
MCBAT: Model Counting for Constraints
over Bounded Integer Arrays

Abtin Molavi, Tommy Schneider, Mara Downing, and Lucas Bang(B)

Harvey Mudd College, Claremont, CA 91711, USA
bang@cs.hmc.edu

Abstract. Model counting procedures for data structures are crucial
for advancing the field of automated quantitative program analysis. We
present an algorithm and practical tool for performing Model Counting
for Bounded Array Theory (MCBAT). As the satisfiability problem for
the theory of arrays is undecidable in general, we focus on a fragment
of array theory for which we are able to specify an exact model count-
ing algorithm. MCBAT applies to quantified integer array constraints
in which all arrays have a finite length. We employ reductions from the
theory of arrays to uninterpreted functions and linear integer arithmetic
(LIA), and we prove these reductions to be model-count preserving. Once
reduced to LIA, we leverage Barvinok’s polynomial time integer lattice
point enumeration algorithm. Finally, we present experimental validation
for the correctness and scalability of our approach and apply MCBAT
to a case study on automated average case analysis for array programs,
demonstrating applicability to automated quantitative program analysis.

1 Introduction

Model counting is the enabling technology and theory behind automated quan-
titative program analyses. The ability to count the number of solutions to a con-
straint allows one to perform reliability analysis [14], probabilistic symbolic execu-
tion [17], quantitative information flow analysis [18,23,27,33,35], Bayesian infer-
ence [10,11,30], and compiler optimization [29]. Originally stated with respect
to Boolean formulas [6], more recent advances in model counting have extended
counting capabilities to the theories of linear integer arithmetic [21,34], non-linear
numeric constraints [7], strings [2,3,12,22,31,32], word-level counting for bit-
vectors applied to the problem of automatic inference [9], and more recent work
has begun to combine theories of strings and integers [3]. This paper is the first
that we are aware of to directly address model counting for constraints over arrays.

The current space of exploration in model counting is driven by the ubiquity
of the types found in common programming languages–Booleans, integers, and
strings. In this paper, we expand the space of model countable theories with an
algorithm for counting the number of models to constraints over the theory of
bounded integer arrays. Model counting for array constraints has practical value
in its own right, and also has potential as a basis for future model counting

c© Springer Nature Switzerland AG 2020
M. Christakis et al. (Eds.): NSV 2020/VSTTE 2020, LNCS 12549, pp. 124–143, 2020.
https://doi.org/10.1007/978-3-030-63618-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63618-0_8&domain=pdf
https://doi.org/10.1007/978-3-030-63618-0_8

MCBAT: Model Counting for Constraints over Bounded Integer Arrays 125

algorithms for other structures that can be modeled as arrays: vectors, maps,
hash tables, caches, and so on.

Model counting is a crucial step is quantitative program analysis. For
instance, probabilistic symbolic execution (PSE) computes the probability of
a program path by counting the number of solutions to the associated path con-
straints [17]. Quantitative information flow (QIF) analysis often uses PSE to
compute probabilistic relationships between program inputs, outputs, observ-
able behaviors, and sensitive information and applies information theoretic met-
rics to measure the security of an application, design, or protocol [18,23,27,35].
Existing PSE and QIF techniques are either limited to constraints for which
there are model counters already available or require ad-hoc model counting
approaches [33]. MCBAT provides another tool in the space of model counters
which we believe can be useful to quantitative program analysis researchers who
encounter integer arrays constraints, as integer arrays are an extremely common
data structure. This paper makes the following contributions:
• Theoretical results. Our algorithm, MCBAT, composes several model-count
preserving reductions to convert an integer array constraint to a formula over
linear integer arithmetic (LIA), which can then be model counted using existing
algorithms for LIA. We show that our reductions are model-count preserving.
• Practical tool. Our tool, also named MCBAT, implements our reductions,
applies them to array constraints, and returns the model count.
• Experimental Validation. We validated the correctness of our implementa-
tion by comparing with a baseline alternative implementation that enumerates
models using Z3. Both implementations agree on the number of models for all
constraints in our benchmark. We evaluated the scalability of our algorithm on a
benchmark of array formulas with positive results. Finally, we applied our model
counting approach in a case study on automatic expected performance analysis.1

Example 1. Suppose we want to know the number of sorted integer arrays A
of length 3 with array values between 0 and 10. We can express this as an array
constraint:

length(a) = 3 ∧ ∀i 0 ≤ a[i] ≤ 10 ∧ ∀i ∀j (i < j → A[i] ≤ A[j])

On a technical note, observe that the variable i is universally quantified in the
second conjunct. It may be possible that a[i] is an out-of-bounds array index.
In our setting, we will take the stance that any indexing that occurs beyond
the length of an array results in the same undefined value ⊥. Now, observe that,
ruling out undefined values due to out-of-bounds indexing, the original constraint
is equivalent to a set of constraints with three variables a0, a1, and a2 over Z:

0 ≤ a0 ≤ 10 ∧ 0 ≤ a1 ≤ 10 ∧ 0 ≤ a2 ≤ 10 ∧ a0 ≤ a1 ∧ a1 ≤ a2

126 A. Molavi et al.

Fig. 1. Polytope defined by
constraint of Example 1.

This constraint, temporarily ignoring the fact that
each ai is an integer, defines a polytope volume P
in R

3 (Fig. 1), where each axis corresponds to one
of the three ai(1). The number of solutions to this
constraint is then the number of points in Z

3 ∩ P .
While we do not spell out the details here, one can
find that there are 286 integer lattice points in the
volume defined by the corresponding polytope. In
addition, it is easy to see that the number of models
for the original constraint is the same as the number
of integer lattice points.

Example 2. Consider a constraint over integer array a and integer variable k.

length(a) = 2 ∧ (k ≥ −15) ∧ ∀i (k ≤ a[i] ≤ 10 ∨ k ≤ −a[i] ≤ 10)

This constraint is equivalent to a constraint with three variables a0, a1, k ∈ Z:

k ≥ −15 ∧ (k ≤ a0 ≤ 10 ∨ k ≤ −a0 ≤ 10) ∧ (k ≤ a1 ≤ 10 ∨ k ≤ −a1 ≤ 10)

Fig. 2. Polytope defined by
constraint of Example 2.

Similar to our earlier reasoning, this constraint over
three variables defines a polytope P in R

3 (Fig. 2).
Observe that integer lattice points in P correspond
to integer triples (k, a0, a1), corresponding to the
free variables k and a of the original constraint. Our
procedure counts the number of possible models for
all free variables in a constraint. For this example,
the number of integer lattice points in this polytope,
and therefore the number of models to the original
constraint, is 10076.

These two examples illustrate the main idea of
our approach: count models for an array constraint
by transforming it into an instance of lattice point
counting within a polytope. While these two examples are easy to visualize, in
general, a finite array constraint over integers is model-count equivalent to a set
of lattice points in a multi-dimensional polytope.

1.1 Overview

We describe the syntax and semantics of bounded array theory in Sect. 2, which
includes quantifiers, Boolean combinations, array terms, integer terms, and lin-
ear arithmetic operations and comparisons. In Sect. 3 we describe our model
counting algorithm, MCBAT, which relies on a sequence of reductions. These
reductions are syntactic transformations applied to a formula f , resulting in a
new formula f ′ that has the same number of solutions as f . These reductions
work by returning formulas that (1) contains no array indexing subexpression,
(2) contains no array element assignment subexpressions, (3) are quantifier free,

MCBAT: Model Counting for Constraints over Bounded Integer Arrays 127

and (4) contains only integer expressions, via Ackermann’s reduction [1]. Sects. 3
and 3.2 provide the details of these reductions and proofs that they preserve
model counts. The core of our implementation, Sect. 4.2, is written in Haskell
and makes calls to the polytope lattice point enumeration library Barvinok.
Additionally, Sect. 4.2 describes our experimental benchmark, consisting of array
constraints generated from either loop invariant synthesis or symbolic execution.
We find that our implementation agrees on the number of models compared to
an algorithm which uses Z3 to enumerate models. Finally, we describe a case
study in which we perform automatic expected running time analysis on sorting
algorithms using MCBAT.

Fig. 3. Abstract grammar for bounded integer array theory constraints.

2 Array Theory: Background, Syntax, and Semantics

The abstract syntax of array constraints that we consider is given in Fig. 3.
Our constraint language supports Boolean combinations of formulas, with the
expected standard semantics, which may consist of formulas quantified over inte-
ger variables, length predicates, or atoms. The formula length(a, n) denotes
that the array a has length n. We often write |a| for the length of array a. Atomic
expressions may be equality or order comparisons between integer term expres-
sions or equality comparisons between array expressions. Array expressions can
be the name of an array (array-id) or an array store, written a{i ← e}. The
notation a{i ← e} represents an array equal to a, except possibly at index i, at
which place the array a{i ← e} has the value e. Integer terms can be the names
of integer variables (int-id), integer constants, products of integer constants and
terms, addition of terms, or array index expressions. The term a[i] represents
the value stored in the array a indexed at the index i. Note that the arithmetic
that makes up the terms is Presburger arithmetic [29]. Note that our grammar
here does not enforce that all arrays have a length constraint, but going forward,
we will assume that every symbolic array variable a has an associated constraint
of the form length(a, n) where n is a positive integer.

128 A. Molavi et al.

Note that while it is syntactically possible to access an array outside of its
bounds, this is semantically meaningless. As noted in the introduction example,
we define indexing that occurs beyond the length of any array to be the undefined
value ⊥.

The semantics of our bounded array theory is that which one would expect
from finite length integer arrays found in common programming languages. Our
semantics for array store and select expressions departs slightly from the seman-
tics typically employed in the SMT theory of arrays [26]. For instance, the Z3
solver treats arrays as uninterpreted functions from the entire set of integers to
the array element type: arrays indices in Z3 are unbounded in both the pos-
itive and negative directions. Our semantics allows indexes only in the range
[0, length(a) − 1].

Given a bounded integer array constraint φ(a1, . . . , an, k1, . . . , kw), with n
symbolic array variables and w integer variables, an interpretation for φ is a
mapping I : {a1, . . . , an, k1, . . . , kw} → Z

|a1| × . . . × Z
|an| × Z

w such that when
instantiating each free symbol of φ with the value defined by I, φ evaluates to
true. We say that I models φ and write I |= φ. The model counting problem to
to determine to number of interpretations (models) for a given formula; our goal
is to compute |{I : I |= φ}|.

3 Model Counting Algorithm: MCBAT

In this section we describe MCBAT, which consists of a series of reductions to
linear integer arithmetic, and then show that our reductions are model-count
preserving.

3.1 The MCBAT Algorithm

We’ll start by presenting an overview of MCBAT (Algorithm1), and later provide
details of important subprocedures (Algorithms 2, 3, 4, and 5).

MCBAT Input. MCBAT takes a formula in the theory of bounded arrays of
the form

φ(a1, . . . , an; k1, . . . , kw) = length(a1, �1) ∧ · · · length(an, �n) ∧ φA

where φA is a Boolean combination of quantified array formulas. Here, we’ve
explicitly denoted the n free array-variables and the w free integer-variables.
Throughout our algorithm some steps may introduce new free variables, but we
ensure that the model count is preserved.

MCBAT Output. We output the number of models there are for φ(a1, . . . , an;
k1, . . . , kw).

MCBAT: Model Counting for Constraints over Bounded Integer Arrays 129

Algorithm 1. MCBAT: Compute the model count for φ(a1, . . . , an; k1, . . . , kw)
1: procedure MCBAT(φ(a1, . . . , an; k1, . . . , kw))
2: Decompose φ into a tree T of array formulas φ1, φ2, . . . , φm.
3: Create a tree T′ and a label-formula map M using φ1, φ2, . . . , φm as labels.
4: for φi do
5: φ

(1)
i ←− removeTermsInAccess(φi)

6: φ
(2)
i ←− replaceAllArrayStores(φ

(1)
i)

7: φ
(3)
i ←− removeQuants(φ

(2)
i)

8: end for
9: Construct M′ from M and the formulas φ

(3)
1 , . . . , φ

(3)
m .

10: Construct φ(4) by applying the label-formula map M′ to the Boolean tree T′.
11: φ(5) ←− AckermannReduction(φ(4))
12: return Barvinok(φ(5))
13: end procedure

High-Level Overview. MCBAT (Algorithm 1) has these main steps:

– Decompose a boolean combination of quantified array formulas into individual
quantified array formulas.

– Replace index terms that occur within array access terms with auxiliary inte-
ger variables; introduce auxiliary integer constraints to capture this replace-
ment.

– Each array-store term is replaced by equivalent constraints that do not con-
tain array-store expressions.

– Rewrite expressions that are universally quantified over array index variables
as a conjunction over all possible indices, with upper bounds enforced by each
array s length predicate.

– Perform Ackermann’s reduction, converting array access terms into integer
terms.

– Send the resulting linear integer arithmetic constraint to Barvinok to com-
pute the final model count.

Separating Array Sub-formulas. We take a boolean combination of array
formulas and decompose it into individual array sub-formulas. We maintain the
Boolean skeleton structure of the original input formula, so that after transform-
ing each array sub-formula, we can reconstruct the Boolean combination. Then
each of the next steps is performed on individual array sub-formulas. This step
is straightforward, we do not provide an algorithm.

Replacing Array Accesses. We replace index terms that occur within array
access terms with auxiliary integer variables and introduce auxiliary integer con-
straints to capture this replacement (Algorithm 2).

130 A. Molavi et al.

Algorithm 2. Replace Array Accesses
1: procedure replaceArrayAccesses(φ)
2: for each unique term t in an array access a[t] do
3: introduce a new universally quantified variable it
4: conjunct to the antecedent of φ the constraint t = it
5: replace every instance of t with it
6: end for
7: end procedure

Replacing Array Stores. Next, each array-store term is replaced by equivalent
constraints that do not contain array-store expressions (Algorithm3).

replaceArrayStores examines a statement in the theory of bounded
arrays, and replaces array-stores (i.e., arrays elements of the form a{i ← e})
with ”fresh” variables. Intuitively, this means that when we encounter an array
store operation at index i, we mimic storing a value by using a new array vari-
able to ‘imitate’ the original array everywhere except for potentially at index i
where the new value is e.

Removing Universal Quantifiers. So far, we have a formula containing quan-
tifiers where each array index term is an individual integer variable and there are
no array store terms. We then rewrite expressions that are universally quantified
over array index variables as a conjunction over all possible indices (Algorithm4).

Algorithm 3. Replace Array Stores
1: procedure replaceArrayStores(φ)
2: for each array store a{i ← e} do
3: replace a{i ← e} with the array a’, then conjoin the original formula with:
4: ∀(j).((¬(j = i) → a′[j] = a[j]) ∧ (j = i → a′[j] = e))
5: end for
6: end procedure

Algorithm 4. Remove Quantifiers
1: procedure removeQuants(φ)
2: Let � denote the longest array-length.
3: while φ is of the form ∀(·).(φ′) do
4: φ ← ∧

i∈{0,...,�−1} φ′

5: end while
6: end procedure

Ackermann’s Reduction. Next, we run Ackermann’s reduction (Algorithm 5)
[1]. Ackermann’s reduction is originally phrased as a transformation on terms in
the theory of uninterpreted functions. In our setting, observe that we can think
of arrays as functions from Z to Z and apply the same technique. The reduction

MCBAT: Model Counting for Constraints over Bounded Integer Arrays 131

is intended to be satisfiability preserving, but here we use it as a model-count
preserving reduction, and show why it is model-count preserving in the following
section.

Algorithm 5. Ackermann’s Reduction.
1: Input: An array theory formula φA with array access terms.
2: Output: A linear integer arithmetic formula φLIA that has the same model count.
3: procedure AckermannReduction(φA)
4: Let flat

LIA := τ(φA), where τ replaces the access a[i] with a fresh variable ai.
5: Let fc

LIA denote the following conjunction of functional consistency con-
straints:

fc
LIA :=

∧

i∈T

∧

j∈T

i = j → ai = aj

where T is the set of all terms used as indices in an array access.
6: return φLIA where φLIA = fc

LIA ∧ flat
LIA

7: end procedure

The fundamental insight behind this reduction is that we can replace any
array accesses on single integer variables with new integer variables along with
additional functional consistency constraints. For example, suppose the terms
a[x], a[y], and a[z] occur in a constraint. (Recall that by this point, more complex
array index expressions have all been replaced with fresh, individual integer
variables.) We can then replace a[x] with a new array value variable ax, a[y] with
ay, and a[z] with az. But now, we need to ensure that if any two variables that
were used as indices are ever equal, then the corresponding array value variables
must agree. Thus, we also introduce constraints of the form x = y → ax =
ay. We introduce such functional consistency constraints for possible pairwise
combinations of array index variables.

Model Count the LIA Formula. Barvinok performs model counting by rep-
resenting a linear integer arithmetic constraint φ on variables X = {x1, . . . , xn}
as a set of symbolic polytopes P ⊆ R

n. Barvinok’s polynomial-time algorithm
decomposes P into a set of n-dimensional ‘cones’ K , one per vertex of P, com-
puting generating functions that enumerate the set K ∩ Z

n for each K ∈ K ,
and then composing the generating functions in order to compute |P ∩ Z

n|,
i.e. the number of integer lattice points in the interior of P and therefore the
number of models for φ. We have elided many details of Barvinok’s algorithm,
but the interested reader may consult the provided references for a thorough
treatment [4,21,34].

3.2 Correctness

Lemma 1. Removing access terms is model-count preserving.

132 A. Molavi et al.

Proof Sketch. Assume an array sub-formula of the form

φ = ∀(i1, . . . , in).(φA),

where φA contains one or more instances of an array accessed by a term that
includes a universally quantified variable. We need to ensure that, when per-
forming quantifier elimination, we do not introduce array accesses that are out-
of-bounds. It is straightforward to ensure that if a term is a lone universally
quantified variable then that array access, a[i1], will never be indexed out-of-
bounds. If the array has length �, then this will occur exactly when i1 < 0 or
� − 1 < i1. Thus, when we replace the quantifier ∀i1 with a conjunction over all
possible values of i1, i.e., those from 0 to � − 1, we introduce new universally
quantified variables and in φA replace old access terms with the new universal
variables we set the new universal variable to be equal to the old access term.
For example, consider φA that contains the term a[2×i3+1]. Then we transform
φA into φ′AP ≡ ∀(i1, . . . , in, j).φ′A where φ′A = φA ∧ j = 2 × i3 + 1 and each
occurrence of 2 × i3 + 1 is replaced by j in φA. How does this transformation
affect the model count? Clearly φ′A is true if and only if j = 2 × i3 + 1 so
the model count is preserved. This holds in general as well, since equating two
terms implies that one can substitute them for each other, or in other words,
the relevant models are in correspondence.

Lemma 2. Replacing array stores is model-count preserving.

Proof Sketch. Next, we remove all the array stores. To do this, we replace the
array stores with fresh array variables, and introduce new store-free array for-
mulas to ensure that the fresh array variables operate as the old array stores
did. If an array formula contains the array store a{i ← e}, then we replace every
instance of a{i ← e} with a fresh array variable b. Then, we append to the array
formula two more constraints: b[i] = e and ∀(j).(i = j → a[j] = b[j]).

How does this transformation affect the model count? We’re introducing
a new free-variable—b—which has the potential to increase the model count.
However, the number of models in our new formula will be the same as our old
formula because the values of b are completely fixed for any particular values of
a, i, and e. Thus, we’ve ensured our there is only one option for the new variable
b for each set of variables that satisfies our original formula.

Lemma 3. Removing universal quantifiers is model-count preserving.

Proof Sketch. The next step in our algorithm is to remove the universal quan-
tification from our formula. In particular, we remove quantification of the form
∀(i).(φ(i)), replacing each ∀ by conjoining φ(i) over all values of i such that φ(i)
does not have an array accessed out-of-bounds. If � is the length of an array in
φ(i), then this is

∧
i∈{0,...,�−1} φ(i).

This rule is carried out exhaustively on each array sub-formula. How does this
transformation affect the model count? If a set of variables satisfies our original
formula, it clearly satisfies the resulting formula because universal quantification

MCBAT: Model Counting for Constraints over Bounded Integer Arrays 133

is the same as conjunction over the integers. Moreover, no statement φ(i) with
i < 0 or i ≥ � has any meaning because φ(i) will then include an array accessed
out-of-bounds. Thus, the model count is preserved.

This step is similar to computing the index set, I , of the well-known pro-
cedure for SAT-checking array constraints [8]. That computation of the index
set computes the minimal set of index variables I that might be used within
array indexing expressions so that satisfiability is maintained when replacing
universal quantification with a conjunction over all variables in I . This does
not work for model counting, as we need to keep models in correspondence after
each transformation.

Lemma 4. φA and φLIA as defined in Ackermann’s reduction are
equisatisfiable.

Proof Sketch. The equisatisfiable nature of Ackermann’s reduction is well-
known [1]. We provide a proof sketch giving us the machinery to also claim
that Ackermann’s reduction is model-count preserving in the next lemma.

Let IA be a satisfying interpretation for φA (the input to Algorithm5). We
define ILIA, a satisfying interpretation of φLIA (Algorithm 5 line 6) in the fol-
lowing way. For all variables v that appear in both φA and φLIA, let ILIA(v) :=
IA(v). Then, for the remaining variables in φLIA , let ILIA(ai) := IA(a[i]). The
fact that ILIA is a model for flat

LIA follows immediately from IA modeling
φA. Note that flat

LIA is identical to φA except that the array access a[i] is
replaced with the variable ai. Since ILIA(ai) = IA(a[i]), the formulas are identi-
cal after substituting variable assignments. Because we may think of array access
as a function from Z to Z, the conjunction of functional consistency constraints
FCLIA (Algorithm 5 line 5) is satisfied automatically. Thus their conjunction,
φLIA, is satisfied by ILIA.

Now we will assume that ILIA models φLIA = FCLIA ∧ flat
LIA, and show

that inverting the process above generates a model for φA. Let

IA(v) := ILIA(v) and IA(a[i]) := ILIA(ai).

We must now argue that IA models φA. Note that FC
LIA ∧ flat

LIA implies
that FC

LIA is true and flat
LIA is true. From the fact that flat

LIA = τ(φA),
we have that φA is true unless ILIA is an assignment such that

ILIA(i) = ILIA(j) ∧ ¬(ILIA(ai) = ILIA(aj)) for some i and j.

However, ILIA is a model of FCLIA so this cannot be the case. Consequently.
Ackermann’s reduction preserves satisfiability.

Lemma 5. Ackerman’s reduction is model-count preserving; that is, φA and
φLIA as defined in Ackermann’s reduction have the same model count.

Proof Sketch. Let f be the mapping from a model of φA to one of φLIA from
Lemma 4 and let g be the mapping from a model of φLIA to one of φA from the

134 A. Molavi et al.

same lemma. Note that (f ◦ g)(IA) = (g ◦ f)(IA) = IA. Therefore, there is a
bijection between the set of models of φA and those of φLIA. The sets have the
same cardinality.

Theorem 1. The MCBAT algorithm is model count preserving.

Proof Sketch. By Lemmas 1 through 5, the steps to reduce a integer array for-
mula to a formula of linear integer arithmetic are model-count preserving. By
appealing to the correctness of the Barvinok algorithm [4], which we then call
to produce the final count, MCBAT is a model-count preserving algorithm.

Example 3. Consider a constraint that emerges in work on array-based loop
invariant synthesis by Larraz, et al. [20]. Consider a program that, given an
length 10 array of integers between −10 and 10 (inclusive), partitions it into two
arrays of length 5 where the first contains only nonnegative values and the second
contains only negative values. The constraint that emerges from this program is
shown here on the left. Applying the steps of MCBAT to this constraint even-
tually leads to the following mode-count-equivalent LIA formula on the right.
Sending this constraint to Barvinok give a final model count of 62661399052455.

4 Experiments and Implementation

4.1 The MCBAT Implementation

We implemented the MCBAT algorithm in a tool, also called MCBAT. A high
level architecture of MCBAT can be seen in Fig. 4. The core MCBAT algorithm is
implemented in a series of Haskell functions, eventually passing a quantifier-free
linear integer arithmetic formula to the Barvinok library which returns the final
model count. Array constraints may be entered directly as Haskell expressions
and MCBAT also supports reading constraint files in an SMT-LIB2-like format.
The complete implementation is freely available along with the source code1. In
addition, our implementation has an associated Docker image, so that one can
immediately download and run MCBAT in a virtual environment using a single
terminal command.

1 Note to reviewers: our implementation and experiments are ready for immediate
public release upon publication of our results.

MCBAT: Model Counting for Constraints over Bounded Integer Arrays 135

Fig. 4. High-level view of MCBAT implementation architecture.

4.2 MCBAT Experiments

In this section, we give experimental validation of MCBAT’s correctness and effi-
ciency and we then describe a case study in which model counting for the theory
of arrays is used for automated expected algorithm performance computation.
Overall, our experiments have demonstrated that MCBAT is

– Correct: MCBAT produces the same model counts compared to a straight-
forward enumerative approach using Z3, but much faster.

– Efficiently scalable: For realistic array sizes and array value domains that
may be encountered in practice (up to length 400 with 32-bit array values),
MCBAT produces model counts in reasonable amounts of time

– Applicable: We applied MCBAT to the problem of automatically computing
the average case analysis of well-known array algorithms.

Validating Correctness. We verify that MCBAT computes correct model
counts by comparing with a second algorithm using Z3. There is no pre-existing
model counting tool for the theory of arrays that we are aware of, so our straight-
forward baseline comparison is to generate all possible models for an array con-
straint using Z3 to check satisfiability while incrementing a counter. As men-
tioned previously in this paper, our array semantics differ slightly from those of
Z3: integer arrays in Z3 are a total map from Z to Z. We accounted for this by
automatically constructing additional constraints to require that for any array,
a[i] = 0 if i < 0 or i > length(a). Hence, the models of Z3 and MCBAT are
brought into correspondence.

The constraints that we use for this comparison are from the work of Lar-
raz, et al. on automatic generation of loop invariants using SMT for programs
operating on arrays [20]. We note that model counting for constraints involving
loop invariants is useful in the context of quantitative information flow analy-
sis [18]. Note, we attempted to consistently choose array length, 5, and value
range parameters, [−5, 5], so that the Z3 enumerative methods would finish in
reasonable time limit of 1 hour. However, three benchmarks (Par, Bin, Copy)
did not even finish within one hour using Z3, so we used ranges of [−1, 1] for
just those benchmarks in order to complete the correctness comparison. In our
experiments, both MCBAT and model enumeration via Z3 computed identical
model counts, with MCBAT being significantly faster (Table 1). Consequently,
we are confident that MCBAT correctly counts models.

136 A. Molavi et al.

Table 1. Experimental results in which MCBAT and model enumeration using Z3
produce identical counts, along with their running times in seconds.

ID Description Length Range Count Z3 time (s) MCBAT time (s)

HP Heap property 5 [−5,5] 61226 813 0.02

PI Partial initialization 5 [−5,5] 1331 327 0.01

Pal Palindrome 5 [−5,5] 14641 360 0.01

Init Array initialization 5 [−5, 5] 14641 345 0.01

Ins Sorted insertion 5 [−5,5] 161051 1097 0.01

Par Array partition 5 [−1,1] 2916 207 0.02

Bin Binary search 5 [−1, 1] 1971 140 0.12

Copy Array copy 5 [−1, 1] 6561 231 0.01

FNN First not null 5 [−5, 5] 14641 349 0.01

Max Array maximum 5 [−5,5] 85184 713 <0.01

FO First occurence 5 [−5,5] 100000 797 0.02

SP Sum of pairs 5 [−5,5] 83799 1387 0.02

Seq Seq. initialization 5 [−5,5] 336596 3085 0.01

Shuf Shuffle 5 [−5,5] 161051 1142 0.27

AC JutgePaperAC 5 [−5,5] 100000 1002 0.04

Efficiency and Scalability. We applied MCBAT to the same benchmarks that
were used to validate the correctness, but with increased array lengths and array
value ranges. Considering array lengths of up to 400 and array value ranges as
large as [−232, 232 − 1] (i.e. the range of 64-bit signed integers), the enumerative
approach using Z3 is not feasible. However, MCBAT is able to compute model
counts for all constraints in reasonable amounts of time (Table 2).

Note that MCBAT computes exact model counts, but in Table 2, we report
only approximations of model counts in scientific notation up to two significant
digits, as the exact model count would not fit in the table (e.g. the count for HP
with length 400 and 64-bit integer ranges is almost an 8000 digit number.) With
a 10 min timeout limit, we observe the following:

– Sensitivity to array length. The dominant bottleneck in our approach is
array length. We see that execution time grows significantly as the length
increases for a given constraint.

– Insensitivity to value range. The running time of MCBAT does not have
a high dependence on value range. For example, for the HP benchmark, both
value range settings result in extremely similar running times as a function
of array length, despite there being large differences in the resulting model
counts.

MCBAT: Model Counting for Constraints over Bounded Integer Arrays 137

Table 2. McBAT run-time for benchmark constraints. Array lengths run from 10 to
400, and value ranges are [−24,24] (8-bit integers) and [−232, 232 − 1] (32-bit integers).
Times are in seconds, timeout was 10 min. Only the “first” timeout of each experiment
set is show, as larger lenghts or ranges also induce a timeout.

138 A. Molavi et al.

Case Study: Average Runtime for Array Algorithms. We now present a
case study in which we apply MCBAT to the problem of automatic average case
analysis of programs that operate on integer arrays.

Consider a program P that performs operations on integer arrays, an
extremely common type of program. For instance, P could be an implementation
of a sorting algorithm. Suppose we wish to know what is the average behavior
of P over all possible array inputs for a given array length. We can define a cost
metric, for example, to be the number of basic code block executed while P runs.
We perform symbolic execution on P using a small custom symbolic execution
engine for integer array programs written in python. We collect the set of path
constraints on symbolic array inputs while tracking the cost of every execution
path. Assuming that any array of a given length is equally likely, we compute
the relative likelihood of a particular path by performing model counting on the
path constraints. Let pi be the probability of path i and ci be its cost in terms
of the number of executed instructions.

E[Cost[P]] =
n∑

i=1

pici =
∑n

i=1 MCBAT(φi) · ci

MCBAT
(∨n

j=1 φj

)

For our case study on automatic average case analysis of array algorithms,
we implemented the following common procedures and symbolically executed
them to produce a set of path constraints Φ and corresponding costs for each
program P .

– Index value check: Check if an array hold a given value at a given index,
|a| = 10.

– Search for constant: Finds the first index of a value in an array, |a| = 10.
– Search for input parameter: Finds the first index of an input parameter,

|a| = 10.
– Array Comparison: Lexicographically compares two arrays, |a| = 200.
– Find Max: Finds the largest value in an array, |a| = 12.
– Sorted Insert: Performs insert step of insertion sort on a sorted array, |a| =

14.
– Insertion Sort: Performs an insertion sort on an array, |a| = 6.
– Selection Sort: Performs a selection sort on an array, |a| = 6.
– Bubble Sort: Performs a bubble sort on an array, |a| = 6.
– Sorted Merge: Merges two sorted arrays into a single sorted array, |a| = 12.
– Check Sorted: Checks whether an array is sorted, |a| = 50.

The path constraints were then used to compute E[Cost(P)] using the for-
mula above. The results of this experiment are given in Table 3.

MCBAT: Model Counting for Constraints over Bounded Integer Arrays 139

Table 3. Case study results expected computation cost, showing number of path con-
straints (PC)s the expected cost, symbolic exeuction (SE) time, and time to compute
expected cost.

Program # PCs E[Cost] SE time (s) E[Cost] time (s)

Index Val. Check 2 1 0.0550 12.084

Search for Constant 11 21 57.9044 9.434

Search for Param. 11 21 50.8026 309.530

Array Comparison 301 4.5 107.7987 4401.533

Sorted Insert 14 7.5 0.5920 0.957

Insertion Sort 720 18.5 71.3072 32.288

Select Max 2048 23 252.0237 320.149

Selection Sort 1359 43 653.9933 65.550

Bubble Sort 720 43 34.464S 28.385

Sorted Merge 924 22.84 240.8224 110.283

Check Sorted 50 4.44 7.5666 50.813

5 Related Work

The Theory of Arrays. In 1962, McCarthy introduced a formal theory of
arrays based the two select and store axioms [24]. In more recent times, decision
procedures for the theory of arrays have been developed and implemented, for
instance in the Z3 SMT solver [25,26]. A comprehensive treatment of satisfiabil-
ity checking for array constraints is given in Kroening and Strichman’s “Decision
Procedures: An Algorithmic Point of View” [19].

We find that the most closely related work to ours is that of Plazar, et al
[28]. While their work is focused primarily on satisfiability checking of array con-
straints over arbitrary value types, the bounded fragment of array theory that
they focus on and the resulting algorithm bear resemblances to our approaches
that focus on bounded integer arrays. While the authors observe a “strong cor-
respondence between the models to the input and transformed formulas”, their
algorithm, as it is not concerned with model counting, is not strong enough to
fully maintain the model correspondence across transformations.

Applications of Array Constraint Procedures. SMT solving for arrays is
an important component of symbolic execution for programs that operate on
arrays, as in Symbolic Path Finder for Java [16]. Another useful application of
satisfiability checking for arrays is the synthesis of invariants over arrays [20] by
Larraz, et al., whose constraints we used as a benchmark for our experimental
analysis. In this paper, we applied model counting to a case study on comput-
ing expected computational cost of functions operating on arrays. Work exists
on automatic expected cost computation, based on generating functions rather
than model counting algorithms, for algorithms over recursively defined data
types [15].

140 A. Molavi et al.

Model Counting. Initial work in model counting applied to formulas of propo-
sitional logic. Of particular interest is the use of DPLL as a model counting
procedure [6]. Recent years have seen a significant increase in interest in model
counting for domains beyond propositional logic. LattE [21] and Barvinok [34]
are popular model counters for the theory of linear integer arithmetic. Closely
related to the theory of arrays is the theory of strings, which are also an indexable
type. Recent approaches to model counting for strings make use of generating
functions [22], recurrence relations [32], and automata theory [2]. Earlier work
on model counting for data structures exists in which Java code that defines a
data structure is symbolically executed and the resulting constraints are model
counted using LattE during analysis [13]. Finally, recent theoretical results have
been shown for the problem of weighted model counting for constraints contain-
ing uninterpreted functions [5].

6 Conclusions and Future Work

We presented our algorithm and practical tool, MCBAT, for performing model
counting on constraints over integer arrays of bounded length. MCBAT performs
a series of transformations on constraints in order to accomplish model counting,
and we showed that these transformations are model-count preserving. In addi-
tion, we experimentally validated our approach and demonstrated its usefulness
on a case study. It is our hope that MCBAT can be used by other researchers in
applications requiring model counting for array constraints.

There are many avenues for future work. Extending our approach to higher
dimensional arrays would increase the expressiveness of MCBAT, as would han-
dling arrays of types other than integers. In addition, we would like to allow
for reasoning over arrays of symbolic lengths. Finally, as arrays can be used to
model vectors, hash maps, memory accesses, heaps, and so on, we model count-
ing for arrays is a first step toward model counting for such more complex data
structures.

In performing this research, we observed that in many works on model count-
ing the fundamental insights are to (1) convert elements of satisfiability checking
procedure into a model counting procedure or (2) convert elements a model enu-
meration procedure into a model counting procedure. This is the case with model
counting algorithms that are based on DPLL, automata, and generating func-
tions. The challenging question arises: to what degree can satisfiability checking
and model enumeration algorithms be converted, perhaps automatically, into
counting algorithms?

To conclude, we note that Satisfiability Modulo Theories has dramatically
increased the ability to perform program analyses. SMT solvers combine deci-
sion procedures for Boolean combinations of constraints from various theories.
Because there are model counting algorithms for Boolean formulas, linear integer
arithmetic, strings, and now integer arrays, we look forward to a future in which
Model Counting Modulo Theories combines model counting procedures for vari-
ous theories to become the fundamental enabling technology behind quantitative
program analysis.

MCBAT: Model Counting for Constraints over Bounded Integer Arrays 141

References

1. Ackermann, W.: Solvable Cases of the Decision Problem. North-Holland Pub. Co.,
Amsterdam (1954)

2. Aydin, A., Bang, L., Bultan, T.: Automata-based model counting for string con-
straints. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp.
255–272. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4 15

3. Aydin, A., et al.: Parameterized model counting for string and numeric constraints.
In: Proceedings of the 2018 ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering,
ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA, 04–09 November 2018,
pp. 400–410 (2018)

4. Barvinok, A.I.: A polynomial time algorithm for counting integral points in poly-
hedra when the dimension is fixed. Math. Oper. Res. 19(4), 769–779 (1994)

5. Belle, V.: Weighted model counting with function symbols. In: Proceedings of
the Thirty-Third Conference on Uncertainty in Artificial Intelligence, UAI 2017,
Sydney, Australia, 11–15 August 2017 (2017)

6. Birnbaum, E., Lozinskii, E.L.: The good old Davis-Putnam procedure helps count-
ing models. J. Artif. Int. Res. 10(1), 457–477 (1999)

7. Borges, M., Phan, Q.-S., Filieri, A., Păsăreanu, C.S.: Model-counting approaches
for nonlinear numerical constraints. In: Barrett, C., Davies, M., Kahsai, T. (eds.)
NFM 2017. LNCS, vol. 10227, pp. 131–138. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-57288-8 9

8. Bradley, A.R., Manna, Z., Sipma, H.B.: What’s decidable about arrays? In: Emer-
son, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 427–442.
Springer, Heidelberg (2005). https://doi.org/10.1007/11609773 28

9. Chakraborty, S., Meel, K., Mistry, R., Vardi, M.: Approximate probabilistic infer-
ence via word-level counting, November 2015

10. Chavira, M., Darwiche, A.: On probabilistic inference by weighted model counting.
Artif. Intell. 172(6), 772–799 (2008)

11. De Salvo Braz, R., O’Reilly, C., Gogate, V., Dechter, R.: Probabilistic inference
modulo theories. In: Proceedings of the Twenty-Fifth International Joint Confer-
ence on Artificial Intelligence, IJCAI 2016, pp. 3591–3599. AAAI Press (2016)

12. Eiers, W., Saha, S., Brennan, T., Bultan, T.: Subformula caching for model count-
ing and quantitative program analysis. In: Proceedings of The 34th IEEE/ACM
International Conference on Automated Software Engineering ASE (2019)

13. Filieri, A., Frias, M.F., Păsăreanu, C.S., Visser, W.: Model counting for complex
data structures. In: Fischer, B., Geldenhuys, J. (eds.) SPIN 2015. LNCS, vol. 9232,
pp. 222–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23404-
5 15

14. Filieri, A., Pasareanu, C.S., Visser, W.: Reliability analysis in symbolic pathfinder.
In: 35th International Conference on Software Engineering, ICSE 2013, San Fran-
cisco, CA, USA, 18–26 May 2013, pp. 622–631 (2013)

15. Flajolet, P., Salvy, B., Zimmermann, P.: Automatic average-case analysis of algo-
rithm. Theor. Comput. Sci. 79(1), 37–109 (1991)

16. Fromherz, A., Luckow, K.S., Pasareanu, C.S.: Symbolic arrays in symbolic
pathfinder. ACM SIGSOFT Softw. Eng. Notes 41(6), 1–5 (2016)

17. Geldenhuys, J., Dwyer, M.B., Visser, W.: Probabilistic symbolic execution. In: Pro-
ceedings of the 2012 International Symposium on Software Testing and Analysis,
ISSTA 2012, pp. 166–176. ACM, New York (2012)

https://doi.org/10.1007/978-3-319-21690-4_15
https://doi.org/10.1007/978-3-319-57288-8_9
https://doi.org/10.1007/978-3-319-57288-8_9
https://doi.org/10.1007/11609773_28
https://doi.org/10.1007/978-3-319-23404-5_15
https://doi.org/10.1007/978-3-319-23404-5_15

142 A. Molavi et al.

18. Klebanov, V.: Precise quantitative information flow analysis - a symbolic approach.
Theor. Comput. Sci. 538, 124–139 (2014)

19. Kroening, D., Strichman, O.: Decision Procedures: An Algorithmic Point of View,
1st edn. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-74105-3

20. Larraz, D., Rodŕıguez-Carbonell, E., Rubio, A.: SMT-based array invariant gen-
eration. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS,
vol. 7737, pp. 169–188. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-35873-9 12

21. Loera, J.A.D., Hemmecke, R., Tauzer, J., Yoshida, R.: Effective lattice point count-
ing in rational convex polytopes. J. Symb. Comput. 38(4), 1273–1302 (2004)

22. Luu, L., Shinde, S., Saxena, P., Demsky, B.: A model counter for constraints over
unbounded strings. In: Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2014, pp. 565–576.
ACM, New York (2014)

23. Malacaria, P., Khouzani, M.H.R., Pasareanu, C.S., Phan, Q., Luckow, K.S.: Sym-
bolic side-channel analysis for probabilistic programs. In: 31st IEEE Computer
Security Foundations Symposium, CSF 2018, Oxford, United Kingdom, 9–12 July
2018, pp. 313–327 (2018)

24. McCarthy, J.: Towards a mathematical science of computation. In: Colburn, T.R.,
Fetzer, J.H., Rankin, T.L. (eds.) Information Processing. SCS, vol. 14, pp. 21–28.
Springer, Dordrecht (1962). https://doi.org/10.1007/978-94-011-1793-7 2

25. de Moura, L., Bjørner, N.: Z3: an efficient smt solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

26. de Moura, L.M., Bjørner, N.: Generalized, efficient array decision procedures. In:
Proceedings of 9th International Conference on Formal Methods in Computer-
Aided Design, FMCAD 2009, 15–18 November 2009, Austin, Texas, USA pp. 45–52
(2009)

27. Phan, Q., Malacaria, P., Pasareanu, C.S., d’Amorim, M.: Quantifying information
leaks using reliability analysis. In: 2014 International Symposium on Model Check-
ing of Software, SPIN 2014, Proceedings, San Jose, CA, USA, 21–23 July 2014,
pp. 105–108 (2014)

28. Plazar, Q., Acher, M., Bardin, S., Gotlieb, A.: Efficient and complete fd-solving
for extended array constraints, pp. 1231–1238, August 2017

29. Pugh, W.: Counting solutions to Presburger formulas: how and why. In: Proceed-
ings of the ACM SIGPLAN 1994 Conference on Programming Language Design
and Implementation, PLDI 1994, pp. 121–134. ACM, New York (1994)

30. Sang, T., Bearne, P., Kautz, H.: Performing bayesian inference by weighted model
counting. In: Proceedings of the 20th National Conference on Artificial Intelligence,
AAAI 2005, vol. 1, pp. 475–481. AAAI Press (2005)

31. Sherman, E., Harris, A.: Accurate string constraints solution counting with
weighted automata. In: Proceedings of The 34th IEEE/ACM International Con-
ference on Automated Software Engineering ASE (2019)

32. Trinh, M.-T., Chu, D.-H., Jaffar, J.: Model counting for recursively-defined strings.
In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 399–418.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9 21

33. Tsiskaridze, N., Bang, L., McMahan, J., Bultan, T., Sherwood, T.: Information
leakage in arbiter protocols. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018. LNCS,
vol. 11138, pp. 404–421. Springer, Cham (2018). https://doi.org/10.1007/978-3-
030-01090-4 24

https://doi.org/10.1007/978-3-540-74105-3
https://doi.org/10.1007/978-3-642-35873-9_12
https://doi.org/10.1007/978-3-642-35873-9_12
https://doi.org/10.1007/978-94-011-1793-7_2
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-63390-9_21
https://doi.org/10.1007/978-3-030-01090-4_24
https://doi.org/10.1007/978-3-030-01090-4_24

MCBAT: Model Counting for Constraints over Bounded Integer Arrays 143

34. Verdoolaege, S., Seghir, R., Beyls, K., Loechner, V., Bruynooghe, M.: Counting
integer points in parametric polytopes using Barvinok’s rational functions. Algo-
rithmica 48(1), 37–66 (2007)

35. Visser, W., Pasareanu, C.S.: Probabilistic programming for Java using symbolic
execution and model counting. In: Proceedings of the South African Institute of
Computer Scientists and Information Technologists, SAICSIT 2017, Thaba Nchu,
South Africa, 26–28 September 2017, pp. 35:1–35:10 (2017)

	MCBAT: Model Counting for Constraints over Bounded Integer Arrays
	1 Introduction
	1.1 Overview

	2 Array Theory: Background, Syntax, and Semantics
	3 Model Counting Algorithm: MCBAT
	3.1 The MCBAT Algorithm
	3.2 Correctness

	4 Experiments and Implementation
	4.1 The MCBAT Implementation
	4.2 MCBAT Experiments

	5 Related Work
	6 Conclusions and Future Work
	References

