R–LINE: An Online Algorithm for the 2-Server Problem on the Line with Improved Competitive Ratio

Lucas Bang

University of Nevada, Las Vegas

bang@unlv.nevada.edu

8 April 2013

Thesis Defense

Thesis Result

Thesis Result

A randomized online algorithm for the 2-server problem on the line.

Thesis Result

- A randomized online algorithm for the 2-server problem on the line.
- Competitiveness \leq 1.901 against the oblivious adversary.

Thesis Result

- A randomized online algorithm for the 2-server problem on the line.
- Competitiveness \leq 1.901 against the oblivious adversary.
- Improves the previously best known competitiveness of $\frac{155}{78} \approx 1.987.$

Outline

- 1. Offline vs. online algorithms.
- 2. Competitive analysis and game theory.
- 3. The *k*-server problem.
- 4. Our 2-server algorithm, R-LINE (Randomized Line).
- 5. Future work.

Typically, one initially studies algorithms in the **offline** setting, where all data is available to the algorithm at start-up.

Typically, one initially studies algorithms in the **offline** setting, where all data is available to the algorithm at start-up.

Typically, one initially studies algorithms in the **offline** setting, where all data is available to the algorithm at start-up.

Typically, one initially studies algorithms in the **offline** setting, where all data is available to the algorithm at start-up.

Typically, one initially studies algorithms in the **offline** setting, where all data is available to the algorithm at start-up.

Typically, one initially studies algorithms in the **offline** setting, where all data is available to the algorithm at start-up.

Typically, one initially studies algorithms in the **offline** setting, where all data is available to the algorithm at start-up.

An **online** algorithm must make decisions with only partial information.

An **online** algorithm must make decisions with only partial information.

An **online** algorithm must make decisions with only partial information.

An **online** algorithm must make decisions with only partial information.

An **online** algorithm must make decisions with only partial information.

An **online** algorithm must make decisions with only partial information.

An **online** algorithm must make decisions with only partial information.

An **online** algorithm must make decisions with only partial information.

An **online** algorithm must make decisions with only partial information.

An **online** algorithm must make decisions with only partial information.

An **online** algorithm must make decisions with only partial information.

An **online** algorithm must make decisions with only partial information.

An **online** algorithm must make decisions with only partial information.

An **online** algorithm must make decisions with only partial information.

An **online** algorithm must make decisions with only partial information.

An **online** algorithm must make decisions with only partial information.

An **online** algorithm must make decisions with only partial information.

An **online** algorithm must make decisions with only partial information.

An **online** algorithm must make decisions with only partial information.

Many important real-world problems are online.

Examples

- 1. Investment decisions, as in algorithmic stock trading.
- 2. Job scheduling, as in multi-core computing.
- 3. Memory cache page management.
- 4. and more

Online algorithms accept input one piece at a time and must produce an output before more information is given.

Online algorithms accept input one piece at a time and must produce an output before more information is given.

1. Input
$$I = I_1, I_2, ..., I_n$$

Online algorithms accept input one piece at a time and must produce an output before more information is given.

- 1. Input $I = I_1, I_2, ..., I_n$
- 2. Receive an input I_i , and produces an output O_i .
Online Algorithms

Online algorithms accept input one piece at a time and must produce an output before more information is given.

- 1. Input $I = I_1, I_2, ..., I_n$
- 2. Receive an input I_i , and produces an output O_i .
- 3. Each input has an associated $cost(I_i)$.

Online Algorithms

Online algorithms accept input one piece at a time and must produce an output before more information is given.

- 1. Input $I = I_1, I_2, ..., I_n$
- 2. Receive an input I_i , and produces an output O_i .
- 3. Each input has an associated $cost(I_i)$.
- 4. We wish to minimize the total $cost(I) = \sum cost(I_i)$.

We measure the performance of an online algorithm A with the Competitive Ratio

We measure the performance of an online algorithm *A* with the Competitive Ratio

▶ For any request sequence *I* the competitive ratio *C* satisfies

We measure the performance of an online algorithm A with the Competitive Ratio

▶ For any request sequence *I* the competitive ratio *C* satisfies

$$cost_A(I) \leq C \cdot cost_{\mathcal{OPT}}(I) + K$$

We measure the performance of an online algorithm A with the Competitive Ratio

▶ For any request sequence *I* the competitive ratio *C* satisfies

$$cost_A(I) \leq C \cdot cost_{\mathcal{OPT}}(I) + K$$

If A is randomized then

$$E[cost_A(I)] \leq C \cdot cost_{\mathcal{OPT}}(I) + K$$

The k-server Problem

▶ Introduced by Manasse, McGeoch, and Sleator, 1990.

- Introduced by Manasse, McGeoch, and Sleator, 1990.
- Given k mobile servers in a metric space M.

- Introduced by Manasse, McGeoch, and Sleator, 1990.
- Given k mobile servers in a metric space M.
- Serve requests online in the metric space.

- Introduced by Manasse, McGeoch, and Sleator, 1990.
- Given k mobile servers in a metric space M.
- Serve requests online in the metric space.
- Move a single server to the request point.

- Introduced by Manasse, McGeoch, and Sleator, 1990.
- Given k mobile servers in a metric space M.
- Serve requests online in the metric space.
- Move a single server to the request point.
- Goal: minimize total distance moved.

 $cost = 8 + \dots$

$$cost = 8 + ...$$

$$cost = 8 + \dots$$

$$cost = 8 + 2 + 1 + \dots$$

$$cost = 8 + 2 + 1 + \dots$$

$$cost = 8 + 2 + 1 + \dots$$

4-server Problem

 $cost = 8 + 2 + 1 + 4 + \dots$

$$cost = 8 + 2 + 1 + 4 + \dots$$

$$cost = 8 + 2 + 1 + 4$$

$$cost = 8 + 2 + 1 + 4 = 15$$

4-server Problem

s

4-server Problem

4-server Problem

4-server Problem

4-server Problem

4-server Problem

▶ *cost* = 15

- ▶ cost = 15
- optimal cost = 8

- ▶ *cost* = 15
- optimal cost = 8
- $cost \leq 2 \cdot (optimal \ cost) + 1$

- ▶ *cost* = 15
- optimal cost = 8
- $cost \leq 2 \cdot (optimal \ cost) + 1$
- ▶ $15 \le 2 \cdot 8 + 1$

- ▶ *cost* = 15
- optimal cost = 8
- $cost \leq 2 \cdot (optimal \ cost) + 1$
- ▶ $15 \le 2 \cdot 8 + 1$

Compare with definition of competitive ratio:

- ▶ cost = 15
- optimal cost = 8
- $cost \leq 2 \cdot (optimal \ cost) + 1$
- ▶ $15 \le 2 \cdot 8 + 1$

Compare with definition of competitive ratio:

```
cost_A(I) \leq C \cdot cost_{\mathcal{OPT}}(I) + K
```

- ▶ *cost* = 15
- optimal cost = 8
- $cost \leq 2 \cdot (optimal \ cost) + 1$
- ▶ $15 \le 2 \cdot 8 + 1$

Compare with definition of competitive ratio:

$$cost_A(I) \leq C \cdot cost_{\mathcal{OPT}}(I) + K$$

$$cost \leq 2 \cdot (optimal \ cost) + 1$$

- ▶ cost = 15
- optimal cost = 8
- $cost \le 2 \cdot (optimal \ cost) + 1$
- ▶ $15 \le 2 \cdot 8 + 1$

Compare with definition of competitive ratio:

$$cost_A(I) \leq C \cdot cost_{\mathcal{OPT}}(I) + K$$

$$cost \leq 2 \cdot (optimal \ cost) + 1$$

If this holds for **all possible** input sequences, we could claim that A is 2-competitive.

A common method for proving the competitiveness of an online algorithm. For the server problem, define a potential function

 ϕ : Server Locations $\rightarrow \mathbb{R}$.

A common method for proving the competitiveness of an online algorithm. For the server problem, define a potential function

 ϕ : Server Locations $\rightarrow \mathbb{R}$.

Show that at any step i,

$$cost_A(r_i) \leq C \cdot cost_{OPT}(r_i) - (\phi_i - \phi_{i-1})$$

A common method for proving the competitiveness of an online algorithm. For the server problem, define a potential function

 ϕ : Server Locations $\rightarrow \mathbb{R}$.

Show that at any step i,

$$cost_A(r_i) \leq C \cdot cost_{OPT}(r_i) - (\phi_i - \phi_{i-1})$$

Then, summing over the request sequence:

$$\sum_{i=1}^{n} cost_{\mathcal{A}}(r_i) \leq \sum_{i=1}^{n} C \cdot cost_{OPT}(r_i) - \sum_{i=1}^{n} \Delta \phi_i.$$

A common method for proving the competitiveness of an online algorithm. For the server problem, define a potential function

 ϕ : Server Locations $\rightarrow \mathbb{R}$.

Show that at any step i,

$$cost_A(r_i) \leq C \cdot cost_{OPT}(r_i) - (\phi_i - \phi_{i-1})$$

Then, summing over the request sequence:

$$\sum_{i=1}^{n} cost_{A}(r_{i}) \leq \sum_{i=1}^{n} C \cdot cost_{OPT}(r_{i}) - \sum_{i=1}^{n} \Delta \phi_{i}.$$
$$cost_{A}(R) \leq C \cdot cost_{OPT}(R) + K.$$

The Optimal Adversary Algorithm

How to model the optimal algorithm?

- We think of the optimal algorithm as a malevolent adversary.
- Adversary generates the input sequence I_1, I_2, \ldots, I_n
- Adversary must also use its servers to satisfy requests.
- Adversary tries to maximize C by simultaneously making its cost low and our cost high.

We can now think of the server problem as a game between our algorithm and the adversary algorithm. Consider the payoff matrix for a two-person zero-sum game G.

	Adversary Strategy 1	Adversary Strategy 2
Server Strategy 1	a ₁₁	a ₁₂
Server Strategy 2	a ₂₁	a ₂₂

We can now think of the server problem as a game between our algorithm and the adversary algorithm. Consider the payoff matrix for a two-person zero-sum game G.

	Adversary Strategy 1	Adversary Strategy 2
Server Strategy 1	a ₁₁	a ₁₂
Server Strategy 2	a ₂₁	a ₂₂

$$v(G) = \frac{\det A}{a_{11} - a_{12} - a_{21} + a_{22}}$$

Game Theory

	Adversary Strategy 1	Adversary Strategy 2
Server Strategy 1	a ₁₁	a ₁₂
Server Strategy 2	a ₂₁	a ₂₂

Optimum row player strategy:

Play row 1 with $p_1 = \frac{a_{22} - a_{21}}{a_{11} - a_{12} - a_{21} + a_{22}}$ Play row 2 with $p_2 = \frac{a_{11} - a_{12}}{a_{11} - a_{12} - a_{21} + a_{22}}$

Optimum column player strategy:

Play column 1 with $p_1 = \frac{a_{22} - a_{12}}{a_{11} - a_{12} - a_{21} + a_{22}}$ Play column 2 with $p_2 = \frac{a_{11} - a_{21}}{a_{11} - a_{12} - a_{21} + a_{22}}$

The (m, n)-server Problem

• Given *m* mobile servers in a metric space *M*.

- Given *m* mobile servers in a metric space *M*.
- Serve requests online in the metric space.

- Given *m* mobile servers in a metric space *M*.
- Serve requests online in the metric space.
- Each request requires *n* servers to move to the request point

- Given *m* mobile servers in a metric space *M*.
- Serve requests online in the metric space.
- Each request requires n servers to move to the request point
- Goal: minimize total distance moved.

(4,2)-server Problem

S

Useful Results

Useful Results

Theorem 1

C-competitive (2n, n)-server Algorithm $\downarrow \downarrow$ C-competitive 2-server Algorithm
Useful Results

Theorem 1

C-competitive (2n, n)-server Algorithm \Downarrow C-competitive 2-server Algorithm

Theorem 2

Optimal offline strategy for the (2n, n) server problem keeps the servers in two blocks of size n.

R-LINE

We give an online algorithm for the 2-server problem where the metric space is the real line.

We give an online algorithm for the 2-server problem where the metric space is the real line.

Outline

Define a randomized online algorithm for the (2n, n)-server problem.

We give an online algorithm for the 2-server problem where the metric space is the real line.

- Define a randomized online algorithm for the (2n, n)-server problem.
- Use 2-person zero-sum game theory for randomized moves.

We give an online algorithm for the 2-server problem where the metric space is the real line.

- Define a randomized online algorithm for the (2n, n)-server problem.
- ▶ Use 2-person zero-sum game theory for randomized moves.
- Prove competitiveness by solving non-linear constrained optimization problem and a suitable potential.

We give an online algorithm for the 2-server problem where the metric space is the real line.

- Define a randomized online algorithm for the (2n, n)-server problem.
- ▶ Use 2-person zero-sum game theory for randomized moves.
- Prove competitiveness by solving non-linear constrained optimization problem and a suitable potential.
- Derive randomized 2-server algorithm from (2n, n)-server algorithm, via Theorem 1.

We give an online algorithm for the 2-server problem where the metric space is the real line.

- Define a randomized online algorithm for the (2n, n)-server problem.
- ▶ Use 2-person zero-sum game theory for randomized moves.
- Prove competitiveness by solving non-linear constrained optimization problem and a suitable potential.
- Derive randomized 2-server algorithm from (2n, n)-server algorithm, via Theorem 1.
- ► As *n* grows large, competitiveness decreases.

R-LINE

We give an online algorithm for the 2-server problem where the metric space is the real line.

- Define a randomized online algorithm for the (2n, n)-server problem.
- ▶ Use 2-person zero-sum game theory for randomized moves.
- Prove competitiveness by solving non-linear constrained optimization problem and a suitable potential.
- Derive randomized 2-server algorithm from (2n, n)-server algorithm, via Theorem 1.
- ► As *n* grows large, competitiveness decreases.
- For R–LINE, $C \leq 1.901$

T-Theory on the Line

▶ For R-LINE, we have our algorithms servers, $s_1, s_2, ..., s_{2n}$, and

- ▶ For R-LINE, we have our algorithms servers, $s_1, s_2, ..., s_{2n}$, and
- Two adversary servers, a_1 and a_2 for a total of 2n + 2 points.

- ▶ For R-LINE, we have our algorithms servers, $s_1, s_2, ..., s_{2n}$, and
- Two adversary servers, a_1 and a_2 for a total of 2n + 2 points.
- Define α_{i,j}, the (i, j)th isolation index of a configuration, to be the length of the longest interval that has exactly i algorithm servers to the left and exactly j adversary servers to the left.

- For R-LINE, we have our algorithms servers, $s_1, s_2, ..., s_{2n}$, and
- Two adversary servers, a_1 and a_2 for a total of 2n + 2 points.
- Define α_{i,j}, the (i, j)th isolation index of a configuration, to be the length of the longest interval that has exactly i algorithm servers to the left and exactly j adversary servers to the left.
- Formally,

$$\alpha_{i,j} = \max\{0, \min\{s_{i+1}, a_{j+1}\} - \max\{s_i, a_j\}\}$$

- For R-LINE, we have our algorithms servers, $s_1, s_2, ..., s_{2n}$, and
- Two adversary servers, a_1 and a_2 for a total of 2n + 2 points.
- Define α_{i,j}, the (i, j)th isolation index of a configuration, to be the length of the longest interval that has exactly i algorithm servers to the left and exactly j adversary servers to the left.
- Formally,

$$\alpha_{i,j} = \max\{0, \min\{s_{i+1}, a_{j+1}\} - \max\{s_i, a_j\}\}$$

•
$$s_0 = a_0 = -\infty$$
 and $s_{2n+1} = a_3 = \infty$

- α_{i,j} is the length of the longest interval that has exactly i algorithm servers to the left and exactly j adversary servers to the left.
- $\alpha_{i,j} = \max\{0, \min\{s_{i+1}, a_{j+1}\} \max\{s_i, a_j\}\}$
- Example,

- α_{i,j} is the length of the longest interval that has exactly i algorithm servers to the left and exactly j adversary servers to the left.
- $\alpha_{i,j} = \max\{0, \min\{s_{i+1}, a_{j+1}\} \max\{s_i, a_j\}\}$
- Example,

Isolation Index Coefficients

• Every isolation index, α , has an associated coefficient, η .

- Every isolation index, α , has an associated coefficient, η .
- R-LINE is defined in terms of these constants, η .

- Every isolation index, α , has an associated coefficient, η .
- R-LINE is defined in terms of these constants, η .
- Define constants $\eta_{i,j}$, the $(i,j)^{th}$ isolation index coefficient.

- Every isolation index, α , has an associated coefficient, η .
- R-LINE is defined in terms of these constants, η .
- Define constants $\eta_{i,j}$, the $(i,j)^{th}$ isolation index coefficient.
- The isolation index coefficients satisfy a symmetry property,

$$\eta_{i,j} = \eta_{2n-i,2-j}$$

- Every isolation index, α , has an associated coefficient, η .
- R-LINE is defined in terms of these constants, η .
- Define constants $\eta_{i,j}$, the $(i,j)^{th}$ isolation index coefficient.
- The isolation index coefficients satisfy a symmetry property,

$$\eta_{i,j} = \eta_{2n-i,2-j}$$

• We also have
$$\eta_{0,0} = \eta_{2n,n} = 0$$
.

Definition of the Potential, ϕ

Definition of the Potential, ϕ

For any configuration, the potential is defined as the sum of all isolation indices multiplied by their associated coefficients.

Definition of the Potential, ϕ

- For any configuration, the potential is defined as the sum of all isolation indices multiplied by their associated coefficients.
- Formally,

$$\phi = \sum \eta_{i,j} \cdot \alpha_{i,j}$$

Configurations Notation

Notation

• We refer to s_i as the i^{th} server and also its location.

- We refer to s_i as the i^{th} server and also its location.
- We number the servers left to right.

- We refer to s_i as the i^{th} server and also its location.
- We number the servers left to right.
- ► $s_1 \leq s_2 \leq ... \leq s_{2n}$

Configurations

- We refer to s_i as the i^{th} server and also its location.
- We number the servers left to right.
- ► $s_1 \leq s_2 \leq ... \leq s_{2n}$
- Current request is *r*.

Configurations

- We refer to s_i as the i^{th} server and also its location.
- We number the servers left to right.
- ► $s_1 \leq s_2 \leq ... \leq s_{2n}$
- Current request is r.
- Previous request is r'.

Configurations

- We refer to s_i as the i^{th} server and also its location.
- We number the servers left to right.
- ► $s_1 \leq s_2 \leq ... \leq s_{2n}$
- Current request is r.
- Previous request is r'.
- ▶ WLOG r' < r.</p>

Configurations

- We refer to s_i as the i^{th} server and also its location.
- We number the servers left to right.
- ► $s_1 \leq s_2 \leq ... \leq s_{2n}$
- Current request is r.
- Previous request is r'.
- ▶ WLOG r' < r.</p>
- Servers do not pass each other.

S-Configuration (Satisfying)

S-Configuration (Satisfying)

S-Configuration (Satisfying)

• There are *n* servers at the request point.

S-Configuration (Satisfying)

• There are *n* servers at the request point.

D-Configuration (Deterministic)

D-Configuration (Deterministic)

- More than n algorithm servers either strictly to the left or strictly to the right of r; r > s_{n+1} or r < s_n.
 - 2. If fewer than n algorithm servers at r'
 - 2.1 No algorithm server strictly between r' and r
 - 2.2 At least *n* algorithm servers at the points r' and *r* combined.

D-Configuration (Deterministic)

- More than n algorithm servers either strictly to the left or strictly to the right of r; r > s_{n+1} or r < s_n.
 - 2. If fewer than n algorithm servers at r'
 - 2.1 No algorithm server strictly between r' and r
 - 2.2 At least *n* algorithm servers at the points r' and *r* combined.

D-Configuration Moves

1. Must be *m* servers to the left of *r*, for some m > n.

- 1. Must be *m* servers to the left of *r*, for some m > n.
- 2. Move $s_{n+1}...s_m$ to r.

D-Configuration Moves

- 1. Must be *m* servers to the left of *r*, for some m > n.
- 2. Move $s_{n+1}...s_m$ to r.

- 1. Must be *m* servers to the left of *r*, for some m > n.
- 2. Move $s_{n+1}...s_m$ to r.

- 1. Must be *m* servers to the left of *r*, for some m > n.
- 2. Move $s_{n+1}...s_m$ to r.

- 1. Must be *m* servers to the left of *r*, for some m > n.
- 2. Move $s_{n+1}...s_m$ to r.

D-Configuration Moves

- 1. Must be *m* servers to the left of *r*, for some m > n.
- 2. Move $s_{n+1}...s_m$ to r.

D-Configuration Moves

- 1. Must be *m* servers to the left of *r*, for some m > n.
- 2. Move $s_{n+1}...s_m$ to r.

D-Configuration Moves

- 1. Must be *m* servers to the left of *r*, for some m > n.
- 2. Move $s_{n+1}...s_m$ to r.

R-Configurations (Randomized)

R-Configurations (Randomized) The adversary's hidden server.

R-Configurations (Randomized)

The adversary's hidden server.

► The adversary has two servers.

R-Configurations (Randomized)

The adversary's hidden server.

- ► The adversary has two servers.
- ▶ The current request, *r*.

R-Configurations (Randomized)

The adversary's hidden server.

- ► The adversary has two servers.
- ▶ The current request, *r*.
- ▶ The other server's location, *a*, is "hidden".

R-Configurations (Randomized)

The adversary's hidden server.

- The adversary has two servers.
- ▶ The current request, *r*.
- The other server's location, a, is "hidden".
- There are only two hidden server locations to consider.

R-Configurations (Randomized)

The adversary's hidden server.

- The adversary has two servers.
- ▶ The current request, *r*.
- ▶ The other server's location, *a*, is "hidden".
- There are only two hidden server locations to consider.

R-Configurations (Randomized)

The adversary's hidden server.

- The adversary has two servers.
- ▶ The current request, *r*.
- ▶ The other server's location, *a*, is "hidden".
- There are only two hidden server locations to consider.

R-Configuration (Randomized)

1. Exactly *n* algorithm servers on the same side of *r* as *r'*. Either $r' = s_n < r$ or $r < r' = s_{n+1}$.

- 1. Exactly *n* algorithm servers on the same side of *r* as *r'*. Either $r' = s_n < r$ or $r < r' = s_{n+1}$.
- 2. No algorithm server strictly between r' and r.

- 1. Exactly *n* algorithm servers on the same side of *r* as *r'*. Either $r' = s_n < r$ or $r < r' = s_{n+1}$.
- 2. No algorithm server strictly between r' and r.
- 3. At least n algorithm servers at the points r' and r combined.

R-Configuration (Randomized)

- 1. Exactly *n* algorithm servers on the same side of *r* as *r'*. Either $r' = s_n < r$ or $r < r' = s_{n+1}$.
- 2. No algorithm server strictly between r' and r.
- 3. At least n algorithm servers at the points r' and r combined.

- There are two possible moves.
 - 1. Move a single server.

- There are two possible moves.
 - 1. Move a single server.
 - 2. Complete the request using the servers from r'.

- There are two possible moves.
 - 1. Move a single server.
 - 2. Complete the request using the servers from r'.
- Choose between the two alternatives using randomization, by solving a 2-person zero-sum game.

- There are two possible moves.
 - 1. Move a single server.
 - 2. Complete the request using the servers from r'.
- Choose between the two alternatives using randomization, by solving a 2-person zero-sum game.

- There are two possible moves.
 - 1. Move a single server.
 - 2. Complete the request using the servers from r'.
- Choose between the two alternatives using randomization, by solving a 2-person zero-sum game.

- There are two possible moves.
 - 1. Move a single server.
 - 2. Complete the request using the servers from r'.
- Choose between the two alternatives using randomization, by solving a 2-person zero-sum game.

- There are two possible moves.
 - 1. Move a single server.
 - 2. Complete the request using the servers from r'.
- Choose between the two alternatives using randomization, by solving a 2-person zero-sum game.

- There are two possible moves.
 - 1. Move a single server.
 - 2. Complete the request using the servers from r'.
- Choose between the two alternatives using randomization, by solving a 2-person zero-sum game.

R-Configuration (Randomized) Moves

- There are two possible moves.
 - 1. Move a single server.
 - 2. Complete the request using the servers from r'.
- Choose between the two alternatives using randomization, by solving a 2-person zero-sum game.

$$\begin{array}{|c|c|c|} (\Delta\phi + cost)_{11} & (\Delta\phi + cost)_{12} \\ (\Delta\phi + cost)_{21} & (\Delta\phi + cost)_{22} \end{array}$$

Configurations: R-Configurations (Randomized)

 Entries game matrix computed in terms of the isolation index coefficients, η.

- Entries game matrix computed in terms of the isolation index coefficients, η.
- If currently p servers located at r:

- Entries game matrix computed in terms of the isolation index coefficients, η.
- If currently p servers located at r:

$$\begin{aligned} (\Delta\phi + \cos t)_{11} &= (\eta_{n+p+1,2} - \eta_{n+p,2} + 1) \cdot (s_{n+p+1} - r) \\ (\Delta\phi + \cos t)_{12} &= (\eta_{p,1} - \eta_{n,1} + n - p) \cdot (r - s_n) \\ (\Delta\phi + \cos t)_{21} &= (\eta_{n+p+1,1} - \eta_{n+p,1} + 1) \cdot (s_{n+p+1} - r) \\ (\Delta\phi + \cos t)_{22} &= (\eta_{p,0} - \eta_{n,0} + n - p) \cdot (r - s_n) \end{aligned}$$

The Algorithm R–LINE

The Algorithm R-LINE

For a given round of execution:

The Algorithm R-LINE

For a given round of execution:

- 1. Start in S-Config. Receive a request.
- 2. If D-Config, make deterministic moves.
 - 2.1 If result is S-Config, done.
 - 2.2 Otherwise result is R-Config.
- 3. If R-Config, make randomized moves until S-Config.

Overview of Proof

- 1. Provide a system of inequalities, S, involving the isolation index coefficients, $\eta_{i,j}$, and the competitiveness, *C*.
- 2. Show that if there exists an assignment of values to every $\eta_{i,j}$ that satisfies S, then R-LINE is C-competitive.
- 3. Use numeric methods to find a solution to \mathbb{S} that minimizes *C*.

Sufficient Inequalities, \mathbb{S}_n

$$\begin{array}{rcl} \forall \ 0 \leq i \leq 2n : \ |\eta_{i,1} - \eta_{i,0}| &\leq n \cdot C \tag{1} \\ \forall \ 1 \leq i \leq n \ \text{and} \ \forall \ 1 \leq j \leq 2 : \ \eta_{i,j} + 1 &\leq \eta_{i-1,j} \tag{2} \\ \forall \ 1 \leq i \leq n \ \text{and} \ \forall \ 1 \leq j \leq 2 : \ \eta_{i-1,j-1} &\leq \eta_{i,j-1} + 1 \tag{3} \\ \forall \ 1 \leq i \leq n : \ (\eta_{i-1,1} - \eta_{i,1} + 1)(\eta_{n-i,1} - \eta_{n,1} + i) &\leq (\eta_{i-1,0} - \eta_{i,0} + 1)(\eta_{n-i,0} - \eta_{n,0} + i)(4) \end{array}$$

Overview of Proof Steps

Show that if the system of inequalities, \mathbb{S}_n , is satisfied, then the following properties hold:

Overview of Proof Steps

Show that if the system of inequalities, \mathbb{S}_n , is satisfied, then the following properties hold:

1. For adversary moves: $\Delta \phi \leq C \cdot cost_{Adv}$.

Overview of Proof Steps

Show that if the system of inequalities, S_n , is satisfied, then the following properties hold:

- 1. For adversary moves: $\Delta \phi \leq C \cdot cost_{Adv}$.
- 2. For R–LINE deterministic moves: $\Delta \phi + cost \leq 0$.

Overview of Proof Steps

Show that if the system of inequalities, S_n , is satisfied, then the following properties hold:

- 1. For adversary moves: $\Delta \phi \leq C \cdot cost_{Adv}$.
- 2. For R–LINE deterministic moves: $\Delta \phi + cost \leq 0$.
- 3. WLOG, adversary's hidden server is at one of at most two possible locations.

Overview of Proof Steps

Show that if the system of inequalities, S_n , is satisfied, then the following properties hold:

- 1. For adversary moves: $\Delta \phi \leq C \cdot cost_{Adv}$.
- 2. For R–LINE deterministic moves: $\Delta \phi + cost \leq 0$.
- 3. WLOG, adversary's hidden server is at one of at most two possible locations.
- 4. For R–LINE randomized moves: $E(\Delta \phi + cost) \leq 0$.

Overview of Proof Steps

Show that if the system of inequalities, S_n , is satisfied, then the following properties hold:

- 1. For adversary moves: $\Delta \phi \leq C \cdot cost_{Adv}$.
- 2. For R–LINE deterministic moves: $\Delta \phi + cost \leq 0$.
- 3. WLOG, adversary's hidden server is at one of at most two possible locations.

4. For R–LINE randomized moves: $E(\Delta \phi + cost) \leq 0$. Adding all of the inequalities over a request round:

$$E(cost_A(\sigma)) \leq C \cdot cost_{\mathcal{ADV}}(\sigma) + K$$

Given the system \mathbb{S}_n

• Find a solution to \mathbb{S}_n that minimizes C.

Given the system \mathbb{S}_n

- Find a solution to \mathbb{S}_n that minimizes *C*.
- Transform \mathbb{S}_n into a new system \mathbb{S}'_n to simplify the solution.

Introduce variables ϵ_i and δ_i for all $0 \le i < n$. Then \mathbb{S}'_n consists of the following constraints:

Introduce variables ϵ_i and δ_i for all $0 \le i < n$. Then \mathbb{S}'_n consists of the following constraints:

$$\begin{array}{rcl} (2i + \epsilon_{n-i})(2 - \epsilon_i + \epsilon_{i-1}) &=& 4i & \forall \ 0 < i < n \\ (2n + \epsilon_0)(2 + \epsilon_{n-1}) &\geq & 4n & \\ \delta &=& -\epsilon_0/2 & \\ C &=& (2n - \delta)/n & \\ \delta_i &=& \epsilon_i + 2\delta & \forall \ 0 \leq i < n \\ \eta_{i,0} &=& 3i - \delta_i & \forall \ 0 \leq i < n \\ \eta_{i,0} &=& 2n + i - 2\delta & \forall \ n \leq i \leq 2n \\ \eta_{i,1} &=& 2n - i - \delta & \forall \ 0 \leq i < n \\ \eta_{i,2} &=& \eta_{2n-i,0} & \forall \ 0 \leq i \leq 2n \end{array}$$

Converting to a Differential Equation

• As
$$n \to \infty$$
, $\mathbb{S}'_n \to D$

D is given by:

$$(x + 1 + f(-x)) \cdot (1 - f'(x)) = x + 1$$

$$-1 \le x \le 1$$

Euler Method for Reflective Differential Equation

- 1. Choose a step size, $h = \frac{2}{n}$.
- 2. Choose an initial value y_0 at t_0
- 3. Compute updates:

$$y_{n+1} = y_n + h \cdot f(t_{-n}, y_{-n}),$$

 $y_{-n-1} = y_{-n} + h \cdot f(t_n, y_n),$

Algorithm to Find Minimum C

- 1. Choose initial value f(0).
- 2. Approximate f on interval [-1, 1].
- 3. Use substitutions to find $\eta_{i,j}$.
- 4. Verify that $\eta_{i,j}$ satisfy \mathbb{S}_n .
- 5. Compute corresponding value of C.
- 6. Binary search on f(0) to find minimum C.
Solving the Inequalities

Solution for large *n*

- We find that $C \approx 1.9007452$ for n = 10000.
- The corresponding approximation of f(x):

Other Metric Spaces

Other Metric Spaces

- Trees Preliminary work done, strongly suggests $C \le 1.901$.
- Manhattan Plane, Circle, Euclidean.
- General Spaces!!

Other Metric Spaces

- Trees Preliminary work done, strongly suggests $C \le 1.901$.
- Manhattan Plane, Circle, Euclidean.
- General Spaces!!

k > 2 on the Line

• (kn, n)-server algorithm $\Rightarrow k$ -server algorithm.

Other Metric Spaces

- Trees Preliminary work done, strongly suggests $C \le 1.901$.
- Manhattan Plane, Circle, Euclidean.
- General Spaces!!

k > 2 on the Line

• (kn, n)-server algorithm $\Rightarrow k$ -server algorithm.

Analytic Solution to the Differential Equation

▶ Would give exact minimum value of *C* for R–LINE.

Acknowledgements

Thank you!

- Committee Members: Lawrence Larmore, Wolfgang Bein, Matt Pedersen, Ebrahim Salehi.
- UNLV Graduate and Professional Student Association.
- Attendees.

R–LINE

The End.

R–LINE

The End.

R–LINE

The End.

Proof of Property 1

Proof of Property 1

Proof of Property 1

If S holds, then Property 1 holds: For any move by the adversary, $\Delta\phi \leq C \cdot cost_{\mathcal{A}dv}$

▶ By inequality (1), $|\eta_{i,j} - \eta_{i,j-1}| \le n \cdot C$ for j = 1, 2.

Proof of Property 1

- ▶ By inequality (1), $|\eta_{i,j} \eta_{i,j-1}| \le n \cdot C$ for j = 1, 2.
- Adversary server a_j moves to the right, from x to y, where x < y, with s_i ≤ x and y ≤ s_{i+1}.

Proof of Property 1

- ▶ By inequality (1), $|\eta_{i,j} \eta_{i,j-1}| \le n \cdot C$ for j = 1, 2.
- Adversary server a_j moves to the right, from x to y, where x < y, with s_i ≤ x and y ≤ s_{i+1}.
- ▶ Thus, $\alpha_{i,j}$ decreases by y x and $\alpha_{i,j-1}$ increases by y x.

Proof of Property 1

- ▶ By inequality (1), $|\eta_{i,j} \eta_{i,j-1}| \le n \cdot C$ for j = 1, 2.
- Adversary server a_j moves to the right, from x to y, where x < y, with s_i ≤ x and y ≤ s_{i+1}.
- ▶ Thus, $\alpha_{i,j}$ decreases by y x and $\alpha_{i,j-1}$ increases by y x.
- The cost to the adversary of this move is n(y x).

Proof of Property 1

- ▶ By inequality (1), $|\eta_{i,j} \eta_{i,j-1}| \le n \cdot C$ for j = 1, 2.
- Adversary server a_j moves to the right, from x to y, where x < y, with s_i ≤ x and y ≤ s_{i+1}.
- ▶ Thus, $\alpha_{i,j}$ decreases by y x and $\alpha_{i,j-1}$ increases by y x.
- The cost to the adversary of this move is n(y x).
- ▶ By definition of the potential, $\Delta \phi = (\eta_{i,j} - \eta_{i,j-1})(y - x) \le n \cdot C \cdot (y - x) \le C \cdot cost_{Adv}.$

Proof of Property 2

Proof of Property 2

Proof of Property 2

If $\mathbb S$ holds, then Property 2 holds: for any deterministic move by R–LINE, $\Delta\phi+cost\leq 0.$

• s_i moves from x to y, where x < y.

Proof of Property 2

- s_i moves from x to y, where x < y.
- The algorithm cost of the step is y x.

Proof of Property 2

- s_i moves from x to y, where x < y.
- The algorithm cost of the step is y x.
- ► The move causes \(\alphi_{i,j}\) to decrease by \(y x\) and \(\alpha_{i-1,j}\) to increase by the same amount.

Proof of Property 2

- s_i moves from x to y, where x < y.
- The algorithm cost of the step is y x.
- ► The move causes \(\alphi_{i,j}\) to decrease by \(y x\) and \(\alpha_{i-1,j}\) to increase by the same amount.
- ▶ By inequality (2), $\eta_{i,j} + 1 \le \eta_{i-1,j}$, and the definition of the potential: $\Delta \phi + cost_{R--LINE} = (y x)(\eta_{i,j} \eta_{i-1,j} + 1) \le 0$.

Proof of Property 3

Proof of Property 3

Proof of Property 3

If S holds, then Property (3) holds: We may assume the adversary's hidden server is at one of at most two possible locations.

Since a could be any point on the line, the payoff matrix of the game has infinitely many rows.

Proof of Property 3

- Since a could be any point on the line, the payoff matrix of the game has infinitely many rows.
- We prove that just two of those rows, namely a = s_n and a = s_{n+p+1}, dominate the others.

Proof of Property 3

- Since a could be any point on the line, the payoff matrix of the game has infinitely many rows.
- We prove that just two of those rows, namely a = s_n and a = s_{n+p+1}, dominate the others.
- ► By batching the row strategies, we illustrate the ∞ × 2 payoff matrix in the next slide.

Proof of Property 3

- Since a could be any point on the line, the payoff matrix of the game has infinitely many rows.
- We prove that just two of those rows, namely a = s_n and a = s_{n+p+1}, dominate the others.
- ► By batching the row strategies, we illustrate the ∞ × 2 payoff matrix in the next slide.

Proof of Property 3

		Move s_{n+p+1}	Move $s_{p+1} \dots s_n$
1	$a \leq s_n$	$(\eta_{n+p+1,2} - \eta_{n+p,2} + 1)(s_{n+p+1} - r)$	$(\eta_{p,1}-\eta_{n,1}+n-p)(r-s_n)$
11	$s_n \leq a \leq r$	$(\eta_{n+p+1,2} - \eta_{n+p,2} + 1)(s_{n+p+1} - r)$	$(\eta_{p,1} - \eta_{n,1} + n - p)(r - a) + (\eta_{p,0} - \eta_{n,0} + n - p)(a - s_n)$
111	$r \leq a \leq s_{n+p+1}$	$ \begin{array}{c} (\eta_{n+p+1,2} - \eta_{n+p,2} + 1)(s_{n+p+1} - a) \\ + \\ (\eta_{n+p+1,1} - \eta_{n+p,1} + 1)(a - r) \end{array} $	$(\eta_{p,0}-\eta_{n,0}+n-p)(r-s_n)$
IV	$a \geq s_{n+p+1}$	$(\eta_{n+p+1,1} - \eta_{n+p,1} + 1)(s_{n+p+1} - r)$	$(\eta_{p,0}-\eta_{n,0}+n-p)(r-s_n)$

By inequalities (2) and (3), the rows $a = s_n$ and $a = s_{n+p+1}$ dominate all other rows.

Proof of Property 3

	Move s_{n+p+1}	Move <i>s</i> _{<i>p</i>+1} <i>s</i> _{<i>n</i>}
$a = s_n$	$(\eta_{n+p+1,2} - \eta_{n+p,2} + 1)(s_{n+p+1} - r)$	$(\eta_{p,1}-\eta_{n,1}+n-p)(r-s_n)$
$a = s_{n+p+1}$	$(\eta_{n+p+1,1} - \eta_{n+p,1} + 1)(s_{n+p+1} - r)$	$(\eta_{p,0}-\eta_{n,0}+n-p)(r-s_n)$

By inequalities (2) and (3), the rows $a = s_n$ and $a = s_{n+p+1}$ dominate all other rows.

Proof of Property 4

Proof of Property 4

$(\Delta \phi + cost)_{11}$	$(\Delta \phi + cost)_{12}$
$(\Delta \phi + cost)_{21}$	$(\Delta \phi + cost)_{22}$

Proof of Property 4

If S holds, then Property 4 holds: For any randomized move by R–LINE, $E(\Delta \phi + cost) \leq 0$.

$(\Delta \phi + cost)_{11}$	$(\Delta \phi + cost)_{12}$
$(\Delta \phi + cost)_{21}$	$(\Delta \phi + cost)_{22}$

▶ By S, the upper left and lower right entries are negative.

Proof of Property 4

$(\Delta \phi + cost)_{11}$	$(\Delta \phi + cost)_{12}$
$(\Delta \phi + cost)_{21}$	$(\Delta \phi + cost)_{22}$

- ▶ By S, the upper left and lower right entries are negative.
- The upper right and lower left entries are positive.

Proof of Property 4

$(\Delta \phi + cost)_{11}$	$(\Delta \phi + cost)_{12}$
$(\Delta \phi + cost)_{21}$	$(\Delta \phi + cost)_{22}$

- ▶ By S, the upper left and lower right entries are negative.
- The upper right and lower left entries are positive.

Proof of Property 4
Proof of Property 4

If S holds, then Property 4 holds: For any randomized move by R–LINE, $E(\Delta \phi + cost) \leq 0$.

The value of our game is

det(G)

 $(\eta_{n+p+1,2} + \eta_{n+p+1} - \eta_{n+p,2} - \eta_{n+p+1,1}) \cdot (s_{n+p+1} - r) + (\eta_{p,0} + \eta_{n,1} - \eta_{n,0} - \eta_{p,1}) \cdot (r - s_n)$

Proof of Property 4

If S holds, then Property 4 holds: For any randomized move by R–LINE, $E(\Delta \phi + cost) \leq 0$.

The value of our game is

$$\frac{\det(G)}{(\eta_{n+p+1,2}+\eta_{n+p+1}-\eta_{n+p,2}-\eta_{n+p+1,1})\cdot(s_{n+p+1}-r)+(\eta_{p,0}+\eta_{n,1}-\eta_{n,0}-\eta_{p,1})\cdot(r-s_n)}$$

► The numerator is non-negative by inequality 4. The denominator is negative, which we can prove by combining inequalities of S labeled (2) and (3).

Proof of Property 4

If S holds, then Property 4 holds: For any randomized move by R–LINE, $E(\Delta \phi + cost) \leq 0$.

The value of our game is

$$\frac{\det(G)}{(\eta_{n+p+1,2}+\eta_{n+p+1}-\eta_{n+p,2}-\eta_{n+p+1,1})\cdot(s_{n+p+1}-r)+(\eta_{p,0}+\eta_{n,1}-\eta_{n,0}-\eta_{p,1})\cdot(r-s_n)}$$

- ► The numerator is non-negative by inequality 4. The denominator is negative, which we can prove by combining inequalities of S labeled (2) and (3).
- Thus, $E(\Delta \phi + cost_{R--LINE}) = v(G) \leq 0$.

Thus, by properties (1), (2), (3), and (4), if S is satisfied then R–LINE is *C*-competitive.