R-LINE: An Online Algorithm for the 2-Server Problem on the Line with Improved Competitive Ratio

Lucas Bang
University of Nevada, Las Vegas
bang@unlv.nevada.edu

8 April 2013

Thesis Defense

Abstract

Thesis Result

Abstract

Thesis Result

- A randomized online algorithm for the 2-server problem on the line.

Abstract

Thesis Result

- A randomized online algorithm for the 2-server problem on the line.
- Competitiveness ≤ 1.901 against the oblivious adversary.

Abstract

Thesis Result

- A randomized online algorithm for the 2-server problem on the line.
- Competitiveness ≤ 1.901 against the oblivious adversary.
- Improves the previously best known competitiveness of $\frac{155}{78} \approx 1.987$.

Outline

1. Offline vs. online algorithms.
2. Competitive analysis and game theory.
3. The k-server problem.
4. Our 2-server algorithm, R-LINE (Randomized Line).
5. Future work.

Offline Algorithms

Typically, one initially studies algorithms in the offline setting, where all data is available to the algorithm at start-up.

Offline Algorithms

Typically, one initially studies algorithms in the offline setting, where all data is available to the algorithm at start-up.
Example: Traveling Salesman Problem.

Offline Algorithms

Typically, one initially studies algorithms in the offline setting, where all data is available to the algorithm at start-up.
Example: Traveling Salesman Problem.

Offline Algorithms

Typically, one initially studies algorithms in the offline setting, where all data is available to the algorithm at start-up.
Example: Traveling Salesman Problem.

Offline Algorithms

Typically, one initially studies algorithms in the offline setting, where all data is available to the algorithm at start-up.
Example: Traveling Salesman Problem.

Offline Algorithms

Typically, one initially studies algorithms in the offline setting, where all data is available to the algorithm at start-up.
Example: Traveling Salesman Problem.

Offline Algorithms

Typically, one initially studies algorithms in the offline setting, where all data is available to the algorithm at start-up.
Example: Traveling Salesman Problem.

Online Algorithms

An online algorithm must make decisions with only partial information.

Online Algorithms

An online algorithm must make decisions with only partial information.

Example: Canadian Traveler's Problem

Online Algorithms

An online algorithm must make decisions with only partial information.

Example: Canadian Traveler's Problem

Online Algorithms

An online algorithm must make decisions with only partial information.

Example: Canadian Traveler's Problem

Online Algorithms

An online algorithm must make decisions with only partial information.

Example: Canadian Traveler's Problem

Online Algorithms

An online algorithm must make decisions with only partial information.

Example: Canadian Traveler's Problem

Online Algorithms

An online algorithm must make decisions with only partial information.

Example: Canadian Traveler's Problem

Online Algorithms

An online algorithm must make decisions with only partial information.

Example: Canadian Traveler's Problem

Online Algorithms

An online algorithm must make decisions with only partial information.

Example: Canadian Traveler's Problem

Online Algorithms

An online algorithm must make decisions with only partial information.

Example: Canadian Traveler's Problem

Online Algorithms

An online algorithm must make decisions with only partial information.

Example: Canadian Traveler's Problem

Online Algorithms

An online algorithm must make decisions with only partial information.

Example: Canadian Traveler's Problem

Online Algorithms

An online algorithm must make decisions with only partial information.

Example: Canadian Traveler's Problem

Online Algorithms

An online algorithm must make decisions with only partial information.

Example: Canadian Traveler's Problem

Online Algorithms

An online algorithm must make decisions with only partial information.

Example: Canadian Traveler's Problem

Online Algorithms

An online algorithm must make decisions with only partial information.

Example: Canadian Traveler's Problem

Online Algorithms

An online algorithm must make decisions with only partial information.

Example: Canadian Traveler's Problem

Online Algorithms

An online algorithm must make decisions with only partial information.

Example: Canadian Traveler's Problem

Online Algorithms

An online algorithm must make decisions with only partial information.

Example: Canadian Traveler's Problem

Online Algorithms

Many important real-world problems are online.

Examples

1. Investment decisions, as in algorithmic stock trading.
2. Job scheduling, as in multi-core computing.
3. Memory cache page management.
4. and more....

Online Algorithms

Online algorithms accept input one piece at a time and must produce an output before more information is given.

Online Algorithms

Online algorithms accept input one piece at a time and must produce an output before more information is given.

1. Input $I=I_{1}, I_{2}, \ldots, I_{n}$

Online Algorithms

Online algorithms accept input one piece at a time and must produce an output before more information is given.

1. Input $I=I_{1}, I_{2}, \ldots, I_{n}$
2. Receive an input I_{i}, and produces an output O_{i}.

Online Algorithms

Online algorithms accept input one piece at a time and must produce an output before more information is given.

1. Input $I=I_{1}, I_{2}, \ldots, I_{n}$
2. Receive an input I_{i}, and produces an output O_{i}.
3. Each input has an associated $\operatorname{cost}\left(I_{i}\right)$.

Online Algorithms

Online algorithms accept input one piece at a time and must produce an output before more information is given.

1. Input $I=I_{1}, I_{2}, \ldots, I_{n}$
2. Receive an input I_{i}, and produces an output O_{i}.
3. Each input has an associated $\operatorname{cost}\left(I_{i}\right)$.
4. We wish to minimize the total $\operatorname{cost}(I)=\sum \operatorname{cost}\left(I_{i}\right)$.

Competitive Analysis

We measure the performance of an online algorithm A with the
Competitive Ratio

Competitive Analysis

We measure the performance of an online algorithm A with the
Competitive Ratio

- For any request sequence $/$ the competitive ratio C satisfies

Competitive Analysis

We measure the performance of an online algorithm A with the Competitive Ratio

- For any request sequence $/$ the competitive ratio C satisfies

$$
\operatorname{cost}_{A}(I) \leq C \cdot \operatorname{cost}_{\mathcal{O P} \mathcal{T}}(I)+K
$$

Competitive Analysis

We measure the performance of an online algorithm A with the

Competitive Ratio

- For any request sequence I the competitive ratio C satisfies

$$
\operatorname{cost}_{A}(I) \leq C \cdot \operatorname{cost}_{\mathcal{O P} \mathcal{T}}(I)+K
$$

- If A is randomized then

$$
E\left[\operatorname{cost}_{A}(I)\right] \leq C \cdot \operatorname{cost}_{\mathcal{O P} \mathcal{T}}(I)+K
$$

Background

The k-server Problem

- Introduced by Manasse, McGeoch, and Sleator, 1990.

Background

The k-server Problem

- Introduced by Manasse, McGeoch, and Sleator, 1990.
- Given k mobile servers in a metric space M.

Background

The k-server Problem

- Introduced by Manasse, McGeoch, and Sleator, 1990.
- Given k mobile servers in a metric space M.
- Serve requests online in the metric space.

Background

The k-server Problem

- Introduced by Manasse, McGeoch, and Sleator, 1990.
- Given k mobile servers in a metric space M.
- Serve requests online in the metric space.
- Move a single server to the request point.

Background

The k-server Problem

- Introduced by Manasse, McGeoch, and Sleator, 1990.
- Given k mobile servers in a metric space M.
- Serve requests online in the metric space.
- Move a single server to the request point.
- Goal: minimize total distance moved.

Background

4-server Problem

Background

4-server Problem

S

S

```
cost = ...
```


Background

4-server Problem

S

```
cost = ...
```


Background

4-server Problem

$$
\operatorname{cost}=8+\ldots
$$

Background

4-server Problem

$$
\operatorname{cost}=8+\ldots
$$

Background

4-server Problem

$$
\cos t=8+\ldots
$$

Background

4-server Problem

$$
\operatorname{cost}=8+2+\ldots
$$

Background

4-server Problem

$$
\operatorname{cost}=8+2+\ldots
$$

Background

4-server Problem

$$
\operatorname{cost}=8+2+\ldots
$$

Background

4-server Problem

$$
\operatorname{cost}=8+2+1+\ldots
$$

Background

4-server Problem

$$
\cos t=8+2+1+\ldots
$$

Background

4-server Problem

$$
\cos t=8+2+1+\ldots
$$

Background

4-server Problem

cost $=8+2+1+4+\ldots$

Background

4-server Problem

cost $=8+2+1+4+\ldots$

Background

4-server Problem

$$
\cos t=8+2+1+4
$$

Background

4-server Problem

$$
\operatorname{cost}=8+2+1+4=15
$$

Background

4-server Problem

Background

4-server Problem

Background

4-server Problem

Background

4-server Problem

Background

4-server Problem

optimal cost $=3+2+1+2=8$

Background

4-server Problem
s. S

optimal cost $=3+2+1+2=8$

Background

4-server Problem
s. S

optimal cost $=3+2+1+2=8$

Background

4-server Problem
s. \quad -

optimal cost $=3+2+1+2=8$

Background

4-server Problem
s. \quad -

optimal cost $=3+2+1+2=8$

Cost ratio for this particular input sequence:

- cost $=15$

Cost ratio for this particular input sequence:

- cost $=15$
- optimal cost $=8$

Cost ratio for this particular input sequence:

- cost $=15$
- optimal cost $=8$
- cost $\leq 2 \cdot($ optimal cost $)+1$

Cost ratio for this particular input sequence:

- cost $=15$
- optimal cost $=8$
- cost $\leq 2 \cdot($ optimal cost $)+1$
- $15 \leq 2 \cdot 8+1$

Cost ratio for this particular input sequence:

- cost $=15$
- optimal cost $=8$
- cost $\leq 2 \cdot($ optimal cost $)+1$
- $15 \leq 2 \cdot 8+1$

Compare with definition of competitive ratio:

Cost ratio for this particular input sequence:

- cost $=15$
- optimal cost $=8$
- cost $\leq 2 \cdot($ optimal cost $)+1$
- $15 \leq 2 \cdot 8+1$

Compare with definition of competitive ratio:

$$
\operatorname{cost}_{A}(I) \leq C \cdot \operatorname{cost}_{\mathcal{O P} \mathcal{T}}(I)+K
$$

Cost ratio for this particular input sequence:

- cost $=15$
- optimal cost $=8$
- cost $\leq 2 \cdot($ optimal cost $)+1$
- $15 \leq 2 \cdot 8+1$

Compare with definition of competitive ratio:

$$
\begin{aligned}
& \operatorname{cost}_{A}(I) \leq C \cdot \operatorname{cost} \\
& \cos \mathcal{T}
\end{aligned}(I)+K
$$

Cost ratio for this particular input sequence:

- cost $=15$
- optimal cost $=8$
- cost $\leq 2 \cdot($ optimal cost $)+1$
- $15 \leq 2 \cdot 8+1$

Compare with definition of competitive ratio:

$$
\begin{aligned}
& \operatorname{cost}_{A}(I) \leq C \cdot \operatorname{cost}_{\mathcal{O P} \mathcal{T}}(I)+K \\
& \operatorname{cost} \leq 2 \cdot(\text { optimal } \cos t)+1
\end{aligned}
$$

If this holds for all possible input sequences, we could claim that A is 2-competitive.

The Potential Method

A common method for proving the competitiveness of an online algorithm. For the server problem, define a potential function

$$
\phi: \text { Server Locations } \rightarrow \mathbb{R} .
$$

The Potential Method

A common method for proving the competitiveness of an online algorithm. For the server problem, define a potential function

$$
\phi: \text { Server Locations } \rightarrow \mathbb{R}
$$

Show that at any step i,

$$
\operatorname{cost}_{A}\left(r_{i}\right) \leq C \cdot \operatorname{cost}_{O P T}\left(r_{i}\right)-\left(\phi_{i}-\phi_{i-1}\right)
$$

The Potential Method

A common method for proving the competitiveness of an online algorithm. For the server problem, define a potential function

$$
\phi: \text { Server Locations } \rightarrow \mathbb{R} .
$$

Show that at any step i,

$$
\operatorname{cost}_{A}\left(r_{i}\right) \leq C \cdot \operatorname{cost}_{O P T}\left(r_{i}\right)-\left(\phi_{i}-\phi_{i-1}\right)
$$

Then, summing over the request sequence:

$$
\sum_{i=1}^{n} \operatorname{cost}_{A}\left(r_{i}\right) \leq \sum_{i=1}^{n} C \cdot \operatorname{cost}_{O P T}\left(r_{i}\right)-\sum_{i=1}^{n} \Delta \phi_{i}
$$

The Potential Method

A common method for proving the competitiveness of an online algorithm. For the server problem, define a potential function

$$
\phi: \text { Server Locations } \rightarrow \mathbb{R} .
$$

Show that at any step i,

$$
\operatorname{cost}_{A}\left(r_{i}\right) \leq C \cdot \operatorname{cost}_{O P T}\left(r_{i}\right)-\left(\phi_{i}-\phi_{i-1}\right)
$$

Then, summing over the request sequence:

$$
\begin{gathered}
\sum_{i=1}^{n} \operatorname{cost}_{A}\left(r_{i}\right) \leq \sum_{i=1}^{n} C \cdot \operatorname{cost}_{O P T}\left(r_{i}\right)-\sum_{i=1}^{n} \Delta \phi_{i} \\
\operatorname{cost}_{A}(R) \leq C \cdot \operatorname{cost}_{O P T}(R)+K
\end{gathered}
$$

The Optimal Adversary Algorithm

How to model the optimal algorithm?

- We think of the optimal algorithm as a malevolent adversary.
- Adversary generates the input sequence $I_{1}, I_{2}, \ldots, I_{n}$
- Adversary must also use its servers to satisfy requests.
- Adversary tries to maximize C by simultaneously making its cost low and our cost high.

Game Theory

We can now think of the server problem as a game between our algorithm and the adversary algorithm. Consider the payoff matrix for a two-person zero-sum game G.

	Adversary Strategy 1	Adversary Strategy 2
Server Strategy 1	a_{11}	a_{12}
Server Strategy 2	a_{21}	a_{22}

Game Theory

We can now think of the server problem as a game between our algorithm and the adversary algorithm. Consider the payoff matrix for a two-person zero-sum game G.

	Adversary Strategy 1	Adversary Strategy 2
Server Strategy 1	a_{11}	a_{12}
Server Strategy 2	a_{21}	a_{22}

$$
v(G)=\frac{\operatorname{det} A}{a_{11}-a_{12}-a_{21}+a_{22}}
$$

Game Theory

	Adversary Strategy 1	Adversary Strategy 2
Server Strategy 1	a_{11}	a_{12}
Server Strategy 2	a_{21}	a_{22}

Optimum row player strategy:
Play row 1 with $p_{1}=\frac{a_{22}-a_{21}}{a_{11}-a_{12}-a_{21}+a_{22}}$
Play row 2 with $p_{2}=\frac{a_{11}-a_{12}}{a_{11}-a_{12}-a_{21}+a_{22}}$
Optimum column player strategy:
Play column 1 with $p_{1}=\frac{a_{22}-a_{12}}{a_{11}-a_{12}-a_{21}+a_{22}}$
Play column 2 with $p_{2}=\frac{a_{11}-a_{21}}{a_{11}-a_{12}-a_{21}+a_{22}}$

Generalization of the k-server problem

The (m, n)-server Problem

Generalization of the k-server problem

The (m, n)-server Problem

- Given m mobile servers in a metric space M.

Generalization of the k-server problem

The (m, n)-server Problem

- Given m mobile servers in a metric space M.
- Serve requests online in the metric space.

Generalization of the k-server problem

The (m, n)-server Problem

- Given m mobile servers in a metric space M.
- Serve requests online in the metric space.
- Each request requires n servers to move to the request point

Generalization of the k-server problem

The (m, n)-server Problem

- Given m mobile servers in a metric space M.
- Serve requests online in the metric space.
- Each request requires n servers to move to the request point
- Goal: minimize total distance moved.

Background

(4, 2)-server Problem

Background

(4, 2)-server Problem

Background

(4, 2)-server Problem

Background

(4, 2)-server Problem

Background

(4, 2)-server Problem

S

Background

(4, 2)-server Problem

Background

(4,2)-server Problem

Background

(4, 2)-server Problem

Background

(4,2)-server Problem

Useful Results

Useful Results

Theorem 1
C-competitive $(2 n, n)$-server Algorithm \Downarrow
C-competitive 2-server Algorithm

Useful Results

Theorem 1

C-competitive (2n, n)-server Algorithm \Downarrow
 C-competitive 2-server Algorithm

Theorem 2

Optimal offline strategy for the $(2 n, n)$ server problem keeps the servers in two blocks of size n.

R-LINE

We give an online algorithm for the 2-server problem where the metric space is the real line.

R-LINE

We give an online algorithm for the 2-server problem where the metric space is the real line.

Outline

- Define a randomized online algorithm for the ($2 n, n$)-server problem.

R-LINE

We give an online algorithm for the 2-server problem where the metric space is the real line.

Outline

- Define a randomized online algorithm for the ($2 n, n$)-server problem.
- Use 2-person zero-sum game theory for randomized moves.

R-LINE

We give an online algorithm for the 2-server problem where the metric space is the real line.
Outline

- Define a randomized online algorithm for the ($2 n, n$)-server problem.
- Use 2-person zero-sum game theory for randomized moves.
- Prove competitiveness by solving non-linear constrained optimization problem and a suitable potential.

R-LINE

We give an online algorithm for the 2-server problem where the metric space is the real line.

Outline

- Define a randomized online algorithm for the ($2 n, n$)-server problem.
- Use 2-person zero-sum game theory for randomized moves.
- Prove competitiveness by solving non-linear constrained optimization problem and a suitable potential.
- Derive randomized 2-server algorithm from (2n,n)-server algorithm, via Theorem 1.

R-LINE

We give an online algorithm for the 2-server problem where the metric space is the real line.

Outline

- Define a randomized online algorithm for the ($2 n, n$)-server problem.
- Use 2-person zero-sum game theory for randomized moves.
- Prove competitiveness by solving non-linear constrained optimization problem and a suitable potential.
- Derive randomized 2-server algorithm from (2n,n)-server algorithm, via Theorem 1.
- As n grows large, competitiveness decreases.

R-LINE

We give an online algorithm for the 2-server problem where the metric space is the real line.

Outline

- Define a randomized online algorithm for the ($2 n, n$)-server problem.
- Use 2-person zero-sum game theory for randomized moves.
- Prove competitiveness by solving non-linear constrained optimization problem and a suitable potential.
- Derive randomized 2-server algorithm from (2n,n)-server algorithm, via Theorem 1.
- As n grows large, competitiveness decreases.
- For R-LINE, $C \leq 1.901$

R-LINE Details

T-Theory on the Line

R-LINE Details

T-Theory on the Line

- For R-LINE, we have our algorithms servers, $s_{1}, s_{2}, \ldots, s_{2 n}$, and

R-LINE Details

T-Theory on the Line

- For R-LINE, we have our algorithms servers, $s_{1}, s_{2}, \ldots, s_{2 n}$, and
- Two adversary servers, a_{1} and a_{2} for a total of $2 n+2$ points.

R-LINE Details

T-Theory on the Line

- For R-LINE, we have our algorithms servers, $s_{1}, s_{2}, \ldots, s_{2 n}$, and
- Two adversary servers, a_{1} and a_{2} for a total of $2 n+2$ points.
- Define $\alpha_{i, j}$, the $(i, j)^{\text {th }}$ isolation index of a configuration, to be the length of the longest interval that has exactly i algorithm servers to the left and exactly j adversary servers to the left.

R-LINE Details

T-Theory on the Line

- For R-LINE, we have our algorithms servers, $s_{1}, s_{2}, \ldots, s_{2 n}$, and
- Two adversary servers, a_{1} and a_{2} for a total of $2 n+2$ points.
- Define $\alpha_{i, j}$, the $(i, j)^{\text {th }}$ isolation index of a configuration, to be the length of the longest interval that has exactly i algorithm servers to the left and exactly j adversary servers to the left.
- Formally,

$$
\alpha_{i, j}=\max \left\{0, \min \left\{s_{i+1}, a_{j+1}\right\}-\max \left\{s_{i}, a_{j}\right\}\right\}
$$

R-LINE Details

T-Theory on the Line

- For R-LINE, we have our algorithms servers, $s_{1}, s_{2}, \ldots, s_{2 n}$, and
- Two adversary servers, a_{1} and a_{2} for a total of $2 n+2$ points.
- Define $\alpha_{i, j}$, the $(i, j)^{\text {th }}$ isolation index of a configuration, to be the length of the longest interval that has exactly i algorithm servers to the left and exactly j adversary servers to the left.
- Formally,

$$
\alpha_{i, j}=\max \left\{0, \min \left\{s_{i+1}, a_{j+1}\right\}-\max \left\{s_{i}, a_{j}\right\}\right\}
$$

- $s_{0}=a_{0}=-\infty$ and $s_{2 n+1}=a_{3}=\infty$

R-LINE Details

T-Theory on the Line

- $\alpha_{i, j}$ is the length of the longest interval that has exactly i algorithm servers to the left and exactly j adversary servers to the left.
- $\alpha_{i, j}=\max \left\{0, \min \left\{s_{i+1}, a_{j+1}\right\}-\max \left\{s_{i}, a_{j}\right\}\right\}$
- Example,

R-LINE Details

T-Theory on the Line

- $\alpha_{i, j}$ is the length of the longest interval that has exactly i algorithm servers to the left and exactly j adversary servers to the left.
- $\alpha_{i, j}=\max \left\{0, \min \left\{s_{i+1}, a_{j+1}\right\}-\max \left\{s_{i}, a_{j}\right\}\right\}$
- Example,

$$
\alpha_{3,0}=0, \alpha_{4,1}=0, \ldots
$$

R-LINE Details

Isolation Index Coefficients

R-LINE Details

Isolation Index Coefficients

- Every isolation index, α, has an associated coefficient, η.

R-LINE Details

Isolation Index Coefficients

- Every isolation index, α, has an associated coefficient, η.
- R-LINE is defined in terms of these constants, η.

R-LINE Details

Isolation Index Coefficients

- Every isolation index, α, has an associated coefficient, η.
- R-LINE is defined in terms of these constants, η.
- Define constants $\eta_{i, j}$, the $(i, j)^{\text {th }}$ isolation index coefficient.

R-LINE Details

Isolation Index Coefficients

- Every isolation index, α, has an associated coefficient, η.
- R-LINE is defined in terms of these constants, η.
- Define constants $\eta_{i, j}$, the $(i, j)^{\text {th }}$ isolation index coefficient.
- The isolation index coefficients satisfy a symmetry property,

$$
\eta_{i, j}=\eta_{2 n-i, 2-j}
$$

R-LINE Details

Isolation Index Coefficients

- Every isolation index, α, has an associated coefficient, η.
- R-LINE is defined in terms of these constants, η.
- Define constants $\eta_{i, j}$, the $(i, j)^{\text {th }}$ isolation index coefficient.
- The isolation index coefficients satisfy a symmetry property,

$$
\eta_{i, j}=\eta_{2 n-i, 2-j}
$$

- We also have $\eta_{0,0}=\eta_{2 n, n}=0$.

R-LINE Details

Definition of the Potential, ϕ

R-LINE Details

Definition of the Potential, ϕ

- For any configuration, the potential is defined as the sum of all isolation indices multiplied by their associated coefficients.

R-LINE Details

Definition of the Potential, ϕ

- For any configuration, the potential is defined as the sum of all isolation indices multiplied by their associated coefficients.
- Formally,

$$
\phi=\sum \eta_{i, j} \cdot \alpha_{i, j}
$$

R-LINE Details

Configurations

R-LINE Details

Configurations

Notation

R-LINE Details

Configurations

Notation

- We refer to s_{i} as the $i^{\text {th }}$ server and also its location.

R-LINE Details

Configurations

Notation

- We refer to s_{i} as the $i^{\text {th }}$ server and also its location.
- We number the servers left to right.

R-LINE Details

Configurations

Notation

- We refer to s_{i} as the $i^{\text {th }}$ server and also its location.
- We number the servers left to right.
- $s_{1} \leq s_{2} \leq \ldots \leq s_{2 n}$

R-LINE Details

Configurations

Notation

- We refer to s_{i} as the $i^{\text {th }}$ server and also its location.
- We number the servers left to right.
- $s_{1} \leq s_{2} \leq \ldots \leq s_{2 n}$
- Current request is r.

R-LINE Details

Configurations

Notation

- We refer to s_{i} as the $i^{\text {th }}$ server and also its location.
- We number the servers left to right.
- $s_{1} \leq s_{2} \leq \ldots \leq s_{2 n}$
- Current request is r.
- Previous request is r^{\prime}.

R-LINE Details

Configurations

Notation

- We refer to s_{i} as the $i^{\text {th }}$ server and also its location.
- We number the servers left to right.
- $s_{1} \leq s_{2} \leq \ldots \leq s_{2 n}$
- Current request is r.
- Previous request is r^{\prime}.
- WLOG $r^{\prime}<r$.

R-LINE Details

Configurations

Notation

- We refer to s_{i} as the $i^{\text {th }}$ server and also its location.
- We number the servers left to right.
- $s_{1} \leq s_{2} \leq \ldots \leq s_{2 n}$
- Current request is r.
- Previous request is r^{\prime}.
- WLOG $r^{\prime}<r$.
- Servers do not pass each other.

R-LINE Details

S-Configuration (Satisfying)

R-LINE Details

S-Configuration (Satisfying)

R-LINE Details

S-Configuration (Satisfying)

- There are n servers at the request point.
$(6,3)$ Example

R-LINE Details

S-Configuration (Satisfying)

- There are n servers at the request point.
$(6,3)$ Example

R-LINE Details

D-Configuration (Deterministic)

R-LINE Details

D-Configuration (Deterministic)

- 1. More than n algorithm servers either strictly to the left or strictly to the right of $r ; r>s_{n+1}$ or $r<s_{n}$.

2. If fewer than n algorithm servers at r^{\prime}
2.1 No algorithm server strictly between r^{\prime} and r
2.2 At least n algorithm servers at the points r^{\prime} and r combined.
$(6,3)$ Example

R-LINE Details

D-Configuration (Deterministic)

- 1. More than n algorithm servers either strictly to the left or strictly to the right of $r ; r>s_{n+1}$ or $r<s_{n}$.

2. If fewer than n algorithm servers at r^{\prime}
2.1 No algorithm server strictly between r^{\prime} and r
2.2 At least n algorithm servers at the points r^{\prime} and r combined.
$(6,3)$ Example

R-LINE Details

D-Configuration Moves

1. Must be m servers to the left of r, for some $m>n$.

R-LINE Details

D-Configuration Moves

1. Must be m servers to the left of r, for some $m>n$.
2. Move $s_{n+1} \ldots s_{m}$ to r.

R-LINE Details

D-Configuration Moves

1. Must be m servers to the left of r, for some $m>n$.
2. Move $s_{n+1} \ldots s_{m}$ to r.
$(6,3)$ Example

R-LINE Details

D-Configuration Moves

1. Must be m servers to the left of r, for some $m>n$.
2. Move $s_{n+1} \ldots s_{m}$ to r.
$(6,3)$ Example

R-LINE Details

D-Configuration Moves

1. Must be m servers to the left of r, for some $m>n$.
2. Move $s_{n+1} \ldots s_{m}$ to r.
$(6,3)$ Example

R-LINE Details

D-Configuration Moves

1. Must be m servers to the left of r, for some $m>n$.
2. Move $s_{n+1} \ldots s_{m}$ to r.
$(6,3)$ Example

R-LINE Details

D-Configuration Moves

1. Must be m servers to the left of r, for some $m>n$.
2. Move $s_{n+1} \ldots s_{m}$ to r.
$(6,3)$ Example

R-LINE Details

D-Configuration Moves

1. Must be m servers to the left of r, for some $m>n$.
2. Move $s_{n+1} \ldots s_{m}$ to r.
$(6,3)$ Example

R-LINE Details

D-Configuration Moves

1. Must be m servers to the left of r, for some $m>n$.
2. Move $s_{n+1} \ldots s_{m}$ to r.
$(6,3)$ Example

R-LINE Details

R-Configurations (Randomized)

R-LINE Details

R-Configurations (Randomized)

The adversary's hidden server.

R-LINE Details

R-Configurations (Randomized)

The adversary's hidden server.

- The adversary has two servers.

R-LINE Details

R-Configurations (Randomized)

The adversary's hidden server.

- The adversary has two servers.
- The current request, r.

R-LINE Details

R-Configurations (Randomized)
The adversary's hidden server.

- The adversary has two servers.
- The current request, r.
- The other server's location, a, is "hidden".

R-LINE Details

R-Configurations (Randomized)
The adversary's hidden server.

- The adversary has two servers.
- The current request, r.
- The other server's location, a, is "hidden".
- There are only two hidden server locations to consider.
$(6,3)$ Example

R-LINE Details

R-Configurations (Randomized)

The adversary's hidden server.

- The adversary has two servers.
- The current request, r.
- The other server's location, a, is "hidden".
- There are only two hidden server locations to consider.
$(6,3)$ Example

R-LINE Details

R-Configurations (Randomized)

The adversary's hidden server.

- The adversary has two servers.
- The current request, r.
- The other server's location, a, is "hidden".
- There are only two hidden server locations to consider.
$(6,3)$ Example

R-LINE Details

R-Configuration (Randomized)

R-LINE Details

R-Configuration (Randomized)

1. Exactly n algorithm servers on the same side of r as r^{\prime}. Either

$$
r^{\prime}=s_{n}<r \text { or } r<r^{\prime}=s_{n+1} .
$$

R-LINE Details

R-Configuration (Randomized)

1. Exactly n algorithm servers on the same side of r as r^{\prime}. Either $r^{\prime}=s_{n}<r$ or $r<r^{\prime}=s_{n+1}$.
2. No algorithm server strictly between r^{\prime} and r.

R-LINE Details

R-Configuration (Randomized)

1. Exactly n algorithm servers on the same side of r as r^{\prime}. Either $r^{\prime}=s_{n}<r$ or $r<r^{\prime}=s_{n+1}$.
2. No algorithm server strictly between r^{\prime} and r.
3. At least n algorithm servers at the points r^{\prime} and r combined.

R-LINE Details

R-Configuration (Randomized)

1. Exactly n algorithm servers on the same side of r as r^{\prime}. Either $r^{\prime}=s_{n}<r$ or $r<r^{\prime}=s_{n+1}$.
2. No algorithm server strictly between r^{\prime} and r.
3. At least n algorithm servers at the points r^{\prime} and r combined.
$(6,3)$ Example

R-LINE Details

R-Configuration (Randomized) Moves

R-LINE Details

R-Configuration (Randomized) Moves

- There are two possible moves.

1. Move a single server.

R-LINE Details

R-Configuration (Randomized) Moves

- There are two possible moves.

1. Move a single server.
2. Complete the request using the servers from r^{\prime}.

R-LINE Details

R-Configuration (Randomized) Moves

- There are two possible moves.

1. Move a single server.
2. Complete the request using the servers from r^{\prime}.

- Choose between the two alternatives using randomization, by solving a 2 -person zero-sum game.

R-LINE Details

R-Configuration (Randomized) Moves

- There are two possible moves.

1. Move a single server.
2. Complete the request using the servers from r^{\prime}.

- Choose between the two alternatives using randomization, by solving a 2 -person zero-sum game.

R-LINE Details

R-Configuration (Randomized) Moves

- There are two possible moves.

1. Move a single server.
2. Complete the request using the servers from r^{\prime}.

- Choose between the two alternatives using randomization, by solving a 2 -person zero-sum game.

R-LINE Details

R-Configuration (Randomized) Moves

- There are two possible moves.

1. Move a single server.
2. Complete the request using the servers from r^{\prime}.

- Choose between the two alternatives using randomization, by solving a 2 -person zero-sum game.

R-LINE Details

R-Configuration (Randomized) Moves

- There are two possible moves.

1. Move a single server.
2. Complete the request using the servers from r^{\prime}.

- Choose between the two alternatives using randomization, by solving a 2 -person zero-sum game.

R-LINE Details

R-Configuration (Randomized) Moves

- There are two possible moves.

1. Move a single server.
2. Complete the request using the servers from r^{\prime}.

- Choose between the two alternatives using randomization, by solving a 2 -person zero-sum game.

R-LINE Details

R-Configuration (Randomized) Moves

- There are two possible moves.

1. Move a single server.
2. Complete the request using the servers from r^{\prime}.

- Choose between the two alternatives using randomization, by solving a 2 -person zero-sum game.

R-LINE Details

Configurations: R-Configurations (Randomized)

R-LINE Details

Configurations: R-Configurations (Randomized)

	$(\Delta \phi+\operatorname{cost})_{11}$	$(\Delta \phi+\cos t)_{12}$
	$(\Delta \phi+\operatorname{cost})_{21}$	$(\Delta \phi+\cos t)_{22}$

R-LINE Details

Configurations: R-Configurations (Randomized)

R-LINE Details

Configurations: R-Configurations (Randomized)

$$
\begin{array}{|l|l|}
\hline(\Delta \phi+\cos t)_{11} & (\Delta \phi+\cos t)_{12} \\
\hline(\Delta \phi+\cos t)_{21} & (\Delta \phi+\cos t)_{22} \\
\hline
\end{array}
$$

R-LINE Details

Configurations: R-Configurations (Randomized)

$$
\begin{array}{|l|l|}
\hline(\Delta \phi+\cos t)_{11} & (\Delta \phi+\cos t)_{12} \\
\hline(\Delta \phi+\cos t)_{21} & (\Delta \phi+\cos t)_{22} \\
\hline
\end{array}
$$

- Entries game matrix computed in terms of the isolation index coefficients, η.

R-LINE Details

Configurations: R-Configurations (Randomized)

$$
\begin{array}{|l|l|}
\hline(\Delta \phi+\cos t)_{11} & (\Delta \phi+\cos t)_{12} \\
\hline(\Delta \phi+\cos t)_{21} & (\Delta \phi+\cos t)_{22} \\
\hline
\end{array}
$$

- Entries game matrix computed in terms of the isolation index coefficients, η.
- If currently p servers located at r :

R-LINE Details

Configurations: R-Configurations (Randomized)

$$
\begin{array}{|l|l|}
\hline(\Delta \phi+\cos t)_{11} & (\Delta \phi+\cos t)_{12} \\
\hline(\Delta \phi+\cos t)_{21} & (\Delta \phi+\cos t)_{22} \\
\hline
\end{array}
$$

- Entries game matrix computed in terms of the isolation index coefficients, η.
- If currently p servers located at r :

$$
\begin{aligned}
& (\Delta \phi+\cos t)_{11}=\left(\eta_{n+p+1,2}-\eta_{n+p, 2}+1\right) \cdot\left(s_{n+p+1}-r\right) \\
& (\Delta \phi+\cos t)_{12}=\left(\eta_{p, 1}-\eta_{n, 1}+n-p\right) \cdot\left(r-s_{n}\right) \\
& (\Delta \phi+\cos t)_{21}=\left(\eta_{n+p+1,1}-\eta_{n+p, 1}+1\right) \cdot\left(s_{n+p+1}-r\right) \\
& (\Delta \phi+\cos t)_{22}=\left(\eta_{p, 0}-\eta_{n, 0}+n-p\right) \cdot\left(r-s_{n}\right)
\end{aligned}
$$

R-LINE Details

The Algorithm R-LINE

R-LINE Details

The Algorithm R-LINE
For a given round of execution:

R-LINE Details

The Algorithm R-LINE

For a given round of execution:

1. Start in S-Config. Receive a request.
2. If D-Config, make deterministic moves.
2.1 If result is S -Config, done.
2.2 Otherwise result is R -Config.
3. If R-Config, make randomized moves until S-Config.

Proof of Competitiveness

Overview of Proof

1. Provide a system of inequalities, \mathbb{S}, involving the isolation index coefficients, $\eta_{i, j}$, and the competitiveness, C.
2. Show that if there exists an assignment of values to every $\eta_{i, j}$ that satisfies \mathbb{S}, then R-LINE is C-competitive.
3. Use numeric methods to find a solution to \mathbb{S} that minimizes C.

Proof of Competitiveness

Sufficient Inequalities, \mathbb{S}_{n}

$$
\begin{aligned}
\forall 0 \leq i \leq 2 n:\left|\eta_{i, 1}-\eta_{i, 0}\right| & \leq n \cdot C \\
\forall 1 \leq i \leq n \text { and } \forall 1 \leq j \leq 2: \eta_{i, j}+1 & \leq \eta_{i-1, j} \\
\forall 1 \leq i \leq n \text { and } \forall 1 \leq j \leq 2: \eta_{i-1, j-1} & \leq \eta_{i, j-1}+1 \\
\forall 1 \leq i \leq n:\left(\eta_{i-1,1}-\eta_{i, 1}+1\right)\left(\eta_{n-i, 1}-\eta_{n, 1}+i\right) & \leq\left(\eta_{i-1,0}-\eta_{i, 0}+1\right)\left(\eta_{n-i, 0}-\eta_{n, 0}+i\right)(4)
\end{aligned}
$$

Proof of Competitiveness

Overview of Proof Steps

Show that if the system of inequalities, \mathbb{S}_{n}, is satisfied, then the following properties hold:

Proof of Competitiveness

Overview of Proof Steps

Show that if the system of inequalities, \mathbb{S}_{n}, is satisfied, then the following properties hold:

1. For adversary moves: $\Delta \phi \leq C \cdot \operatorname{cost}_{\mathcal{A} d v}$.

Proof of Competitiveness

Overview of Proof Steps

Show that if the system of inequalities, \mathbb{S}_{n}, is satisfied, then the following properties hold:

1. For adversary moves: $\Delta \phi \leq C \cdot \operatorname{cost}_{\mathcal{A d v}}$.
2. For R-LINE deterministic moves: $\Delta \phi+$ cost ≤ 0.

Proof of Competitiveness

Overview of Proof Steps

Show that if the system of inequalities, \mathbb{S}_{n}, is satisfied, then the following properties hold:

1. For adversary moves: $\Delta \phi \leq C \cdot \operatorname{cost}_{\mathcal{A d v}}$.
2. For R-LINE deterministic moves: $\Delta \phi+$ cost ≤ 0.
3. WLOG, adversary's hidden server is at one of at most two possible locations.

Proof of Competitiveness

Overview of Proof Steps

Show that if the system of inequalities, \mathbb{S}_{n}, is satisfied, then the following properties hold:

1. For adversary moves: $\Delta \phi \leq C \cdot \operatorname{cost}_{\mathcal{A d v}}$.
2. For R-LINE deterministic moves: $\Delta \phi+$ cost ≤ 0.
3. WLOG, adversary's hidden server is at one of at most two possible locations.
4. For R-LINE randomized moves: $\mathrm{E}(\Delta \phi+\cos t) \leq 0$.

Proof of Competitiveness

Overview of Proof Steps

Show that if the system of inequalities, \mathbb{S}_{n}, is satisfied, then the following properties hold:

1. For adversary moves: $\Delta \phi \leq C \cdot \operatorname{cost}_{\mathcal{A d v}}$.
2. For R-LINE deterministic moves: $\Delta \phi+$ cost ≤ 0.
3. WLOG, adversary's hidden server is at one of at most two possible locations.
4. For R-LINE randomized moves: $\mathrm{E}(\Delta \phi+\cos t) \leq 0$.

Adding all of the inequalities over a request round:

$$
E\left(\operatorname{cost}_{A}(\sigma)\right) \leq C \cdot \operatorname{cost}_{\mathcal{A D V}}(\sigma)+K
$$

Solving the Inequalities

Given the system \mathbb{S}_{n}

- Find a solution to \mathbb{S}_{n} that minimizes C.

Solving the Inequalities

Given the system \mathbb{S}_{n}

- Find a solution to \mathbb{S}_{n} that minimizes C.
- Transform \mathbb{S}_{n} into a new system \mathbb{S}_{n}^{\prime} to simplify the solution.

Solving the Inequalities

Introduce variables ϵ_{i} and δ_{i} for all $0 \leq i<n$. Then \mathbb{S}_{n}^{\prime} consists of the following constraints:

Solving the Inequalities

Introduce variables ϵ_{i} and δ_{i} for all $0 \leq i<n$. Then \mathbb{S}_{n}^{\prime} consists of the following constraints:

$$
\begin{aligned}
\left(2 i+\epsilon_{n-i}\right)\left(2-\epsilon_{i}+\epsilon_{i-1}\right) & & =4 i & \\
\left(2 n+\epsilon_{0}\right)\left(2+\epsilon_{n-1}\right) & \geq 4 n & & \forall 0<i<n \\
\delta & =-\epsilon_{0} / 2 & & \\
C & =(2 n-\delta) / n & & \\
\delta_{i} & =\epsilon_{i}+2 \delta & & \forall 0 \leq i<n \\
\eta_{i, 0} & =3 i-\delta_{i} & & \forall 0 \leq i<n \\
\eta_{i, 0} & =2 n+i-2 \delta & & \forall n \leq i \leq 2 n \\
\eta_{i, 1} & =2 n-i-\delta & & \forall 0 \leq i<n \\
\eta_{i, 1} & =i-\delta & & \forall n \leq i \leq 2 n \\
\eta_{i, 2} & =\eta_{2 n-i, 0} & & \forall 0 \leq i \leq 2 n
\end{aligned}
$$

Solving the Inequalities

Converting to a Differential Equation

- As $n \rightarrow \infty, \mathbb{S}_{n}^{\prime} \rightarrow D$
- D is given by:

$$
\begin{gathered}
(x+1+f(-x)) \cdot\left(1-f^{\prime}(x)\right)=x+1 \\
-1 \leq x \leq 1
\end{gathered}
$$

Solving the Inequalities

Euler Method for Reflective Differential Equation

1. Choose a step size, $h=\frac{2}{n}$.
2. Choose an initial value y_{0} at t_{0}
3. Compute updates:

$$
\begin{aligned}
& y_{n+1}=y_{n}+h \cdot f\left(t_{-n}, y_{-n}\right) \\
& y_{-n-1}=y_{-n}+h \cdot f\left(t_{n}, y_{n}\right)
\end{aligned}
$$

Solving the Inequalities

Solving the Inequalities

Algorithm to Find Minimum C

1. Choose initial value $f(0)$.
2. Approximate f on interval $[-1,1]$.
3. Use substitutions to find $\eta_{i, j}$.
4. Verify that $\eta_{i, j}$ satisfy \mathbb{S}_{n}.
5. Compute corresponding value of C.
6. Binary search on $f(0)$ to find minimum C.

Solving the Inequalities

Solution for large n

- We find that $C \approx 1.9007452$ for $n=10000$.
- The corresponding approximation of $f(x)$:

Future Work

Other Metric Spaces

Future Work

Other Metric Spaces

- Trees - Preliminary work done, strongly suggests $C \leq 1.901$.
- Manhattan Plane, Circle, Euclidean.
- General Spaces!!

Future Work

Other Metric Spaces

- Trees - Preliminary work done, strongly suggests $C \leq 1.901$.
- Manhattan Plane, Circle, Euclidean.
- General Spaces!!
$k>2$ on the Line
- (kn, n)-server algorithm $\Rightarrow k$-server algorithm.

Future Work

Other Metric Spaces

- Trees - Preliminary work done, strongly suggests $C \leq 1.901$.
- Manhattan Plane, Circle, Euclidean.
- General Spaces!!
$k>2$ on the Line
- (kn, n)-server algorithm $\Rightarrow k$-server algorithm.

Analytic Solution to the Differential Equation

- Would give exact minimum value of C for R-LINE.

Acknowledgements

Thank you!

- Committee Members: Lawrence Larmore, Wolfgang Bein, Matt Pedersen, Ebrahim Salehi.
- UNLV Graduate and Professional Student Association.
- Attendees.

R-LINE

The End.

R-LINE

The End.

R-LINE

The End.

Proof of Competitiveness

Proof of Property 1

If \mathbb{S} holds, then Property 1 holds: For any move by the adversary,
$\Delta \phi \leq C \cdot \cos _{\mathcal{A d} v}$

Proof of Competitiveness

Proof of Property 1

If \mathbb{S} holds, then Property 1 holds: For any move by the adversary,
$\Delta \phi \leq C \cdot \operatorname{cost}_{\mathcal{A} d v}$

Proof of Competitiveness

Proof of Property 1

If \mathbb{S} holds, then Property 1 holds: For any move by the adversary,
$\Delta \phi \leq C \cdot \operatorname{cost}_{\mathcal{A} d v}$

- By inequality (1), $\left|\eta_{i, j}-\eta_{i, j-1}\right| \leq n \cdot C$ for $j=1,2$.

Proof of Competitiveness

Proof of Property 1

If \mathbb{S} holds, then Property 1 holds: For any move by the adversary,
$\Delta \phi \leq C \cdot \cos _{\mathcal{A d v}}$

- By inequality (1), $\left|\eta_{i, j}-\eta_{i, j-1}\right| \leq n \cdot C$ for $j=1,2$.
- Adversary server a_{j} moves to the right, from x to y, where $x<y$, with $s_{i} \leq x$ and $y \leq s_{i+1}$.

Proof of Competitiveness

Proof of Property 1

If \mathbb{S} holds, then Property 1 holds: For any move by the adversary,
$\Delta \phi \leq C \cdot \cos _{\mathcal{A d v}}$

- By inequality (1), $\left|\eta_{i, j}-\eta_{i, j-1}\right| \leq n \cdot C$ for $j=1,2$.
- Adversary server a_{j} moves to the right, from x to y, where $x<y$, with $s_{i} \leq x$ and $y \leq s_{i+1}$.
- Thus, $\alpha_{i, j}$ decreases by $y-x$ and $\alpha_{i, j-1}$ increases by $y-x$.

Proof of Competitiveness

Proof of Property 1

If \mathbb{S} holds, then Property 1 holds: For any move by the adversary,
$\Delta \phi \leq C \cdot \cos ^{\mathcal{A} d v}$

- By inequality (1), $\left|\eta_{i, j}-\eta_{i, j-1}\right| \leq n \cdot C$ for $j=1,2$.
- Adversary server a_{j} moves to the right, from x to y, where $x<y$, with $s_{i} \leq x$ and $y \leq s_{i+1}$.
- Thus, $\alpha_{i, j}$ decreases by $y-x$ and $\alpha_{i, j-1}$ increases by $y-x$.
- The cost to the adversary of this move is $n(y-x)$.

Proof of Competitiveness

Proof of Property 1

If \mathbb{S} holds, then Property 1 holds: For any move by the adversary,
$\Delta \phi \leq C \cdot \cos _{\mathcal{A d v}}$

- By inequality (1), $\left|\eta_{i, j}-\eta_{i, j-1}\right| \leq n \cdot C$ for $j=1,2$.
- Adversary server a_{j} moves to the right, from x to y, where $x<y$, with $s_{i} \leq x$ and $y \leq s_{i+1}$.
- Thus, $\alpha_{i, j}$ decreases by $y-x$ and $\alpha_{i, j-1}$ increases by $y-x$.
- The cost to the adversary of this move is $n(y-x)$.
- By definition of the potential,

$$
\Delta \phi=\left(\eta_{i, j}-\eta_{i, j-1}\right)(y-x) \leq n \cdot C \cdot(y-x) \leq C \cdot \operatorname{cost}_{\mathcal{A d v}} .
$$

Proof of Competitiveness

Proof of Property 2
If \mathbb{S} holds, then Property 2 holds: for any deterministic move by R-LINE, $\Delta \phi+$ cost ≤ 0.

Proof of Competitiveness

Proof of Property 2
If \mathbb{S} holds, then Property 2 holds: for any deterministic move by R-LINE, $\Delta \phi+$ cost ≤ 0.

Proof of Competitiveness

Proof of Property 2
If \mathbb{S} holds, then Property 2 holds: for any deterministic move by R-LINE, $\Delta \phi+\operatorname{cost} \leq 0$.

- s_{i} moves from x to y, where $x<y$.

Proof of Competitiveness

Proof of Property 2
If \mathbb{S} holds, then Property 2 holds: for any deterministic move by R-LINE, $\Delta \phi+\operatorname{cost} \leq 0$.

- s_{i} moves from x to y, where $x<y$.
- The algorithm cost of the step is $y-x$.

Proof of Competitiveness

Proof of Property 2
If \mathbb{S} holds, then Property 2 holds: for any deterministic move by R-LINE, $\Delta \phi+$ cost ≤ 0.

- s_{i} moves from x to y, where $x<y$.
- The algorithm cost of the step is $y-x$.
- The move causes $\alpha_{i, j}$ to decrease by $y-x$ and $\alpha_{i-1, j}$ to increase by the same amount.

Proof of Competitiveness

Proof of Property 2

If \mathbb{S} holds, then Property 2 holds: for any deterministic move by R-LINE, $\Delta \phi+$ cost ≤ 0.

- s_{i} moves from x to y, where $x<y$.
- The algorithm cost of the step is $y-x$.
- The move causes $\alpha_{i, j}$ to decrease by $y-x$ and $\alpha_{i-1, j}$ to increase by the same amount.
- By inequality (2), $\eta_{i, j}+1 \leq \eta_{i-1, j}$, and the definition of the potential: $\Delta \phi+\operatorname{cost}_{R--L I N E}=(y-x)\left(\eta_{i, j}-\eta_{i-1, j}+1\right) \leq 0$.

Proof of Competitiveness

Proof of Property 3
If \mathbb{S} holds, then Property (3) holds: We may assume the adversary's hidden server is at one of at most two possible locations.

Proof of Competitiveness

Proof of Property 3

If \mathbb{S} holds, then Property (3) holds: We may assume the adversary's hidden server is at one of at most two possible locations.

Proof of Competitiveness

Proof of Property 3

If \mathbb{S} holds, then Property (3) holds: We may assume the adversary's hidden server is at one of at most two possible locations.

- Since a could be any point on the line, the payoff matrix of the game has infinitely many rows.

Proof of Competitiveness

Proof of Property 3

If \mathbb{S} holds, then Property (3) holds: We may assume the adversary's hidden server is at one of at most two possible locations.

- Since a could be any point on the line, the payoff matrix of the game has infinitely many rows.
- We prove that just two of those rows, namely $a=s_{n}$ and $a=s_{n+p+1}$, dominate the others.

Proof of Competitiveness

Proof of Property 3

If \mathbb{S} holds, then Property (3) holds: We may assume the adversary's hidden server is at one of at most two possible locations.

- Since a could be any point on the line, the payoff matrix of the game has infinitely many rows.
- We prove that just two of those rows, namely $a=s_{n}$ and $a=s_{n+p+1}$, dominate the others.
- By batching the row strategies, we illustrate the $\infty \times 2$ payoff matrix in the next slide.

Proof of Competitiveness

Proof of Property 3

If \mathbb{S} holds, then Property (3) holds: We may assume the adversary's hidden server is at one of at most two possible locations.

- Since a could be any point on the line, the payoff matrix of the game has infinitely many rows.
- We prove that just two of those rows, namely $a=s_{n}$ and $a=s_{n+p+1}$, dominate the others.
- By batching the row strategies, we illustrate the $\infty \times 2$ payoff matrix in the next slide.

Proof of Competitiveness

Proof of Property 3

		Move s_{n+p+1}	Move $s_{p+1} \ldots s_{n}$
I	$a \leq s_{n}$	$\left(\eta_{n+p+1,2}-\eta_{n+p, 2}+1\right)\left(s_{n+p+1}-r\right)$	$\left(\eta_{p, 1}-\eta_{n, 1}+n-p\right)\left(r-s_{n}\right)$
			$\left(\eta_{p, 1}-\eta_{n, 1}+n-p\right)(r-a)$
II	$s_{n} \leq a \leq r$	$\left(\eta_{n+p+1,2}-\eta_{n+p, 2}+1\right)\left(s_{n+p+1}-r\right)$	+
		$\left(\eta_{p, 0}-\eta_{n, 0}+n-p\right)\left(a-s_{n}\right)$	
		$\left(\eta_{n+p+1,2}-\eta_{n+p, 2}+1\right)\left(s_{n+p+1}-a\right)$	
III	$r \leq a \leq s_{n+p+1}$	+	$\left(\eta_{p, 0}-\eta_{n, 0}+n-p\right)\left(r-s_{n}\right)$
		$\left(\eta_{n+p+1,1}-\eta_{n+p, 1}+1\right)(a-r)$	
IV	$a \geq s_{n+p+1}$	$\left(\eta_{n+p+1,1}-\eta_{n+p, 1}+1\right)\left(s_{n+p+1}-r\right)$	$\left(\eta_{p, 0}-\eta_{n, 0}+n-p\right)\left(r-s_{n}\right)$

By inequalities (2) and (3), the rows $a=s_{n}$ and $a=s_{n+p+1}$ dominate all other rows.

Proof of Competitiveness

Proof of Property 3

	Move s_{n+p+1}	Move $s_{p+1} \ldots s_{n}$
$a=s_{n}$	$\left(\eta_{n+p+1,2}-\eta_{n+p, 2}+1\right)\left(s_{n+p+1}-r\right)$	$\left(\eta_{p, 1}-\eta_{n, 1}+n-p\right)\left(r-s_{n}\right)$
$a=s_{n+p+1}$	$\left(\eta_{n+p+1,1}-\eta_{n+p, 1}+1\right)\left(s_{n+p+1}-r\right)$	$\left(\eta_{p, 0}-\eta_{n, 0}+n-p\right)\left(r-s_{n}\right)$

By inequalities (2) and (3), the rows $a=s_{n}$ and $a=s_{n+p+1}$ dominate all other rows.

Proof of Competitiveness

Proof of Property 4
If \mathbb{S} holds, then Property 4 holds: For any randomized move by R-LINE, $\mathrm{E}(\Delta \phi+\cos t) \leq 0$.

Proof of Competitiveness

Proof of Property 4

If \mathbb{S} holds, then Property 4 holds: For any randomized move by R-LINE, $\mathrm{E}(\Delta \phi+\cos t) \leq 0$.

$$
\begin{array}{|l|l|}
\hline(\Delta \phi+\cos t)_{11} & (\Delta \phi+\cos t)_{12} \\
\hline(\Delta \phi+\cos t)_{21} & (\Delta \phi+\cos t)_{22} \\
\hline
\end{array}
$$

Proof of Competitiveness

Proof of Property 4

If \mathbb{S} holds, then Property 4 holds: For any randomized move by R-LINE, $\mathrm{E}(\Delta \phi+\cos t) \leq 0$.

$$
\begin{array}{|l|l|}
\hline(\Delta \phi+\cos t)_{11} & (\Delta \phi+\cos t)_{12} \\
\hline(\Delta \phi+\cos t)_{21} & (\Delta \phi+\cos t)_{22} \\
\hline
\end{array}
$$

- By \mathbb{S}, the upper left and lower right entries are negative.

Proof of Competitiveness

Proof of Property 4

If \mathbb{S} holds, then Property 4 holds: For any randomized move by R-LINE, $\mathrm{E}(\Delta \phi+\cos t) \leq 0$.

$$
\begin{array}{|l|l|}
\hline(\Delta \phi+\cos t)_{11} & (\Delta \phi+\cos t)_{12} \\
\hline(\Delta \phi+\cos t)_{21} & (\Delta \phi+\cos t)_{22} \\
\hline
\end{array}
$$

- By \mathbb{S}, the upper left and lower right entries are negative.
- The upper right and lower left entries are positive.

Proof of Competitiveness

Proof of Property 4

If \mathbb{S} holds, then Property 4 holds: For any randomized move by R-LINE, $\mathrm{E}(\Delta \phi+\cos t) \leq 0$.

$$
\begin{array}{|l|l|}
\hline(\Delta \phi+\cos t)_{11} & (\Delta \phi+\cos t)_{12} \\
\hline(\Delta \phi+\cos t)_{21} & (\Delta \phi+\cos t)_{22} \\
\hline
\end{array}
$$

- By \mathbb{S}, the upper left and lower right entries are negative.
- The upper right and lower left entries are positive.

Proof of Competitiveness

Proof of Property 4
If \mathbb{S} holds, then Property 4 holds: For any randomized move by
R-LINE, $\mathrm{E}(\Delta \phi+\cos t) \leq 0$.

Proof of Competitiveness

Proof of Property 4

If \mathbb{S} holds, then Property 4 holds: For any randomized move by
R-LINE, $\mathrm{E}(\Delta \phi+\cos t) \leq 0$.

- The value of our game is

$$
\frac{\operatorname{det}(G)}{\left(\eta_{n+p+1,2}+\eta_{n+p+1}-\eta_{n+p, 2}-\eta_{n+p+1,1}\right) \cdot\left(s_{n+p+1}-r\right)+\left(\eta_{p, 0}+\eta_{n, 1}-\eta_{n, 0}-\eta_{p, 1}\right) \cdot\left(r-s_{n}\right)}
$$

Proof of Competitiveness

Proof of Property 4

If \mathbb{S} holds, then Property 4 holds: For any randomized move by
R-LINE, $\mathrm{E}(\Delta \phi+\cos t) \leq 0$.

- The value of our game is
$\frac{\operatorname{det}(G)}{\left(\eta_{n+p+1,2}+\eta_{n+p+1}-\eta_{n+p, 2}-\eta_{n+p+1,1}\right) \cdot\left(s_{n+p+1}-r\right)+\left(\eta_{p, 0}+\eta_{n, 1}-\eta_{n, 0}-\eta_{p, 1}\right) \cdot\left(r-s_{n}\right)}$
- The numerator is non-negative by inequality 4. The denominator is negative, which we can prove by combining inequalities of \mathbb{S} labeled (2) and (3).

Proof of Competitiveness

Proof of Property 4

If \mathbb{S} holds, then Property 4 holds: For any randomized move by
R-LINE, $\mathrm{E}(\Delta \phi+\cos t) \leq 0$.

- The value of our game is
$\frac{\operatorname{det}(G)}{\left(\eta_{n+p+1,2}+\eta_{n+p+1}-\eta_{n+p, 2}-\eta_{n+p+1,1}\right) \cdot\left(s_{n+p+1}-r\right)+\left(\eta_{p, 0}+\eta_{n, 1}-\eta_{n, 0}-\eta_{p, 1}\right) \cdot\left(r-s_{n}\right)}$
- The numerator is non-negative by inequality 4. The denominator is negative, which we can prove by combining inequalities of \mathbb{S} labeled (2) and (3).
- Thus, $E\left(\Delta \phi+\operatorname{cost}_{R--L I N E}\right)=v(G) \leq 0$.

Proof of Competitiveness

Thus, by properties (1), (2), (3), and (4), if \mathbb{S} is satisfied then R-LINE is C -competitive.

