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Abstract

Thesis Result

I A randomized online algorithm for the 2-server problem on the
line.

I Competitiveness ≤ 1.901 against the oblivious adversary.

I Improves the previously best known competitiveness of
155
78 ≈ 1.987.
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Outline

1. Offline vs. online algorithms.

2. Competitive analysis and game theory.

3. The k-server problem.

4. Our 2-server algorithm, R–LINE (Randomized Line).

5. Future work.
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Offline Algorithms

Typically, one initially studies algorithms in the offline setting,
where all data is available to the algorithm at start-up.

Example: Traveling Salesman Problem.
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Online Algorithms

An online algorithm must make decisions with only partial
information.

Example: Canadian Traveler’s Problem
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Online Algorithms

Many important real-world problems are online.

Examples

1. Investment decisions, as in algorithmic stock trading.

2. Job scheduling, as in multi-core computing.

3. Memory cache page management.

4. and more....
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Online Algorithms

Online algorithms accept input one piece at a time and must
produce an output before more information is given.

1. Input I = I1, I2, . . . , In

2. Receive an input Ii , and produces an output Oi .

3. Each input has an associated cost(Ii ).

4. We wish to minimize the total cost(I ) =
∑

cost(Ii ).
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Competitive Analysis

We measure the performance of an online algorithm A with the

Competitive Ratio

I For any request sequence I the competitive ratio C satisfies

costA(I ) ≤ C · costOPT (I ) + K

I If A is randomized then

E [costA(I )] ≤ C · costOPT (I ) + K
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Background

The k-server Problem

I Introduced by Manasse, McGeoch, and Sleator, 1990.

I Given k mobile servers in a metric space M.

I Serve requests online in the metric space.

I Move a single server to the request point.

I Goal: minimize total distance moved.
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Background

4-server Problem
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Cost ratio for this particular input sequence:

I cost = 15

I optimal cost = 8

I cost ≤ 2 · (optimal cost) + 1

I 15 ≤ 2 · 8 + 1

Compare with definition of competitive ratio:

costA(I ) ≤ C · costOPT (I ) + K

cost ≤ 2 · (optimal cost) + 1

If this holds for all possible input sequences, we could claim that
A is 2-competitive.
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The Potential Method

A common method for proving the competitiveness of an online
algorithm. For the server problem, define a potential function

φ : Server Locations → R.

Show that at any step i ,

costA(ri ) ≤ C · costOPT (ri )− (φi − φi−1)

Then, summing over the request sequence:

n∑
i=1

costA(ri ) ≤
n∑

i=1

C · costOPT (ri )−
n∑

i=1

∆φi .

costA(R) ≤ C · costOPT (R) + K .
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The Optimal Adversary Algorithm

How to model the optimal algorithm?

I We think of the optimal algorithm as a malevolent adversary.

I Adversary generates the input sequence I1, I2, . . . , In
I Adversary must also use its servers to satisfy requests.

I Adversary tries to maximize C by simultaneously making its
cost low and our cost high.
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Game Theory

We can now think of the server problem as a game between our
algorithm and the adversary algorithm. Consider the payoff matrix
for a two-person zero-sum game G .

Adversary Strategy 1 Adversary Strategy 2

Server Strategy 1 a11 a12
Server Strategy 2 a21 a22

v(G ) =
det A

a11 − a12 − a21 + a22
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Game Theory

Adversary Strategy 1 Adversary Strategy 2

Server Strategy 1 a11 a12
Server Strategy 2 a21 a22

Optimum row player strategy:

Play row 1 with p1 = a22−a21
a11−a12−a21+a22

Play row 2 with p2 = a11−a12
a11−a12−a21+a22

Optimum column player strategy:

Play column 1 with p1 = a22−a12
a11−a12−a21+a22

Play column 2 with p2 = a11−a21
a11−a12−a21+a22
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Generalization of the k-server problem

The (m, n)-server Problem

I Given m mobile servers in a metric space M.

I Serve requests online in the metric space.

I Each request requires n servers to move to the request point

I Goal: minimize total distance moved.
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Useful Results

Theorem 1

C -competitive (2n, n)-server Algorithm
⇓

C -competitive 2-server Algorithm

Theorem 2

Optimal offline strategy for the (2n, n) server problem keeps the
servers in two blocks of size n.
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R–LINE

We give an online algorithm for the 2-server problem where the
metric space is the real line.

Outline

I Define a randomized online algorithm for the (2n, n)-server
problem.

I Use 2-person zero-sum game theory for randomized moves.

I Prove competitiveness by solving non-linear constrained
optimization problem and a suitable potential.

I Derive randomized 2-server algorithm from (2n, n)-server
algorithm, via Theorem 1.

I As n grows large, competitiveness decreases.

I For R–LINE, C ≤ 1.901
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R–LINE Details

T-Theory on the Line

I For R–LINE, we have our algorithms servers, s1, s2, ..., s2n, and

I Two adversary servers, a1 and a2 for a total of 2n + 2 points.

I Define αi ,j , the (i , j)th isolation index of a configuration, to be
the length of the longest interval that has exactly i algorithm
servers to the left and exactly j adversary servers to the left.

I Formally,

αi ,j = max{0,min{si+1, aj+1} −max{si , aj}}

I s0 = a0 = −∞ and s2n+1 = a3 =∞
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R–LINE Details

Isolation Index Coefficients

I Every isolation index, α, has an associated coefficient, η.

I R-LINE is defined in terms of these constants, η.

I Define constants ηi ,j , the (i , j)th isolation index coefficient.

I The isolation index coefficients satisfy a symmetry property,

ηi ,j = η2n−i ,2−j

I We also have η0,0 = η2n,n = 0.

Lucas Bang R–LINE UNLV



R–LINE Details

Isolation Index Coefficients

I Every isolation index, α, has an associated coefficient, η.

I R-LINE is defined in terms of these constants, η.

I Define constants ηi ,j , the (i , j)th isolation index coefficient.

I The isolation index coefficients satisfy a symmetry property,

ηi ,j = η2n−i ,2−j

I We also have η0,0 = η2n,n = 0.

Lucas Bang R–LINE UNLV



R–LINE Details

Isolation Index Coefficients

I Every isolation index, α, has an associated coefficient, η.

I R-LINE is defined in terms of these constants, η.

I Define constants ηi ,j , the (i , j)th isolation index coefficient.

I The isolation index coefficients satisfy a symmetry property,

ηi ,j = η2n−i ,2−j

I We also have η0,0 = η2n,n = 0.

Lucas Bang R–LINE UNLV



R–LINE Details

Isolation Index Coefficients

I Every isolation index, α, has an associated coefficient, η.

I R-LINE is defined in terms of these constants, η.

I Define constants ηi ,j , the (i , j)th isolation index coefficient.

I The isolation index coefficients satisfy a symmetry property,

ηi ,j = η2n−i ,2−j

I We also have η0,0 = η2n,n = 0.

Lucas Bang R–LINE UNLV



R–LINE Details

Isolation Index Coefficients

I Every isolation index, α, has an associated coefficient, η.

I R-LINE is defined in terms of these constants, η.

I Define constants ηi ,j , the (i , j)th isolation index coefficient.

I The isolation index coefficients satisfy a symmetry property,

ηi ,j = η2n−i ,2−j

I We also have η0,0 = η2n,n = 0.

Lucas Bang R–LINE UNLV



R–LINE Details

Isolation Index Coefficients

I Every isolation index, α, has an associated coefficient, η.

I R-LINE is defined in terms of these constants, η.

I Define constants ηi ,j , the (i , j)th isolation index coefficient.

I The isolation index coefficients satisfy a symmetry property,

ηi ,j = η2n−i ,2−j

I We also have η0,0 = η2n,n = 0.

Lucas Bang R–LINE UNLV



R–LINE Details

Definition of the Potential, φ

I For any configuration, the potential is defined as the sum of
all isolation indices multiplied by their associated coefficients.

I Formally,

φ =
∑

ηi ,j · αi ,j
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R–LINE Details

Configurations

Notation

I We refer to si as the i th server and also its location.

I We number the servers left to right.

I s1 ≤ s2 ≤ ... ≤ s2n
I Current request is r .

I Previous request is r ′.

I WLOG r ′ < r .

I Servers do not pass each other.
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R–LINE Details

S-Configuration (Satisfying)

I There are n servers at the request point.

(6, 3) Example
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R–LINE Details

D-Configuration (Deterministic)

I 1. More than n algorithm servers either strictly to the left or
strictly to the right of r ; r > sn+1 or r < sn.

2. If fewer than n algorithm servers at r ′

2.1 No algorithm server strictly between r ′ and r
2.2 At least n algorithm servers at the points r ′ and r combined.

(6, 3) Example
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R–LINE Details

D-Configuration Moves

1. Must be m servers to the left of r , for some m > n.

2. Move sn+1...sm to r .
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R–LINE Details

R-Configurations (Randomized)

The adversary’s hidden server.

I The adversary has two servers.

I The current request, r .

I The other server’s location, a, is “hidden”.

I There are only two hidden server locations to consider.

(6, 3) Example

Lucas Bang R–LINE UNLV



R–LINE Details

R-Configurations (Randomized)

The adversary’s hidden server.

I The adversary has two servers.

I The current request, r .

I The other server’s location, a, is “hidden”.

I There are only two hidden server locations to consider.

(6, 3) Example

Lucas Bang R–LINE UNLV



R–LINE Details

R-Configurations (Randomized)

The adversary’s hidden server.

I The adversary has two servers.

I The current request, r .

I The other server’s location, a, is “hidden”.

I There are only two hidden server locations to consider.

(6, 3) Example

Lucas Bang R–LINE UNLV



R–LINE Details

R-Configurations (Randomized)

The adversary’s hidden server.

I The adversary has two servers.

I The current request, r .

I The other server’s location, a, is “hidden”.

I There are only two hidden server locations to consider.

(6, 3) Example

Lucas Bang R–LINE UNLV



R–LINE Details

R-Configurations (Randomized)

The adversary’s hidden server.

I The adversary has two servers.

I The current request, r .

I The other server’s location, a, is “hidden”.

I There are only two hidden server locations to consider.

(6, 3) Example

Lucas Bang R–LINE UNLV



R–LINE Details

R-Configurations (Randomized)

The adversary’s hidden server.

I The adversary has two servers.

I The current request, r .

I The other server’s location, a, is “hidden”.

I There are only two hidden server locations to consider.

(6, 3) Example

Lucas Bang R–LINE UNLV



R–LINE Details

R-Configurations (Randomized)

The adversary’s hidden server.

I The adversary has two servers.

I The current request, r .

I The other server’s location, a, is “hidden”.

I There are only two hidden server locations to consider.

(6, 3) Example

r

s
s
s

s ss 51 2

3

4

6

a

Lucas Bang R–LINE UNLV



R–LINE Details

R-Configurations (Randomized)

The adversary’s hidden server.

I The adversary has two servers.

I The current request, r .

I The other server’s location, a, is “hidden”.

I There are only two hidden server locations to consider.

(6, 3) Example

r

s
s
s

s ss 51 2

3

4

6

a

Lucas Bang R–LINE UNLV



R–LINE Details

R-Configuration (Randomized)

1. Exactly n algorithm servers on the same side of r as r ′. Either
r ′ = sn < r or r < r ′ = sn+1.

2. No algorithm server strictly between r ′ and r .

3. At least n algorithm servers at the points r ′ and r combined.

(6, 3) Example
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R–LINE Details

R-Configuration (Randomized) Moves

I There are two possible moves.

1. Move a single server.
2. Complete the request using the servers from r ′.

I Choose between the two alternatives using randomization, by
solving a 2-person zero-sum game.
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R–LINE Details

Configurations: R-Configurations (Randomized)
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R–LINE Details

Configurations: R-Configurations (Randomized)

(∆φ+ cost)11 (∆φ+ cost)12
(∆φ+ cost)21 (∆φ+ cost)22

I Entries game matrix computed in terms of the isolation index
coefficients, η.

I If currently p servers located at r :

(∆φ+ cost)11 = (ηn+p+1,2 − ηn+p,2 + 1) · (sn+p+1 − r)
(∆φ+ cost)12 = (ηp,1 − ηn,1 + n − p) · (r − sn)
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R–LINE Details

The Algorithm R–LINE

For a given round of execution:

1. Start in S-Config. Receive a request.

2. If D–Config, make deterministic moves.

2.1 If result is S–Config, done.
2.2 Otherwise result is R–Config.

3. If R–Config, make randomized moves until S–Config.

S
request

D

R

S

≤ n
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Proof of Competitiveness

Overview of Proof

1. Provide a system of inequalities, S, involving the isolation
index coefficients, ηi ,j , and the competitiveness, C .

2. Show that if there exists an assignment of values to every ηi ,j
that satisfies S, then R–LINE is C -competitive.

3. Use numeric methods to find a solution to S that minimizes C .
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Proof of Competitiveness

Sufficient Inequalities, Sn

∀ 0 ≤ i ≤ 2n : |ηi,1 − ηi,0| ≤ n · C (1)

∀ 1 ≤ i ≤ n and ∀ 1 ≤ j ≤ 2 : ηi,j + 1 ≤ ηi−1,j (2)

∀ 1 ≤ i ≤ n and ∀ 1 ≤ j ≤ 2 : ηi−1,j−1 ≤ ηi,j−1 + 1 (3)

∀ 1 ≤ i ≤ n : (ηi−1,1 − ηi,1 + 1)(ηn−i,1 − ηn,1 + i) ≤ (ηi−1,0 − ηi,0 + 1)(ηn−i,0 − ηn,0 + i) (4)
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Proof of Competitiveness

Overview of Proof Steps

Show that if the system of inequalities, Sn, is satisfied, then the
following properties hold:

1. For adversary moves: ∆φ ≤ C · costAdv .

2. For R–LINE deterministic moves: ∆φ+ cost ≤ 0.

3. WLOG, adversary’s hidden server is at one of at most two
possible locations.

4. For R–LINE randomized moves: E(∆φ+ cost) ≤ 0.

Adding all of the inequalities over a request round:

E (costA(σ)) ≤ C · costADV(σ) + K
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Solving the Inequalities

Given the system Sn

I Find a solution to Sn that minimizes C .

I Transform Sn into a new system S′n to simplify the solution.
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Solving the Inequalities

Introduce variables εi and δi for all 0 ≤ i < n. Then S′n consists of
the following constraints:

(2i + εn−i )(2− εi + εi−1) = 4i ∀ 0 < i < n
(2n + ε0)(2 + εn−1) ≥ 4n

δ = −ε0/2
C = (2n − δ)/n
δi = εi + 2δ ∀ 0 ≤ i < n

ηi ,0 = 3i − δi ∀ 0 ≤ i < n
ηi ,0 = 2n + i − 2δ ∀ n ≤ i ≤ 2n
ηi ,1 = 2n − i − δ ∀ 0 ≤ i < n
ηi ,1 = i − δ ∀ n ≤ i ≤ 2n
ηi ,2 = η2n−i ,0 ∀ 0 ≤ i ≤ 2n
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Solving the Inequalities

Converting to a Differential Equation

I As n→∞, S′n → D

I D is given by:

(x + 1 + f (−x)) · (1− f ′(x)) = x + 1

−1 ≤ x ≤ 1
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Solving the Inequalities

Euler Method for Reflective Differential Equation

1. Choose a step size, h = 2
n .

2. Choose an initial value y0 at t0

3. Compute updates:

yn+1 = yn + h · f (t−n, y−n),

y−n−1 = y−n + h · f (tn, yn),
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Solving the Inequalities

0-1 1

Lucas Bang R–LINE UNLV



Solving the Inequalities

0-1 1

Lucas Bang R–LINE UNLV



Solving the Inequalities

0-1 1

Lucas Bang R–LINE UNLV



Solving the Inequalities

0-1 1

Lucas Bang R–LINE UNLV



Solving the Inequalities

0-1 1

Lucas Bang R–LINE UNLV



Solving the Inequalities

0-1 1

Lucas Bang R–LINE UNLV



Solving the Inequalities

0-1 1

Lucas Bang R–LINE UNLV



Solving the Inequalities

0-1 1

Lucas Bang R–LINE UNLV



Solving the Inequalities

0-1 1

Lucas Bang R–LINE UNLV



Solving the Inequalities

0-1 1

Lucas Bang R–LINE UNLV



Solving the Inequalities

Algorithm to Find Minimum C

1. Choose initial value f (0).

2. Approximate f on interval [−1, 1].

3. Use substitutions to find ηi ,j .

4. Verify that ηi ,j satisfy Sn.

5. Compute corresponding value of C .

6. Binary search on f (0) to find minimum C .
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Solving the Inequalities

Solution for large n

I We find that C ≈ 1.9007452 for n = 10000.

I The corresponding approximation of f (x):

-0.2

-0.1

0

0.1

0.2

0.3

0.4

-1 -0.5 0 0.5 1
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Future Work

Other Metric Spaces

I Trees - Preliminary work done, strongly suggests C ≤ 1.901.

I Manhattan Plane, Circle, Euclidean.

I General Spaces!!

k > 2 on the Line

I (kn, n)-server algorithm ⇒ k-server algorithm.

Analytic Solution to the Differential Equation

I Would give exact minimum value of C for R–LINE.
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Proof of Competitiveness

Proof of Property 1

If S holds, then Property 1 holds: For any move by the adversary,
∆φ ≤ C · costAdv

sas i i+1j a'j
x y

I By inequality (1), |ηi ,j − ηi ,j−1| ≤ n · C for j = 1, 2.

I Adversary server aj moves to the right, from x to y , where
x < y , with si ≤ x and y ≤ si+1.

I Thus, αi ,j decreases by y − x and αi ,j−1 increases by y − x .

I The cost to the adversary of this move is n(y − x).

I By definition of the potential,
∆φ = (ηi ,j − ηi ,j−1)(y − x) ≤ n · C · (y − x) ≤ C · costAdv .
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Proof of Competitiveness

Proof of Property 2

If S holds, then Property 2 holds: for any deterministic move by
R–LINE, ∆φ+ cost ≤ 0.

s i s'i
x y

I si moves from x to y , where x < y .

I The algorithm cost of the step is y − x .

I The move causes αi ,j to decrease by y − x and αi−1,j to
increase by the same amount.

I By inequality (2), ηi ,j + 1 ≤ ηi−1,j , and the definition of the
potential: ∆φ+ costR−−LINE = (y − x)(ηi ,j − ηi−1,j + 1) ≤ 0.
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Proof of Competitiveness

Proof of Property 3

If S holds, then Property (3) holds: We may assume the adversary’s
hidden server is at one of at most two possible locations.

r

s
s
s

s ss 51 2

3

4

6

aa

I Since a could be any point on the line, the payoff matrix of
the game has infinitely many rows.

I We prove that just two of those rows, namely a = sn and
a = sn+p+1, dominate the others.

I By batching the row strategies, we illustrate the ∞× 2 payoff
matrix in the next slide.
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s
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I Since a could be any point on the line, the payoff matrix of
the game has infinitely many rows.

I We prove that just two of those rows, namely a = sn and
a = sn+p+1, dominate the others.

I By batching the row strategies, we illustrate the ∞× 2 payoff
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Proof of Competitiveness

Proof of Property 3

Move sn+p+1 Move sp+1 . . . sn

I a ≤ sn
(
ηn+p+1,2 − ηn+p,2 + 1

)(
sn+p+1 − r

) (
ηp,1 − ηn,1 + n − p

)
(r − sn)(

ηp,1 − ηn,1 + n − p
)
(r − a)

II sn ≤ a ≤ r
(
ηn+p+1,2 − ηn+p,2 + 1

)(
sn+p+1 − r

)
+(

ηp,0 − ηn,0 + n − p
)
(a − sn)(

ηn+p+1,2 − ηn+p,2 + 1
)(

sn+p+1 − a
)

III r ≤ a ≤ sn+p+1 +
(
ηp,0 − ηn,0 + n − p

)
(r − sn)(

ηn+p+1,1 − ηn+p,1 + 1
)
(a − r)

IV a ≥ sn+p+1
(
ηn+p+1,1 − ηn+p,1 + 1

)(
sn+p+1 − r

) (
ηp,0 − ηn,0 + n − p

)
(r − sn)

By inequalities (2) and (3), the rows a = sn and a = sn+p+1

dominate all other rows.

Lucas Bang R–LINE UNLV



Proof of Competitiveness

Proof of Property 3

Move sn+p+1 Move sp+1 . . . sn

a = sn
(
ηn+p+1,2 − ηn+p,2 + 1

)(
sn+p+1 − r

) (
ηp,1 − ηn,1 + n − p

)
(r − sn)

a = sn+p+1
(
ηn+p+1,1 − ηn+p,1 + 1

)(
sn+p+1 − r

) (
ηp,0 − ηn,0 + n − p

)
(r − sn)

By inequalities (2) and (3), the rows a = sn and a = sn+p+1

dominate all other rows.

Lucas Bang R–LINE UNLV



Proof of Competitiveness

Proof of Property 4

If S holds, then Property 4 holds: For any randomized move by
R–LINE, E(∆φ+ cost) ≤ 0.

(∆φ+ cost)11 (∆φ+ cost)12
(∆φ+ cost)21 (∆φ+ cost)22

I By S, the upper left and lower right entries are negative.

I The upper right and lower left entries are positive.
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Proof of Competitiveness

Proof of Property 4

If S holds, then Property 4 holds: For any randomized move by
R–LINE, E(∆φ+ cost) ≤ 0.

I The value of our game is

det(G)

(ηn+p+1,2 + ηn+p+1 − ηn+p,2 − ηn+p+1,1) · (sn+p+1 − r) + (ηp,0 + ηn,1 − ηn,0 − ηp,1) · (r − sn)

I The numerator is non-negative by inequality 4. The
denominator is negative, which we can prove by combining
inequalities of S labeled (2) and (3).

I Thus, E (∆φ+ costR−−LINE ) = v(G ) ≤ 0.
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Proof of Competitiveness

Thus, by properties (1), (2), (3), and (4), if S is satisfied then
R–LINE is C -competitive.
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