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Abstract

Thesis Result
» A randomized online algorithm for the 2-server problem on the
line.

» Competitiveness < 1.901 against the oblivious adversary.

» Improves the previously best known competitiveness of
17585 ~ 1.987.
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Outline

Offline vs. online algorithms.

Competitive analysis and game theory.

The k-server problem.

Our 2-server algorithm, R-LINE (Randomized Line).

Future work.
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Offline Algorithms

Typically, one initially studies algorithms in the offline setting,
where all data is available to the algorithm at start-up.
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Online Algorithms

An online algorithm must make decisions with only partial
information.
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Online Algorithms

Many important real-world problems are online.
Examples
. Investment decisions, as in algorithmic stock trading.
. Job scheduling, as in multi-core computing.

1
2
3. Memory cache page management.
4

. and more....
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Online Algorithms

Online algorithms accept input one piece at a time and must
produce an output before more information is given.
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Online Algorithms

Online algorithms accept input one piece at a time and must
produce an output before more information is given.

1. InputlI=Hh,b,... 1,

2. Receive an input /;, and produces an output O;.

3. Each input has an associated cost(/;).

4. We wish to minimize the total cost(/) = ) cost(/;).
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Competitive Analysis

We measure the performance of an online algorithm A with the

Competitive Ratio
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Competitive Analysis

We measure the performance of an online algorithm A with the

Competitive Ratio

» For any request sequence / the competitive ratio C satisfies

costa(l) < C - costopr(l) + K

» If Ais randomized then

E[costa(1)] < C - costopr(l) + K

Lucas Bang R-LINE UNLV



Background

The k-server Problem

» Introduced by Manasse, McGeoch, and Sleator, 1990.
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Background

The k-server Problem

v

Introduced by Manasse, McGeoch, and Sleator, 1990.

Given k mobile servers in a metric space M.

v

» Serve requests online in the metric space.

» Move a single server to the request point.

v

Goal: minimize total distance moved.
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» cost = 15
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Cost ratio for this particular input sequence:

» cost =15

> optimal cost = 8

» cost < 2 - (optimal cost) + 1
» 15 <2-8+1

Compare with definition of competitive ratio:

costa(l) < C - costopr(l) + K

cost < 2 - (optimal cost) + 1

If this holds for all possible input sequences, we could claim that
A is 2-competitive.
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The Potential Method

A common method for proving the competitiveness of an online
algorithm. For the server problem, define a potential function

¢ : Server Locations — R.
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Show that at any step i/,
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The Potential Method

A common method for proving the competitiveness of an online
algorithm. For the server problem, define a potential function

¢ : Server Locations — R.

Show that at any step i/,

costa(rij) < C - costopr(ri) — (¢i — ¢i-1)

Then, summing over the request sequence:

Z costa(r;) < Z C - costopt(ri) Z Ag;.

costa(R) < C - costopt(R) + K.
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The Optimal Adversary Algorithm

How to model the optimal algorithm?

v

We think of the optimal algorithm as a malevolent adversary.

v

Adversary generates the input sequence 1, b, ..., I,

v

Adversary must also use its servers to satisfy requests.

v

Adversary tries to maximize C by simultaneously making its
cost low and our cost high.
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Game Theory

We can now think of the server problem as a game between our
algorithm and the adversary algorithm. Consider the payoff matrix
for a two-person zero-sum game G.

] H Adversary Strategy 1 \ Adversary Strategy 2

Server Strategy 1 ai ain
Server Strategy 2 a1 a»
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Game Theory

We can now think of the server problem as a game between our
algorithm and the adversary algorithm. Consider the payoff matrix
for a two-person zero-sum game G.

] H Adversary Strategy 1 \ Adversary Strategy 2

Server Strategy 1 ai ain
Server Strategy 2 a1 a»

det A
ai1 — a2 —ag1 +ax

v(G) =
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Game Theory

’ H Adversary Strategy 1 | Adversary Strategy 2

Server Strategy 1 a ain
Server Strategy 2 an an

Optimum row player strategy:

ax—a
aj1—aip—ax1+an»
a11—ai2
a1 —ap—azxi+ax

Play row 1 with p; =
Play row 2 with p, =

Optimum column player strategy:

a2 —ai

a1 —ap—ax+ax»
a11—a

a1 —ap—axi+ax

Play column 1 with p; =
Play column 2 with p, =
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Generalization of the k-server problem

The (m, n)-server Problem

Lucas Bang R-LINE UNLV



Generalization of the k-server problem

The (m, n)-server Problem

» Given m mobile servers in a metric space M.

Lucas Bang R-LINE UNLV



Generalization of the k-server problem

The (m, n)-server Problem

» Given m mobile servers in a metric space M.

» Serve requests online in the metric space.

Lucas Bang R-LINE UNLV



Generalization of the k-server problem

The (m, n)-server Problem

» Given m mobile servers in a metric space M.
» Serve requests online in the metric space.

» Each request requires n servers to move to the request point

Lucas Bang R-LINE UNLV



Generalization of the k-server problem

The (m, n)-server Problem

» Given m mobile servers in a metric space M.

» Serve requests online in the metric space.

v

Each request requires n servers to move to the request point

v

Goal: minimize total distance moved.
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Useful Results

Theorem 1
C-competitive (2n, n)-server Algorithm

4

C-competitive 2-server Algorithm
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Useful Results

Theorem 1
C-competitive (2n, n)-server Algorithm
4
C-competitive 2-server Algorithm
Theorem 2

Optimal offline strategy for the (2n, n) server problem keeps the
servers in two blocks of size n.

Lucas Bang R-LINE UNLV



R-LINE

We give an online algorithm for the 2-server problem where the
metric space is the real line.
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>

Lucas Bang

Define a randomized online algorithm for the (2n, n)-server
problem.

Use 2-person zero-sum game theory for randomized moves.

Prove competitiveness by solving non-linear constrained
optimization problem and a suitable potential.

Derive randomized 2-server algorithm from (2n, n)-server
algorithm, via Theorem 1.
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R-LINE

We give an online algorithm for the 2-server problem where the
metric space is the real line.

Outline
» Define a randomized online algorithm for the (2n, n)-server
problem.
» Use 2-person zero-sum game theory for randomized moves.

> Prove competitiveness by solving non-linear constrained
optimization problem and a suitable potential.

» Derive randomized 2-server algorithm from (2n, n)-server
algorithm, via Theorem 1.

» As n grows large, competitiveness decreases.
» For R-LINE, C <1.901
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the length of the longest interval that has exactly i algorithm
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R-LINE Details

T-Theory on the Line

Lucas Bang

For R-LINE, we have our algorithms servers, s1, s, ..., Sopp, and
Two adversary servers, a; and a; for a total of 2n 4 2 points.

Define a; j, the (i, )t isolation index of a configuration, to be
the length of the longest interval that has exactly i algorithm
servers to the left and exactly j adversary servers to the left.

Formally,

ajj = max{0, min{sj;1, aj+1} — max{s;, a;}}
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For R-LINE, we have our algorithms servers, s1, s, ..., Sopp, and
Two adversary servers, a; and a; for a total of 2n 4 2 points.

Define a; j, the (i, )t isolation index of a configuration, to be

the length of the longest interval that has exactly i algorithm
servers to the left and exactly j adversary servers to the left.

Formally,

ajj = max{0, min{sj;1, aj+1} — max{s;, a;}}

Sop = agp = —oo and Sypp1 = a3 = 00
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R-LINE Details

T-Theory on the Line

> «;; is the length of the longest interval that has exactly i
algorithm servers to the left and exactly j adversary servers to

the left.
> o j = max{0, min{sj11,aj+1} — max{s;,a;}}
> Example,
s s
S
s a a 8
D 1 1 +—>
L Y J\ Y J\ Y J
%10 93,1 %32
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R-LINE Details

T-Theory on the Line

> «;; is the length of the longest interval that has exactly i
algorithm servers to the left and exactly j adversary servers to

the left.
> o j = max{0, min{sj11,aj+1} — max{s;,a;}}
> Example,
s s
s
s a a g
<+ 1 1 +—>
L Y J\ Y J\ Y J
%0 03,1 932
a30 = 0,044’1 = 0,
R-LINE UNLV
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R-LINE Details

Isolation Index Coefficients

v

Every isolation index, «, has an associated coefficient, 7.

v

R-LINE is defined in terms of these constants, 7.

)th isolation index coefficient.

v

Define constants 7, ;, the (i,

v

The isolation index coefficients satisfy a symmetry property,

Nij = M2n—i2—j
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R-LINE Details

Isolation Index Coefficients

v

Every isolation index, «, has an associated coefficient, 7.

v

R-LINE is defined in terms of these constants, 7.

)th isolation index coefficient.

v

Define constants 7, ;, the (i,

v

The isolation index coefficients satisfy a symmetry property,

Nij = M2n—i2—j

v

We also have 190 = 72, = 0.
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R-LINE Details

Definition of the Potential, ¢

» For any configuration, the potential is defined as the sum of
all isolation indices multiplied by their associated coefficients.
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R-LINE Details

Definition of the Potential, ¢

» For any configuration, the potential is defined as the sum of
all isolation indices multiplied by their associated coefficients.

> Formally,

G = mij-aij
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Current request is r.
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Configurations
Notation
» We refer to s; as the it" server and also its location.
» We number the servers left to right.
> 5 < <. <9y
» Current request is r.

» Previous request is r’.
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R-LINE Details

Configurations

Notation
» We refer to s; as the it" server and also its location.
» We number the servers left to right.
> 5 < <. <9y

v

Current request is r.
» Previous request is r’.
» WLOG r' < r.
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R-LINE Details

Configurations

Notation

>

>

>

Lucas Bang

We refer to s; as the it" server and also its location.
We number the servers left to right.

51 <5 <. <5

Current request is r.

Previous request is r’.

WLOG r' < r.

Servers do not pass each other.
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» There are n servers at the request point.
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S-Configuration (Satisfying)

» There are n servers at the request point.

(6,3) Example

A
\/
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D-Configuration (Deterministic)
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R-LINE Details

D-Configuration (Deterministic)

» 1. More than n algorithm servers either strictly to the left or
strictly to the right of r; r > s,1 or r < s,,.
2. If fewer than n algorithm servers at r’

2.1 No algorithm server strictly between r’ and r
2.2 At least n algorithm servers at the points r’ and r combined.

(6,3) Example

S1 S4 S5 Se
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R-LINE Details

D-Configuration (Deterministic)

» 1. More than n algorithm servers either strictly to the left or
strictly to the right of r; r > s,1 or r < s,,.
2. If fewer than n algorithm servers at r’
2.1 No algorithm server strictly between r’ and r
2.2 At least n algorithm servers at the points r’ and r combined.

(6,3) Example

S4
S So S3 S5 Ss
< L L L L L =
~ 1 1 I' 1 1 lad
r r
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R-LINE Details

D-Configuration Moves

1. Must be m servers to the left of r, for some m > n.
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R-LINE Details

D-Configuration Moves

1. Must be m servers to the left of r, for some m > n.

2. Move spt1...5m to r.

(6,3) Example

S3
S2
S1 S4 S5 Se

r' r

\

A
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R-LINE Details

D-Configuration Moves

1. Must be m servers to the left of r, for some m > n.

2. Move spt1...5m to r.

(6,3) Example

S3
S2

S1 S4—» S5 S

r' r

\

A
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R-LINE Details

D-Configuration Moves

1. Must be m servers to the left of r, for some m > n.

2. Move spt1...5m to r.

(6,3) Example

S3
S2
S1 Sa S5 Se
< | | | | | -
hal 1 1 1 1 -
r r
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D-Configuration Moves

1. Must be m servers to the left of r, for some m > n.

2. Move spt1...5m to r.

(6,3) Example

Sa4
S So S3 Ss Se
< | | | | | -
hal 1 1 1 1 1 -
r r
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R-LINE Details

D-Configuration Moves

1. Must be m servers to the left of r, for some m > n.

2. Move spt1...5m to r.

(6,3) Example

A

\

- =1
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R-LINE Details

D-Configuration Moves

1. Must be m servers to the left of r, for some m > n.

2. Move spt1...5m to r.

(6,3) Example

Sa4
S So S3 Ss Se
< | | | | | -
hal 1 1 1 1 1 -
r r
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R-Configurations (Randomized)
The adversary's hidden server.
» The adversary has two servers.
» The current request, r.
The other server's location, a, is “hidden”.

v

There are only two hidden server locations to consider.

v

(6,3) Example
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R-LINE Details

R-Configurations (Randomized)
The adversary's hidden server.

» The adversary has two servers.
» The current request, r.
The other server's location, a, is “hidden”.

v

v

There are only two hidden server locations to consider.

(6,3) Example

Sa
S3
S1 S2 Ss Se
< l l l l »
~ 1 1 1 T >
a r
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R-Configurations (Randomized)
The adversary's hidden server.
» The adversary has two servers.
» The current request, r.
The other server's location, a, is “hidden”.

v

There are only two hidden server locations to consider.

v

(6,3) Example

Lucas Bang R-LINE UNLV



R-LINE Details

R-Configuration (Randomized)
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R-LINE Details

R-Configuration (Randomized)

1. Exactly n algorithm servers on the same side of r as r’. Either
r'=s,<rorr<r =s,1.
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R-Configuration (Randomized)

1. Exactly n algorithm servers on the same side of r as r’. Either
r'=s,<rorr<r =s,1.

2. No algorithm server strictly between r’ and r.
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R-LINE Details

R-Configuration (Randomized)

1.

Exactly n algorithm servers on the same side of r as r’. Either
r'=s,<rorr<r =s,1.

2. No algorithm server strictly between r’ and r.

3. At least n algorithm servers at the points r’ and r combined.

Lucas Bang
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R-LINE Details

R-Configuration (Randomized)

1.

Exactly n algorithm servers on the same side of r as r’. Either
r'=s,<rorr<r =s,1.

2. No algorithm server strictly between r’ and r.

3. At least n algorithm servers at the points r’ and r combined.

(6,3) Example

S3
S2
S S4 Ss Se
< L L L L =
< I T T T >
r r

Lucas Bang
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» There are two possible moves.
1. Move a single server.
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R-Configuration (Randomized) Moves

» There are two possible moves.

1. Move a single server.
2. Complete the request using the servers from r’.

» Choose between the two alternatives using randomization, by
solving a 2-person zero-sum game.
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R-LINE Details

R-Configuration (Randomized) Moves

» There are two possible moves.
1. Move a single server.
2. Complete the request using the servers from r’.
» Choose between the two alternatives using randomization, by
solving a 2-person zero-sum game.

S3
So
St S4 S5 Sé
< : : : : >
r r
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R-Configuration (Randomized) Moves

» There are two possible moves.
1. Move a single server.
2. Complete the request using the servers from r’.
» Choose between the two alternatives using randomization, by
solving a 2-person zero-sum game.

S3
So
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R-Configuration (Randomized) Moves

» There are two possible moves.
1. Move a single server.
2. Complete the request using the servers from r’.
» Choose between the two alternatives using randomization, by
solving a 2-person zero-sum game.

S3
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1. Move a single server.
2. Complete the request using the servers from r’.
» Choose between the two alternatives using randomization, by
solving a 2-person zero-sum game.
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R-Configuration (Randomized) Moves

» There are two possible moves.
1. Move a single server.
2. Complete the request using the servers from r’.
» Choose between the two alternatives using randomization, by
solving a 2-person zero-sum game.
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R-LINE Details

R-Configuration (Randomized) Moves

» There are two possible moves.

1. Move a single server.

2. Complete the request using the servers from r’.

» Choose between the two alternatives using randomization, by
solving a 2-person zero-sum game.

S3
So
St S4 S5 Sé
- L L L L [
il : 1 1 1 g
r r
R-LINE UNLV
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R-LINE Details

Configurations: R-Configurations (Randomized)

)
S 1
§ r<—S$SS @—»r s ss
-ttt —F—t—+++>
s
s Ss s
“—t—t—tt+—t>
a r (A¢ + COSt)11 (A(Z5 + COSl’)12
s
s Ss s
Gttt
r a (A + cost)a (A¢ + cost)
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Configurations: R-Configurations (Randomized)

(A¢p + cost)11 | (A¢ + cost)1n
(A¢ + cost)a1 | (Ag + cost)a
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Configurations: R-Configurations (Randomized)

(A¢p + cost)11 | (A¢ + cost)1n
(A¢ + cost)a1 | (Ag + cost)a

» Entries game matrix computed in terms of the isolation index
coefficients, 7.
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(A¢p + cost)11 | (A¢ + cost)1n
(A¢ + cost)a1 | (Ag + cost)a

» Entries game matrix computed in terms of the isolation index
coefficients, 7.

» If currently p servers located at r:
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R-LINE Details

Configurations: R-Configurations (Randomized)

(A¢p + cost)11 | (A¢ + cost)1n
(A¢ + cost)a1 | (Ag + cost)a

» Entries game matrix computed in terms of the isolation index
coefficients, 7.

» If currently p servers located at r:

(A¢ + cost)i1 = (Mn+pt+12 = Mntp2 + 1)+ (Sntps1 — 1)
(A¢ + cost)iz = (np,1 — Mn1 + n—p) - (r — sn)
(A¢ + cost)o1 = (Mn+pt+1,1 — Mntp,1 + 1)+ (Sntps1 — 1)
(A¢ + cost)2z = (np,0 = Mno + n—p) - (r — sn)
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R-LINE Details

The Algorithm R-LINE
For a given round of execution:

1. Start in S-Config. Receive a request.
2. If D—Config, make deterministic moves.

2.1 If result is S—Config, done.
2.2 Otherwise result is R-Config.

3. If R—Config, make randomized moves until S—Config.

. D

reques

==
R

<n
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Proof of Competitiveness

Overview of Proof
1. Provide a system of inequalities, S, involving the isolation
index coefficients, 7; ;, and the competitiveness, C.

2. Show that if there exists an assignment of values to every 7); ;
that satisfies S, then R-LINE is C-competitive.

3. Use numeric methods to find a solution to S that minimizes C.

Lucas Bang R-LINE UNLV



Proof of Competitiveness

Sufficient Inequalities, S,

Vo<i<2n: |nj1—miol < n-C (1)
V1<i<nandV1<j<2: mj+1 < m_y; @
Vi<i<nandV1<j<2:m_3j1 < mj-1+1 (3)
V1i<i<n: mi—1,1—=mig+D0n—ii—na1+1) < (mi—1,0 = ni,0 + 1)Na—i,0 — M0 + 1) (4)
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Proof of Competitiveness

Overview of Proof Steps

Show that if the system of inequalities, S,, is satisfied, then the
following properties hold:
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2. For R-LINE deterministic moves: A¢ + cost < 0.
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Show that if the system of inequalities, S,, is satisfied, then the
following properties hold:

1. For adversary moves: A¢ < C - cost 44y -
2. For R-LINE deterministic moves: A¢ + cost < 0.

3. WLOG, adversary's hidden server is at one of at most two
possible locations.
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Overview of Proof Steps

Show that if the system of inequalities, S,, is satisfied, then the
following properties hold:

1. For adversary moves: A¢ < C - cost 44y -
2. For R-LINE deterministic moves: A¢ + cost < 0.

3. WLOG, adversary's hidden server is at one of at most two
possible locations.

4. For R-LINE randomized moves: E(A¢ + cost) < 0
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Proof of Competitiveness

Overview of Proof Steps

Show that if the system of inequalities, S,, is satisfied, then the
following properties hold:

1. For adversary moves: A¢ < C - cost 44y -
2. For R-LINE deterministic moves: A¢ + cost < 0.

3. WLOG, adversary's hidden server is at one of at most two
possible locations.

4. For R-LINE randomized moves: E(A¢ + cost) < 0

Adding all of the inequalities over a request round:

E(costa(o)) < C - costapy(o) + K
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Solving the Inequalities

Given the system S,

» Find a solution to S, that minimizes C.
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Solving the Inequalities

Given the system S,

» Find a solution to S, that minimizes C.

» Transform S, into a new system S/, to simplify the solution.
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Solving the Inequalities

Introduce variables €; and 6; for all 0 </ < n. Then S/, consists of
the following constraints:
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Solving the Inequalities

Introduce variables €; and 6; for all 0 </ < n. Then S/, consists of
the following constraints:

Lucas Bang

(2/ + 6,,_,')(2 — € + 6,'_1)
(2[7 + 60)(2 + 6,,,1)

= 4

> 4n

= —€p/2

= (2n—=46)/n

= € +20

= 3i—9;

= 2n+4i—-26

= 2n—i—9§

= i—6

= M2n-i0
R-LINE

VO<i<n

VOo<i<n
VO<i<n
Vn<i<2n
VOo<i<n
Vn<i<2n
V0<i<2n

UNLV



Solving the Inequalities

Converting to a Differential Equation

» Asn— o0, S, — D
» D is given by:

(x+1+F(—x))-(1—Ff(x))=x+1

-1<x<1
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Solving the Inequalities

Euler Method for Reflective Differential Equation

1. Choose a step size, h = %
2. Choose an initial value yp at tg

3. Compute updates:

Yn+1 = Yn + h- f(t—ny)/—n)v
Y-n-1=Y-nth- f(t,,,y,,),
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Solving the Inequalities

Algorithm to Find Minimum C

ok w0

Lucas Bang

Choose initial value £(0).
Approximate f on interval [—1,1].
Use substitutions to find 7, ;.
Verify that 7; ; satisfy Sp,.

Compute corresponding value of C.

Binary search on f(0) to find minimum C.
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Solving the Inequalities

Solution for large n

» We find that C ~ 1.9007452 for n = 10000.

» The corresponding approximation of f(x):
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Future Work

Other Metric Spaces
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Future Work

Other Metric Spaces

> Trees - Preliminary work done, strongly suggests C < 1.901.
» Manhattan Plane, Circle, Euclidean.

» General Spaces!!
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» General Spaces!!

k > 2 on the Line

> (kn, n)-server algorithm = k-server algorithm.
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Future Work

Other Metric Spaces

> Trees - Preliminary work done, strongly suggests C < 1.901.
» Manhattan Plane, Circle, Euclidean.

» General Spaces!!

k > 2 on the Line

> (kn, n)-server algorithm = k-server algorithm.

Analytic Solution to the Differential Equation

» Would give exact minimum value of C for R-LINE.
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The End.

Lucas Bang R-LINE UNLV



R-LINE

The End.

Lucas Bang R-LINE UNLV



R-LINE

The End.

Lucas Bang R-LINE UNLV



-
Proof of Competitiveness
Proof of Property 1

If S holds, then Property 1 holds: For any move by the adversary,
A¢ < C - costgqy
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If S holds, then Property 1 holds: For any move by the adversary,
A¢ < C - costgqy
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Proof of Competitiveness

Proof of Property 1

If S holds, then Property 1 holds: For any move by the adversary,
A¢ < C - costgqy
...Sli ?j—' ia'] ?i+1“‘

T T
X

\

» By inequality (1), [n;j —nij—1| < n-C for j =1,2.
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Proof of Competitiveness

Proof of Property 1

If S holds, then Property 1 holds: For any move by the adversary,
A¢ < C - costgqy
81 @)

< 1 1

il T T T T

X y

\

» By inequality (1), [n;j —nij—1| < n-C for j =1,2.
» Adversary server a; moves to the right, from x to y, where
x <y,withs;<xandy <sj;.
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Proof of Competitiveness

Proof of Property 1
If S holds, then Property 1 holds: For any move by the adversary,
A¢ < C - costgqy

81 @)

< 1
il T T T

X y

\

» By inequality (1), [n;j —nij—1| < n-C for j =1,2.

» Adversary server a; moves to the right, from x to y, where
x <y,withs;<xandy <sj;.

» Thus, «;; decreases by y — x and «;j_1 increases by y — x.
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Proof of Property 1
If S holds, then Property 1 holds: For any move by the adversary,
A¢ < C - costgqy

81 @)

< 1 1
il T T T

X y

\

» By inequality (1), [n;j —nij—1| < n-C for j =1,2.

» Adversary server a; moves to the right, from x to y, where
x <y,withs;<xandy <sj;.

» Thus, «;; decreases by y — x and «;j_1 increases by y — x.

» The cost to the adversary of this move is n(y — x).
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Proof of Competitiveness

Proof of Property 1
If S holds, then Property 1 holds: For any move by the adversary,
A¢ < C - costgqy

81 @)

< 1 1
il T T T

X y

\

» By inequality (1), [n;j —nij—1| < n-C for j =1,2.

v

Adversary server a; moves to the right, from x to y, where
x <y,withs;<xandy <sj;.

v

Thus, «;; decreases by y — x and «; j_1 increases by y — x.

v

The cost to the adversary of this move is n(y — x).

v

By definition of the potential,
A¢ = (nij—nij-1)(y —x) <n-C-(y —x) < C- costaa-
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Proof of Competitiveness

Proof of Property 2

If S holds, then Property 2 holds: for any deterministic move by
R-LINE, A¢ + cost < 0.
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R-LINE, A¢ + cost < 0.

i Si

y

<

x4

\/

> s; moves from x to y, where x < y.
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If S holds, then Property 2 holds: for any deterministic move by
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i Si
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<
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> s; moves from x to y, where x < y.

» The algorithm cost of the step is y — x.
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Proof of Competitiveness

Proof of Property 2

If S holds, then Property 2 holds: for any deterministic move by
R-LINE, A¢ + cost < 0.

i— 8|

\/

x4

f
y
> s; moves from x to y, where x < y.

» The algorithm cost of the step is y — x.

» The move causes «; ; to decrease by y — x and «_1 to
increase by the same amount.
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Proof of Competitiveness

Proof of Property 2

If S holds, then Property 2 holds: for any deterministic move by
R-LINE, A¢ + cost < 0.

[ —— S'i

\/

x4

y

v

s; moves from x to y, where x < y.

v

The algorithm cost of the step is y — x.

v

The move causes «;; to decrease by y — x and a1 to
increase by the same amount.

By inequality (2), 7ij + 1 < nj—1,, and the definition of the
potential: A¢ + costr__1ive = (y —x)(nij —ni—1,+1) <O0.

v
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Proof of Competitiveness
Proof of Property 3

If S holds, then Property (3) holds: We may assume the adversary's
hidden server is at one of at most two possible locations.
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Proof of Competitiveness

Proof of Property 3

If S holds, then Property (3) holds: We may assume the adversary's
hidden server is at one of at most two possible locations.

Sa

S3
S1 S2 S5 Sg
' L L

!
a r a
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Proof of Competitiveness

Proof of Property 3

If S holds, then Property (3) holds: We may assume the adversary's
hidden server is at one of at most two possible locations.

Sa

S3
S1 S2 S5 Sg
' L L

!
a r a

» Since a could be any point on the line, the payoff matrix of
the game has infinitely many rows.
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Proof of Competitiveness

Proof of Property 3

If S holds, then Property (3) holds: We may assume the adversary's
hidden server is at one of at most two possible locations.

S3
S1 S2 S5 S
4 L L

a r a

» Since a could be any point on the line, the payoff matrix of
the game has infinitely many rows.

» We prove that just two of those rows, namely a = s, and
a = Spyp+1, dominate the others.
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Proof of Competitiveness

Proof of Property 3

If S holds, then Property (3) holds: We may assume the adversary's
hidden server is at one of at most two possible locations.

S3
S1 S2 S5 S
4 L L

a r a

» Since a could be any point on the line, the payoff matrix of
the game has infinitely many rows.

» We prove that just two of those rows, namely a = s, and
a = Spyp+1, dominate the others.

» By batching the row strategies, we illustrate the co x 2 payoff
matrix in the next slide.
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Proof of Competitiveness

Proof of Property 3

If S holds, then Property (3) holds: We may assume the adversary's
hidden server is at one of at most two possible locations.

S3
S1 S2 S5 S
4 L L

a r a

» Since a could be any point on the line, the payoff matrix of
the game has infinitely many rows.

» We prove that just two of those rows, namely a = s, and
a = Spyp+1, dominate the others.

» By batching the row strategies, we illustrate the co x 2 payoff
matrix in the next slide.
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Proof of Competitiveness

Proof of Property 3

’ ‘ H Move 5,1 541 Move sp11 ... 5p

1 a<sy (Mntp+1,2 = Mngp,2 + 1) (Snpprr — 1) | (Mp,1 — M1 + 1 — p)(r — sn)

(mp,1 — M1+ —p)(r—a)
n sn<a<r (Mntp+1,2 = Mntp,2 +1) (Snapsr — 1) +

(p,0 = Mn,0 + 1 — p)(a—sn)

(Mntpr1,2 = Mntp,2 + 1) (Snips1 — a)
H|r<a<sppr1 + (Mp,0 — mMn,0 +n— p)(r — sn)

(Mntp+1,1 = Mntp,1 +1) (@ = r)

1% a > Spip+l (Mntpt1,1 = Mntp,1 + 1) (Snipsr — 1) | (Mp,o — 1m0+ 10— p)(r — sn)

By inequalities (2) and (3), the rows a = s, and a = spyp 41
dominate all other rows.
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Proof of Competitiveness

Proof of Property 3

’ H Move ;1511 Move sp11 ... sp

a=s, (Mntp+1,2 = Mntp,2 + 1) (Snaps1 — 1) | (Mp,1 — M1 + 0 — p)(r — sn)

a = Spip+l (Mntp+1,1 — Mntp,1 + 1) (Sngpr1 — 1) (Mp,0 — Mn,0 + 10— p)(r — sn)

By inequalities (2) and (3), the rows a = s, and a = spyp41
dominate all other rows.
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Proof of Competitiveness

Proof of Property 4

If S holds, then Property 4 holds: For any randomized move by
R-LINE, E(A¢ + cost) < 0.
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Proof of Competitiveness

Proof of Property 4

If S holds, then Property 4 holds: For any randomized move by
R-LINE, E(A¢ + cost) < 0.

(A¢ + cost)i1 | (A + cost)12 ‘
(A¢ + cost)z1 | (A + cost)a ‘
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Proof of Competitiveness

Proof of Property 4

If S holds, then Property 4 holds: For any randomized move by
R-LINE, E(A¢ + cost) < 0.

(A¢ + cost)11

(A¢ + cost)12 ‘

(A¢ + cost)

(A¢ + cost)n ‘

> By S, the upper left and lower right entries are negative.
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Proof of Competitiveness

Proof of Property 4

If S holds, then Property 4 holds: For any randomized move by
R-LINE, E(A¢ + cost) < 0.

(A¢ + cost)11

(A¢ + cost)12 ‘

(A¢ + cost)

(A¢ + cost)n ‘

> By S, the upper left and lower right entries are negative.

> The upper right and lower left entries are positive.
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Proof of Competitiveness

Proof of Property 4

If S holds, then Property 4 holds: For any randomized move by
R-LINE, E(A¢ + cost) < 0.

(A¢ + cost)11

(A¢ + cost)12 ‘

(A¢ + cost)

(A¢ + cost)n ‘

> By S, the upper left and lower right entries are negative.

> The upper right and lower left entries are positive.
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Proof of Competitiveness

Proof of Property 4

If S holds, then Property 4 holds: For any randomized move by
R-LINE, E(A¢ + cost) < 0.
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Proof of Competitiveness

Proof of Property 4

If S holds, then Property 4 holds: For any randomized move by
R-LINE, E(A¢ + cost) < 0.

» The value of our game is

det(G)

("ln+P+1,2 + NMntp+1 — NMn+p,2 — 77n+p+1,1) . (5n+p+l -+ ("lp,O + Mn,1 = Mn0 — np,l) -+ (r —sn)

Lucas Bang R-LINE UNLV



Proof of Competitiveness

Proof of Property 4
If S holds, then Property 4 holds: For any randomized move by

R-LINE, E(A¢ + cost) < 0.
» The value of our game is

det(G)

("ln+p+1,2 + NMntp+1 — NMn+p,2 — 77n+p+1,1) . (5n+p+1 -+ ("lp,O + Mn,1 = Mn0 — 7]p,1) -+ (r —sn)

» The numerator is non-negative by inequality 4. The
denominator is negative, which we can prove by combining

inequalities of S labeled (2) and (3).
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Proof of Competitiveness

Proof of Property 4

If S holds, then Property 4 holds: For any randomized move by
R-LINE, E(A¢ + cost) < 0.

» The value of our game is

det(G)

("ln+p+1,2 + Mntp+1 — Mntp,2 — 77n+p+1,1) . (5n+p+1 -+ ("lp,O + Mn,1 = Mn0 — 7]p,1) -+ (r —sn)

» The numerator is non-negative by inequality 4. The
denominator is negative, which we can prove by combining
inequalities of S labeled (2) and (3).

» Thus, E(AQZ) + COStR__L/NE) = V(G) <0.
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Proof of Competitiveness

Thus, by properties (1), (2), (3), and (4), if S is satisfied then
R-LINE is C-competitive.
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