective Differential Equation

1. Choose a step size, h = 2
n .

2. Choose an initial value y0 at t0

3. Compute updates:

yn+1 = yn + h · f (t−n, y−n),

y−n−1 = y−n + h · f (tn, yn),

Lucas Bang R–LINE UNLV

Solving the Inequalities

0-1 1

Lucas Bang R–LINE UNLV

Solving the Inequalities

0-1 1

Lucas Bang R–LINE UNLV

Solving the Inequalities

0-1 1

Lucas Bang R–LINE UNLV

Solving the Inequalities

0-1 1

Lucas Bang R–LINE UNLV

Solving the Inequalities

0-1 1

Lucas Bang R–LINE UNLV

Solving the Inequalities

0-1 1

Lucas Bang R–LINE UNLV

Solving the Inequalities

0-1 1

Lucas Bang R–LINE UNLV

Solving the Inequalities

0-1 1

Lucas Bang R–LINE UNLV

Solving the Inequalities

0-1 1

Lucas Bang R–LINE UNLV

Solving the Inequalities

0-1 1

Lucas Bang R–LINE UNLV

Solving the Inequalities

Algorithm to Find Minimum C

1. Choose initial value f (0).

2. Approximate f on interval [−1, 1].

3. Use substitutions to find ηi ,j .

4. Verify that ηi ,j satisfy Sn.

5. Compute corresponding value of C .

6. Binary search on f (0) to find minimum C .

Lucas Bang R–LINE UNLV

Solving the Inequalities

Solution for large n

I We find that C ≈ 1.9007452 for n = 10000.

I The corresponding approximation of f (x):

-0.2

-0.1

0

0.1

0.2

0.3

0.4

-1 -0.5 0 0.5 1

Lucas Bang R–LINE UNLV

Future Work

Other Metric Spaces

I Trees - Preliminary work done, strongly suggests C ≤ 1.901.

I Manhattan Plane, Circle, Euclidean.

I General Spaces!!

k > 2 on the Line

I (kn, n)-server algorithm ⇒ k-server algorithm.

Analytic Solution to the Differential Equation

I Would give exact minimum value of C for R–LINE.

Lucas Bang R–LINE UNLV

Future Work

Other Metric Spaces

I Trees - Preliminary work done, strongly suggests C ≤ 1.901.

I Manhattan Plane, Circle, Euclidean.

I General Spaces!!

k > 2 on the Line

I (kn, n)-server algorithm ⇒ k-server algorithm.

Analytic Solution to the Differential Equation

I Would give exact minimum value of C for R–LINE.

Lucas Bang R–LINE UNLV

Future Work

Other Metric Spaces

I Trees - Preliminary work done, strongly suggests C ≤ 1.901.

I Manhattan Plane, Circle, Euclidean.

I General Spaces!!

k > 2 on the Line

I (kn, n)-server algorithm ⇒ k-server algorithm.

Analytic Solution to the Differential Equation

I Would give exact minimum value of C for R–LINE.

Lucas Bang R–LINE UNLV

Future Work

Other Metric Spaces

I Trees - Preliminary work done, strongly suggests C ≤ 1.901.

I Manhattan Plane, Circle, Euclidean.

I General Spaces!!

k > 2 on the Line

I (kn, n)-server algorithm ⇒ k-server algorithm.

Analytic Solution to the Differential Equation

I Would give exact minimum value of C for R–LINE.

Lucas Bang R–LINE UNLV

Acknowledgements

Thank you!

I Committee Members: Lawrence Larmore, Wolfgang Bein,
Matt Pedersen, Ebrahim Salehi.

I UNLV Graduate and Professional Student Association.

I Attendees.

Lucas Bang R–LINE UNLV

R–LINE

The End.

Lucas Bang R–LINE UNLV

R–LINE

The End.

Lucas Bang R–LINE UNLV

R–LINE

The End.

Lucas Bang R–LINE UNLV

Proof of Competitiveness

Proof of Property 1

If S holds, then Property 1 holds: For any move by the adversary,
∆φ ≤ C · costAdv

sas i i+1j a'j
x y

I By inequality (1), |ηi ,j − ηi ,j−1| ≤ n · C for j = 1, 2.

I Adversary server aj moves to the right, from x to y , where
x < y , with si ≤ x and y ≤ si+1.

I Thus, αi ,j decreases by y − x and αi ,j−1 increases by y − x .

I The cost to the adversary of this move is n(y − x).

I By definition of the potential,
∆φ = (ηi ,j − ηi ,j−1)(y − x) ≤ n · C · (y − x) ≤ C · costAdv .

Lucas Bang R–LINE UNLV

Proof of Competitiveness

Proof of Property 1

If S holds, then Property 1 holds: For any move by the adversary,
∆φ ≤ C · costAdv

sas i i+1j a'j
x y

I By inequality (1), |ηi ,j − ηi ,j−1| ≤ n · C for j = 1, 2.

I Adversary server aj moves to the right, from x to y , where
x < y , with si ≤ x and y ≤ si+1.

I Thus, αi ,j decreases by y − x and αi ,j−1 increases by y − x .

I The cost to the adversary of this move is n(y − x).

I By definition of the potential,
∆φ = (ηi ,j − ηi ,j−1)(y − x) ≤ n · C · (y − x) ≤ C · costAdv .

Lucas Bang R–LINE UNLV

Proof of Competitiveness

Proof of Property 1

If S holds, then Property 1 holds: For any move by the adversary,
∆φ ≤ C · costAdv

sas i i+1j a'j
x y

I By inequality (1), |ηi ,j − ηi ,j−1| ≤ n · C for j = 1, 2.

I Adversary server aj moves to the right, from x to y , where
x < y , with si ≤ x and y ≤ si+1.

I Thus, αi ,j decreases by y − x and αi ,j−1 increases by y − x .

I The cost to the adversary of this move is n(y − x).

I By definition of the potential,
∆φ = (ηi ,j − ηi ,j−1)(y − x) ≤ n · C · (y − x) ≤ C · costAdv .

Lucas Bang R–LINE UNLV

Proof of Competitiveness

Proof of Property 1

If S holds, then Property 1 holds: For any move by the adversary,
∆φ ≤ C · costAdv

sas i i+1j a'j
x y

I By inequality (1), |ηi ,j − ηi ,j−1| ≤ n · C for j = 1, 2.

I Adversary server aj moves to the right, from x to y , where
x < y , with si ≤ x and y ≤ si+1.

I Thus, αi ,j decreases by y − x and αi ,j−1 increases by y − x .

I The cost to the adversary of this move is n(y − x).

I By definition of the potential,
∆φ = (ηi ,j − ηi ,j−1)(y − x) ≤ n · C · (y − x) ≤ C · costAdv .

Lucas Bang R–LINE UNLV

Proof of Competitiveness

Proof of Property 1

If S holds, then Property 1 holds: For any move by the adversary,
∆φ ≤ C · costAdv

sas i i+1j a'j
x y

I By inequality (1), |ηi ,j − ηi ,j−1| ≤ n · C for j = 1, 2.

I Adversary server aj moves to the right, from x to y , where
x < y , with si ≤ x and y ≤ si+1.

I Thus, αi ,j decreases by y − x and αi ,j−1 increases by y − x .

I The cost to the adversary of this move is n(y − x).

I By definition of the potential,
∆φ = (ηi ,j − ηi ,j−1)(y − x) ≤ n · C · (y − x) ≤ C · costAdv .

Lucas Bang R–LINE UNLV

Proof of Competitiveness

Proof of Property 1

If S holds, then Property 1 holds: For any move by the adversary,
∆φ ≤ C · costAdv

sas i i+1j a'j
x y

I By inequality (1), |ηi ,j − ηi ,j−1| ≤ n · C for j = 1, 2.

I Adversary server aj moves to the right, from x to y , where
x < y , with si ≤ x and y ≤ si+1.

I Thus, αi ,j decreases by y − x and αi ,j−1 increases by y − x .

I The cost to the adversary of this move is n(y − x).

I By definition of the potential,
∆φ = (ηi ,j − ηi ,j−1)(y − x) ≤ n · C · (y − x) ≤ C · costAdv .

Lucas Bang R–LINE UNLV

Proof of Competitiveness

Proof of Property 1

If S holds, then Property 1 holds: For any move by the adversary,
∆φ ≤ C · costAdv

sas i i+1j a'j
x y

I By inequality (1), |ηi ,j − ηi ,j−1| ≤ n · C for j = 1, 2.

I Adversary server aj moves to the right, from x to y , where
x < y , with si ≤ x and y ≤ si+1.

I Thus, αi ,j decreases by y − x and αi ,j−1 increases by y − x .

I The cost to the adversary of this move is n(y − x).

I By definition of the potential,
∆φ = (ηi ,j − ηi ,j−1)(y − x) ≤ n · C · (y − x) ≤ C · costAdv .

Lucas Bang R–LINE UNLV

Proof of Competitiveness

Proof of Property 2

If S holds, then Property 2 holds: for any deterministic move by
R–LINE, ∆φ+ cost ≤ 0.

s i s'i
x y

I si moves from x to y , where x < y .

I The algorithm cost of the step is y − x .

I The move causes αi ,j to decrease by y − x and αi−1,j to
increase by the same amount.

I By inequality (2), ηi ,j + 1 ≤ ηi−1,j , and the definition of the
potential: ∆φ+ costR−−LINE = (y − x)(ηi ,j − ηi−1,j + 1) ≤ 0.

Lucas Bang R–LINE UNLV

Proof of Competitiveness

Proof of Property 2

If S holds, then Property 2 holds: for any deterministic move by
R–LINE, ∆φ+ cost ≤ 0.

s i s'i
x y

I si moves from x to y , where x < y .

I The algorithm cost of the step is y − x .

I The move causes αi ,j to decrease by y − x and αi−1,j to
increase by the same amount.

I By inequality (2), ηi ,j + 1 ≤ ηi−1,j , and the definition of the
potential: ∆φ+ costR−−LINE = (y − x)(ηi ,j − ηi−1,j + 1) ≤ 0.

Lucas Bang R–LINE UNLV

Proof of Competitiveness

Proof of Property 2

If S holds, then Property 2 holds: for any deterministic move by
R–LINE, ∆φ+ cost ≤ 0.

s i s'i
x y

I si moves from x to y , where x < y .

I The algorithm cost of the step is y − x .

I The move causes αi ,j to decrease by y − x and αi−1,j to
increase by the same amount.

I By inequality (2), ηi ,j + 1 ≤ ηi−1,j , and the definition of the
potential: ∆φ+ costR−−LINE = (y − x)(ηi ,j − ηi−1,j + 1) ≤ 0.

Lucas Bang R–LINE UNLV

Proof of Competitiveness

Proof of Property 2

If S holds, then Property 2 holds: for any deterministic move by
R–LINE, ∆φ+ cost ≤ 0.

s i s'i
x y

I si moves from x to y , where x < y .

I The algorithm cost of the step is y − x .

I The move causes αi ,j to decrease by y − x and αi−1,j to
increase by the same amount.

I By inequality (2), ηi ,j + 1 ≤ ηi−1,j , and the definition of the
potential: ∆φ+ costR−−LINE = (y − x)(ηi ,j − ηi−1,j + 1) ≤ 0.

Lucas Bang R–LINE UNLV

Proof of Competitiveness

Proof of Property 2

If S holds, then Property 2 holds: for any deterministic move by
R–LINE, ∆φ+ cost ≤ 0.

s i s'i
x y

I si moves from x to y , where x < y .

I The algorithm cost of the step is y − x .

I The move causes αi ,j to decrease by y − x and αi−1,j to
increase by the same amount.

I By inequality (2), ηi ,j + 1 ≤ ηi−1,j , and the definition of the
potential: ∆φ+ costR−−LINE = (y − x)(ηi ,j − ηi−1,j + 1) ≤ 0.

Lucas Bang R–LINE UNLV

Proof of Competitiveness

Proof of Property 2

If S holds, then Property 2 holds: for any deterministic move by
R–LINE, ∆φ+ cost ≤ 0.

s i s'i
x y

I si moves from x to y , where x < y .

I The algorithm cost of the step is y − x .

I The move causes αi ,j to decrease by y − x and αi−1,j to
increase by the same amount.

I By inequality (2), ηi ,j + 1 ≤ ηi−1,j , and the definition of the
potential: ∆φ+ costR−−LINE = (y − x)(ηi ,j − ηi−1,j + 1) ≤ 0.

Lucas Bang R–LINE UNLV

Proof of Competitiveness

Proof of Property 3

If S holds, then Property (3) holds: We may assume the adversary’s
hidden server is at one of at most two possible locations.

r

s
s
s

s ss 51 2

3

4

6

aa

I Since a could be any point on the line, the payoff matrix of
the game has infinitely many rows.

I We prove that just two of those rows, namely a = sn and
a = sn+p+1, dominate the others.

I By batching the row strategies, we illustrate the ∞× 2 payoff
matrix in the next slide.

Lucas Bang R–LINE UNLV

Proof of Competitiveness

Proof of Property 3

If S holds, then Property (3) holds: We may assume the adversary’s
hidden server is at one of at most two possible locations.

r

s
s
s

s ss 51 2

3

4

6

aa

I Since a could be any point on the line, the payoff matrix of
the game has infinitely many rows.

I We prove that just two of those rows, namely a = sn and
a = sn+p+1, dominate the others.

I By batching the row strategies, we illustrate the ∞× 2 payoff
matrix in the next slide.

Lucas Bang R–LINE UNLV

Proof of Competitiveness

Proof of Property 3

If S holds, then Property (3) holds: We may assume the adversary’s
hidden server is at one of at most two possible locations.

r

s
s
s

s ss 51 2

3

4

6

aa

I Since a could be any point on the line, the payoff matrix of
the game has infinitely many rows.

I We prove that just two of those rows, namely a = sn and
a = sn+p+1, dominate the others.

I By batching the row strategies, we illustrate the ∞× 2 payoff
matrix in the next slide.

Lucas Bang R–LINE UNLV

Proof of Competitiveness

Proof of Property 3

If S holds, then Property (3) holds: We may assume the adversary’s
hidden server is at one of at most two possible locations.

r

s
s
s

s ss 51 2

3

4

6

aa

I Since a could be any point on the line, the payoff matrix of
the game has infinitely many rows.

I We prove that just two of those rows, namely a = sn and
a = sn+p+1, dominate the others.

I By batching the row strategies, we illustrate the ∞× 2 payoff
matrix in the next slide.

Lucas Bang R–LINE UNLV

Proof of Competitiveness

Proof of Property 3

If S holds, then Property (3) holds: We may assume the adversary’s
hidden server is at one of at most two possible locations.

r

s
s
s

s ss 51 2

3

4

6

aa

I Since a could be any point on the line, the payoff matrix of
the game has infinitely many rows.

I We prove that just two of those rows, namely a = sn and
a = sn+p+1, dominate the others.

I By batching the row strategies, we illustrate the ∞× 2 payoff
matrix in the next slide.

Lucas Bang R–LINE UNLV

Proof of Competitiveness

Proof of Property 3

If S holds, then Property (3) holds: We may assume the adversary’s
hidden server is at one of at most two possible locations.

r

s
s
s

s ss 51 2

3

4

6

aa

I Since a could be any point on the line, the payoff matrix of
the game has infinitely many rows.

I We prove that just two of those rows, namely a = sn and
a = sn+p+1, dominate the others.

I By batching the row strategies, we illustrate the ∞× 2 payoff
matrix in the next slide.

Lucas Bang R–LINE UNLV

Proof of Competitiveness

Proof of Property 3

Move sn+p+1 Move sp+1 . . . sn

I a ≤ sn
(
ηn+p+1,2 − ηn+p,2 + 1

)(
sn+p+1 − r

) (
ηp,1 − ηn,1 + n − p

)
(r − sn)(

ηp,1 − ηn,1 + n − p
)
(r − a)

II sn ≤ a ≤ r
(
ηn+p+1,2 − ηn+p,2 + 1

)(
sn+p+1 − r

)
+(

ηp,0 − ηn,0 + n − p
)
(a − sn)(

ηn+p+1,2 − ηn+p,2 + 1
)(

sn+p+1 − a
)

III r ≤ a ≤ sn+p+1 +
(
ηp,0 − ηn,0 + n − p

)
(r − sn)(

ηn+p+1,1 − ηn+p,1 + 1
)
(a − r)

IV a ≥ sn+p+1
(
ηn+p+1,1 − ηn+p,1 + 1

)(
sn+p+1 − r

) (
ηp,0 − ηn,0 + n − p

)
(r − sn)

By inequalities (2) and (3), the rows a = sn and a = sn+p+1

dominate all other rows.

Lucas Bang R–LINE UNLV

Proof of Competitiveness

Proof of Property 3

Move sn+p+1 Move sp+1 . . . sn

a = sn
(
ηn+p+1,2 − ηn+p,2 + 1

)(
sn+p+1 − r

) (
ηp,1 − ηn,1 + n − p

)
(r − sn)

a = sn+p+1
(
ηn+p+1,1 − ηn+p,1 + 1

)(
sn+p+1 − r

) (
ηp,0 − ηn,0 + n − p

)
(r − sn)

By inequalities (2) and (3), the rows a = sn and a = sn+p+1

dominate all other rows.

Lucas Bang R–LINE UNLV

Proof of Competitiveness

Proof of Property 4

If S holds, then Property 4 holds: For any randomized move by
R–LINE, E(∆φ+ cost) ≤ 0.

(∆φ+ cost)11 (∆φ+ cost)12
(∆φ+ cost)21 (∆φ+ cost)22

I By S, the upper left and lower right entries are negative.

I The upper right and lower left entries are positive.

Lucas Bang R–LINE UNLV

Proof of Competitiveness

Proof of Property 4

If S holds, then Property 4 holds: For any randomized move by
R–LINE, E(∆φ+ cost) ≤ 0.

(∆φ+ cost)11 (∆φ+ cost)12
(∆φ+ cost)21 (∆φ+ cost)22

I By S, the upper left and lower right entries are negative.

I The upper right and lower left entries are positive.

Lucas Bang R–LINE UNLV

Proof of Competitiveness

Proof of Property 4

If S holds, then Property 4 holds: For any randomized move by
R–LINE, E(∆φ+ cost) ≤ 0.

(∆φ+ cost)11 (∆φ+ cost)12
(∆φ+ cost)21 (∆φ+ cost)22

I By S, the upper left and lower right entries are negative.

I The upper right and lower left entries are positive.

Lucas Bang R–LINE UNLV

Proof of Competitiveness

Proof of Property 4

If S holds, then Property 4 holds: For any randomized move by
R–LINE, E(∆φ+ cost) ≤ 0.

(∆φ+ cost)11 (∆φ+ cost)12
(∆φ+ cost)21 (∆φ+ cost)22

I By S, the upper left and lower right entries are negative.

I The upper right and lower left entries are positive.

Lucas Bang R–LINE UNLV

Proof of Competitiveness

Proof of Property 4

If S holds, then Property 4 holds: For any randomized move by
R–LINE, E(∆φ+ cost) ≤ 0.

(∆φ+ cost)11 (∆φ+ cost)12
(∆φ+ cost)21 (∆φ+ cost)22

I By S, the upper left and lower right entries are negative.

I The upper right and lower left entries are positive.

Lucas Bang R–LINE UNLV

Proof of Competitiveness

Proof of Property 4

If S holds, then Property 4 holds: For any randomized move by
R–LINE, E(∆φ+ cost) ≤ 0.

I The value of our game is

det(G)

(ηn+p+1,2 + ηn+p+1 − ηn+p,2 − ηn+p+1,1) · (sn+p+1 − r) + (ηp,0 + ηn,1 − ηn,0 − ηp,1) · (r − sn)

I The numerator is non-negative by inequality 4. The
denominator is negative, which we can prove by combining
inequalities of S labeled (2) and (3).

I Thus, E (∆φ+ costR−−LINE) = v(G) ≤ 0.

Lucas Bang R–LINE UNLV

Proof of Competitiveness

Proof of Property 4

If S holds, then Property 4 holds: For any randomized move by
R–LINE, E(∆φ+ cost) ≤ 0.

I The value of our game is

det(G)

(ηn+p+1,2 + ηn+p+1 − ηn+p,2 − ηn+p+1,1) · (sn+p+1 − r) + (ηp,0 + ηn,1 − ηn,0 − ηp,1) · (r − sn)

I The numerator is non-negative by inequality 4. The
denominator is negative, which we can prove by combining
inequalities of S labeled (2) and (3).

I Thus, E (∆φ+ costR−−LINE) = v(G) ≤ 0.

Lucas Bang R–LINE UNLV

Proof of Competitiveness

Proof of Property 4

If S holds, then Property 4 holds: For any randomized move by
R–LINE, E(∆φ+ cost) ≤ 0.

I The value of our game is

det(G)

(ηn+p+1,2 + ηn+p+1 − ηn+p,2 − ηn+p+1,1) · (sn+p+1 − r) + (ηp,0 + ηn,1 − ηn,0 − ηp,1) · (r − sn)

I The numerator is non-negative by inequality 4. The
denominator is negative, which we can prove by combining
inequalities of S labeled (2) and (3).

I Thus, E (∆φ+ costR−−LINE) = v(G) ≤ 0.

Lucas Bang R–LINE UNLV

Proof of Competitiveness

Proof of Property 4

If S holds, then Property 4 holds: For any randomized move by
R–LINE, E(∆φ+ cost) ≤ 0.

I The value of our game is

det(G)

(ηn+p+1,2 + ηn+p+1 − ηn+p,2 − ηn+p+1,1) · (sn+p+1 − r) + (ηp,0 + ηn,1 − ηn,0 − ηp,1) · (r − sn)

I The numerator is non-negative by inequality 4. The
denominator is negative, which we can prove by combining
inequalities of S labeled (2) and (3).

I Thus, E (∆φ+ costR−−LINE) = v(G) ≤ 0.

Lucas Bang R–LINE UNLV

Proof of Competitiveness

Thus, by properties (1), (2), (3), and (4), if S is satisfied then
R–LINE is C -competitive.

Lucas Bang R–LINE UNLV

