
R–LINE: A Better Randomized 2-Server

Algorithm on the Line

Lucas Bang, Wolfgang Bein, and Lawrence L. Larmore

Department of Computer Science,
University of Nevada Las Vegas, Nevada 89154, USA

{bang,beinw}@unlv.nevada.edu, larmore@cs.unlv.edu

Abstract. A randomized on-line algorithm is given for the 2-server
problem on the line, with competitiveness less than 1.901 against the
oblivious adversary. This improves the previously best known competi-
tiveness of 155

78
≈ 1.987 for the problem.

1 Introduction

In the k-server problem, there are k identical mobile servers in a metric space
M . At any time, a point r ∈ M can be “requested,” and must be “served” by
moving one of the k servers to the point r. The cost of that service is defined
to be the distance the server is moved; for a sequence of requests the goal is
to serve the requests at small cost. An online algorithm for the server problem
decides, at each request, which server to move, but does not know the sequence
of future requests. We analyze an online algorithm for the server problem in
terms of its competitive ratio, which essentially gives the ratio of its cost over
the cost of an optimal (offline) algorithm which has knowledge of the entire
request sequence before making any decisions. More precisely, we say that an
online algorithm A for the server problem is C-competitive, if there is a constant
K, such that, given any request sequence σ, costA(σ) ≤ C · costOPT (σ) + K,
where costOPT (σ) is the minimum possible cost of any service of σ. If A is a
randomized online algorithm, we express the inequality in terms of expected cost,
i.e., E(costA(σ)) ≤ C · costOPT (σ) +K. In the analysis of an online algorithms
it is customary to think of the optimal service as performed by an oblivious
adversary. The optimal cost is then also referred to as the “cost of the adversary,”
and the movement of the servers in the optimal algorithm as “adversary moves.”

The server problem was first proposed by Manasse, McGeoch and Sleator [13]
and the problem has been widely studied since then. They also introduced the
now well-known k-server conjecture, which states that, for each k, there exists
an online algorithm for k servers which is k-competitive for any metric space.
The conjecture was immediately proved true by the same researchers for k = 2,
but for larger k, the conjecture remains open, although it has been proved for
a number of special classes of metric spaces, such as trees [10], spaces with at
most k + 2 points [12], and the Manhattan plane for k = 3 [6].

T. Erlebach and G. Persiano (Eds.): WAOA 2012, LNCS 7846, pp. 120–130, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

R–LINE: A Better Randomized 2-Server Algorithm on the Line 121

In the randomized case, little is known. Bartal et al. [4] have an asymptotic
lower bound, namely that the competitiveness of any randomized online algo-
rithm for an arbitrary metric space is Ω(log k/ log2 log k). It is conjectured that
there is an O(log k) competitive algorithm for general metric spaces. A recent
breakthrough is the algorithm by Bartal et al. [2], which gives a poly-logarithmic
competitive algorithm for finite metric spaces.

Surprisingly, no randomized competitive algorithm for the 2-server problem
for general spaces is known to have competitiveness less than 2, although that
barrier has been broken for a number of classes of spaces. The competitiveness
is known to be 3

2 for uniform spaces, and Bein et al. [7] have shown that there
is a randomized algorithm with competitive ratio of at most 1.5897 for all 3-
point spaces. Bein et al. [8] have recently given a “better than 2” competitive
algorithm for crosspolytope spaces using knowledge states [9]. A lower bound of
1 + e−1/2 ≈ 1.606 has been shown [11].

We define the (m,n)-server problem, for m > n, to be the variation where
there are m mobile servers in the metric space, and each request must be served
by at least n of them. For the 2-server problem on the line, Bartal et al. give
a barely random online algorithm for the 2-server problem on the line, with
competitive ratio 155

78 ≈ 1.987 [5]; their method is to define a deterministic online
algorithm for the (6, 3)-server problem with that competitiveness, from which
three deterministic online algorithms are defined. The randomized algorithm is
simply to pick one of those three at random, each with probability 1

3 , and then
use the chosen algorithm for the entire request sequence.

Our contribution. In this paper, we give a randomized online algorithm for
the (2n, n)-server problem on the line, for every n ≥ 3. By Theorem 1 below,
we obtain a randomized algorithm for the 2-server problem on the line. As n
increases, the competitiveness of our algorithm decreases, and the limiting value
is less than 1.901.

2 The Algorithm R–LINE

Our algorithm, R–LINE, is defined to be a randomized algorithm for the (2n, n)-
server problem, for n ≥ 3. We make use of the following two theorems from [5]:

Theorem 1. Given any C-competitive online algorithm for the (2n, n)-server
problem, we can derive a randomized online algorithm for the 2-server problem
that is C-competitive.

Theorem 2. Any optimal offline strategy for the (2n, n) server problem keeps
the servers in two blocks of n each, assuming that the servers are together in two
blocks in the initial configuration.

By Theorem 2, without loss of generality we can assume that the adversary is
using an optimal 2-server algorithm, but serves with cost equal to n times the
distance moved. We will use the notation si both to refer to the ith server and its
location, when no confusion arises. We assume that s1 ≤ s2 ≤ ... ≤ s2n−1 ≤ s2n.

122 L. Bang, W. Bein, and L.L. Larmore

We also refer to the adversary’s servers as a1 and a2, and assume that a1 ≤ a2.
The algorithm thus knows the location of one of the adversary’s servers, which
we call the visible server, and which, by a slight abuse of notation, we also call r.
We denote the adversary’s other server by a, and refer to it as the hidden server,
since the algorithm does not know where it is.

We define a configuration of servers (R–LINE’s as well as the adversary’s) to
be satisfying if at least n of R–LINE’s servers are at r. We refer to a satisfying
configuration as an S-configuration, and we assume that the initial configuration
is an S-configuration.

Every round begins by the adversary choosing a new request point r and
moving one of its two servers to r. R–LINE then moves as many of its servers as
necessary to r, and the resulting configuration is once again an S-configuration.
No R–LINE server will pass another R–LINE server that does not serve. In
general, R–LINE deterministically moves zero or more servers to r, and then
uses randomization to decide which additional servers to move. R–LINE is lazy,
meaning that it never moves any server that does not serve the request.

2.1 The Potential

The algorithm R–LINE is given based on a suitable potential, which is used in
Section 3 to prove competitiveness. For each fixed n ≥ 3, we define a competi-
tiveness C for R–LINE as well as a potential φ on configurations. This potential
will satisfy the following property:

Property 1. If φ is the potential at the configuration before a round and φ′ the
potential after the round, and if costR–LINE and costAdv are the costs incurred
by R–LINE and the adversary, respectively, then

E(costR–LINE + φ′ − φ) ≤ C · costAdv

where E denotes expected value.

Isolation Indices and Coefficients. For 0 ≤ i ≤ 2n and 0 ≤ j ≤ 2, if
1 ≤ i+ j ≤ 2n+ 1, we define αi,j , the (i, j)th isolation index of a configuration,
to be the length of the longest interval that has exactly i algorithm servers to
the left and exactly j adversary servers to the left. More formally,

αi,j = max

{
min {si+1, aj+1} −max {si, aj}
0

where we let s0 = a0 = −∞ and s2n+1 = a3 = ∞ by default. Isolation indices
are part of T-theory and a more general definition of isolation indices is given
in [1].

For each 0 ≤ i ≤ 2n and 0 ≤ j ≤ 2, we define a constant ηi,j , the (i, j)th

isolation index coefficient. The isolation index coefficients satisfy a symmetry
property, namely ηi,j = η2n−i,2−j ; furthermore, η0,0 = η2n,n = 0. We formally
define the potential of a configuration to be

φ =
∑
{ηi,j · αi,j : (0 ≤ i ≤ 2n) ∧ (0 ≤ j ≤ 2) ∧ (1 ≤ i+ j ≤ 2n+ 1)}

R–LINE: A Better Randomized 2-Server Algorithm on the Line 123

Intuitively, ηi,j is a weight on the isolation index αi,j for any configuration. For
each given n, the competitiveness C and the isolation index coefficients {αi,j}
must satisfy a system of inequalities given in Section 3.

We will first define R–LINE in terms of those constants, and then show that
R–LINE is C-competitive if the system of inequalities is satisfied. In Section 4
we outline how to find a solution to these inequalities, and give the values of the
constants for n = 3.

2.2 Algorithm Description

We now define R–LINE. Between rounds, the configuration of servers is always
an S-configuration. When the adversary makes a request at a point r, R–LINE
responds by making a sequence of moves, each consisting of the movement of one
or more servers to r. Thus, during a round, R–LINE makes at most n moves. Not
all configurations can arise during execution of R–LINE; in fact, we define two
classes of configurations, D-configurations and R-configurations, such that every
intermediate configuration of R–LINE belongs to one of those two classes. If the
current configuration is a D-configuration, then R–LINE’s next move is to move
one or more servers deterministically to r, while if the current configuration is an
R-configuration, then R–LINE’s next move is to choose, using randomization,
a set of servers to move to r. In this case there are always two choices – to
move one or more servers from the previous request point to r, completing the
round, or to move just one server from the other side, possibly not completing
the round.

We now define the classes of configurations. Note that, before the current
round began, there must have been n algorithm servers at the previous request
point, which we call r′. Without loss of generality, r′ �= r.

1. S-Configuration: there are n algorithm servers at r.
2. D-Configuration: the following two conditions hold.

(a) There are more than n algorithm servers either strictly to the left or
strictly to the right of r; that is, r > sn+1 or r < sn.

(b) If there are fewer than n algorithm servers at r′, then there is no al-
gorithm server strictly between r′ and r, and furthermore, there are at
least n algorithm servers at the points r′ and r combined.

3. R-Configuration:
(a) There are exactly n algorithm servers on the same side of r as r′, that

is, either r′ = sn < r or r < r′ = sn+1.
(b) There is no algorithm server strictly between r′ and r, and furthermore,

there are at least n algorithm servers at the points r′ and r combined.

We now give an explicit definition of R–LINE. By symmetry, we can assume,
without loss of generality, that r′ < r. The reader might also consult Figure 1
where we illustrate R–LINE through a single round, in a case where n = 3.

124 L. Bang, W. Bein, and L.L. Larmore

Fig. 1. (a) A D-configuration, where n = 3. The request is r, there are three servers
located at r′ < r. The next move is deterministic. (b) An R-configuration. One server
has moved to r from the left. The next move is randomized; either move two servers from
the left or one from the right. (c) An S-configuration, after two servers moved from the
left. The round is over. (d) An R-configuration, after one server moved from the right.
The next move is randomized; either move one server from the left or one from the right.
(e) An S-configuration, after one server moved from the right. The round is over. (f) An
S-configuration, after one server moved from the left. The round is over.

1. If the current configuration is a D-configuration, then there are m algorithm
servers to the left of r for some m > n. Move the servers sn+1, . . . sm to
r. If the resulting configuration is an S-configuration, the round is over.
Otherwise, the resulting configuration is an R-configuration, and proceed to
the next step.

2. If the current configuration is an R-configuration, then r′ = sn < r ≤ sn+1 <
s2n. Let p be the number of algorithm servers at r. Then sn+p+1 > r. R–
LINE executes one of two moves; each move is executed with a probability
that is determined by solving a 2-person zero-sum game. We compute those
probabilities below. The two choices of move are:

(a) Move sn+p+1 to r.
(b) Move the servers sp+1 . . . sn to r.

If the resulting configuration is an S-configuration, the round is over. Other-
wise, the resulting configuration is an R-configuration, and repeat this step.

R–LINE: A Better Randomized 2-Server Algorithm on the Line 125

For the randomized step, one of the two choices is selected by using the optimum
strategy for a 2-person zero sum game, where R–LINE is the column player, and
Adv is the row player; the choice of the row player is where to place the hidden
server. As we show later, we can assume, without loss of generality, that the
hidden server is located at either sn or sn+p+1. Thus, each player has exactly two
strategies. Each entry of the payoff matrix is equal to Δφ+ cost = φ′−φ+ cost ,
where φ and φ′ are the potentials before and after the move; and cost is the
cost of the move, which is equal to the number of servers moved times distance
moved, either (sn+p+1 − r) or (n− p)(r − sn).

The payoff matrix is as follows:

G =

Move sn+p+1 Move sp+1 . . . sn

a = sn (ηn+p+1,2 − ηn+p,2 + 1)(sn+p+1 − r) (ηp,1 − ηn,1 + n− p)(r − sn)

a = sn+p+1 (ηn+p+1,1 − ηn+p,1 + 1)(sn+p+1 − r) (ηp,0 − ηn,0 + n− p)(r − sn)

3 Proof of Competitiveness

We now present a system of inequalities, which we denote S, which suffice for
R–LINE to be C-competitive. We will prove, in Theorem 3, that S implies C-
competitiveness of R–LINE.

∀ 0 ≤ i ≤ 2n : |ηi,1 − ηi,0| ≤ n · C (1)

∀ 1 ≤ i ≤ n and ∀ 1 ≤ j ≤ 2 : ηi,j + 1 ≤ ηi−1,j (2)

∀ 1 ≤ i ≤ n and ∀ 1 ≤ j ≤ 2 : ηi−1,j−1 ≤ ηi,j−1 + 1 (3)

∀ 1 ≤ i ≤ n : (ηi−1,1 − ηi,1 + 1)(ηn−i,1 − ηn,1 + i) ≤ (ηi−1,0 − ηi,0 + 1)(ηn−i,0 − ηn,0 + i) (4)

Theorem 3. For any assignment of values to C and ηi,j for 0 ≤ i ≤ 2n and
0 ≤ j ≤ 2 that satisfies the system S, R–LINE is C-competitive.

We prove Theorem 3 with a sequence of lemmas. We will prove that if the
system of inequalities S is satisfied, then the following properties hold. We write
Δφ = φ′ − φ, where φ is the potential before the move and φ′ is the potential
after the move.

1. For any move by the adversary,Δφ ≤ C ·costAdv. (Recall that the adversary
pays n times the distance moved.)

2. For any deterministic move by R–LINE, Δφ + cost ≤ 0.
3. We may assume the adversary’s hidden server is at one of at most two

possible locations during a given round, namely at the closest algorithm
server to either the left or the right of r.

4. For any randomized move by R–LINE, E(Δφ+ cost) ≤ 0.

We say that a move is simple if the move consists of moving a single server (either
an algorithm or an adversary server) across an interval, and there is no other
server (of either type) located strictly between the end points of that interval.

126 L. Bang, W. Bein, and L.L. Larmore

We also refer to a simple move as a step; in general, every movement of servers
is a concatenation of steps.

Lemma 1. If S holds, then Property 1 holds.

Proof. By the symmetry of the ηi,j , inequality (1) implies that |ηi,j − ηi,j−1| ≤
n ·C for j = 1, 2. Without loss of generality the move is simple, since every move
which is not simple is the concatenation of steps. Without loss of generality, the
adversary server aj moves to the right, from x to y, where x < y. Since the move
is simple, si ≤ x and y ≤ si+1 for some 0 ≤ i ≤ 2n,. (Recall the default values
s0 = −∞ and s2n+1 = ∞.) Thus, αi,j decreases by y − x and αi,j−1 increases
by y−x. The cost to the adversary of this move is n(y−x). By definition of the
potential, Δφ = (ηi,j − ηi,j−1)(y − x) ≤ n · C · (y − x) ≤ C · costAdv.

Lemma 2. If S holds, then Property 2 holds.

Proof. For convenience, we assume that r < r′ = sn+1. There are exactly m
algorithm servers to the right of r, for some m > n. Servers s2n−m+1 . . . sn
move to r. The move is the concatenation of steps, and it suffices to show that
Δφ ≥ costR–LINE for each of those steps.

Fix one step. During the step, si moves from x to y, where y < x, for some
2n−m+1 ≤ i ≤ n. The algorithm cost of the step is x−y. Pick the maximum j
such that aj ≤ y. Since r ≤ y, j is either 1 or 2. The move causes αi,j to decrease
by x− y and αi−1,j to increase by the same amount. By inequality (1), and the
definition of the potential: Δφ+ costR–LINE = (x− y)(ηi,j − ηi−1,j + 1) ≤ 0.

Lemma 3. If 1 ≤ i ≤ 2n and j = 1, 2, then ηi,j + ηi−1,j−1 ≤ ηi,j−1 + ηi−1,j

Proof. Suppose i ≤ n. Then 1+ηi,j ≤ ηi−1,j by (2), while −1+ηi−1,j−1 ≤ ηi,j−1

by (3). Adding the two inequalities, we obtain the result.
If i > n, then η2n−i+1,3−j+η2n−i,2−j ≤ η2n−i+1,2−j+η2n−i,3−j by the previous

case. By symmetry, we are done.

Lemma 4. If S holds, then Property 3 holds.

Proof. Since a could be any point on the line, the payoff matrix of the game
has infinitely many rows. We need to prove that just two of those rows, namely
a = sn and a = sn+p+1, dominate the others.

By batching the row strategies, we illustrate the ∞× 2 payoff matrix below.

Move sn+p+1 Move sp+1 . . . sn

I a ≤ sn (ηn+p+1,2 − ηn+p,2 + 1)(sn+p+1 − r) (ηp,1 − ηn,1 + n− p)(r − sn)

(ηp,1 − ηn,1 + n− p)(r − a)

II sn ≤ a ≤ r (ηn+p+1,2 − ηn+p,2 + 1)(sn+p+1 − r) +

(ηp,0 − ηn,0 + n− p)(a− sn)

(ηn+p+1,2 − ηn+p,2 + 1)(sn+p+1 − a)

III r ≤ a ≤ sn+p+1 + (ηp,0 − ηn,0 + n− p)(r − sn)

(ηn+p+1,1 − ηn+p,1 + 1)(a− r)

IV a ≥ sn+p+1 (ηn+p+1,1 − ηn+p,1 + 1)(sn+p+1 − r) (ηp,0 − ηn,0 + n− p)(r − sn)

R–LINE: A Better Randomized 2-Server Algorithm on the Line 127

The row strategy a = sn trivially dominates all row strategies in Batch I. It
also dominates all row strategies in Batch II, because

ηp,1 − ηn,1 =
n∑

i=p+1

(ηi−1,1 − ηi,1)

≥
n∑

i=p+1

(ηi−1,0 − ηi,0) by Lemma 3

= ηp,0 − ηn,0

The row strategy a = sn+p+1 trivially dominates all row stages in Batch IV.
It also dominates all row strategies in Batch III, because ηn+p+1,1 − ηn+p,1 ≥
ηn+p+1,2 − ηn+p,2, which we can similarly prove using Lemma 3.

We make use of a standard game theory lemma taken from [3]. To this end
we remind the reader that a saddle point of a zero-sum game is defined to be an
entry ai,j of the payoff matrix that is both a maximum of its row and a minimum
of its column. If a game has a saddle point, then the value the game is the value
of the saddle point, and it is optimum for the row player to always play the ith

row, and for the column player to always play the jth column.

Lemma 5. Suppose If A =

[
a11 a12
a21 a22

]
is the payoff matrix for a 2-person zero

sum game G, and there is no saddle point. Then

v(G) =
detA

a11 − a12 − a21 + a22
Furthermore, the optimum strategy for the row player is:

Play row 1 with probability a22−a21

a11−a12−a21+a22

Play row 2 with probability a11−a12

a11−a12−a21+a22

While the optimum strategy for the column player is:

Play column 1 with probability a22−a12

a11−a12−a21+a22

Play column 2 with probability a11−a21

a11−a12−a21+a22

Lemma 6. If S holds, then Property 4 holds.

Proof. Consider the 2 × 2 payoff matrix G of Section 2.2. By S, the upper left
and lower right entries of G are negative, while the upper right and lower left
entries are positive. By Theorem 5, the value of our game is

det(G)

(ηn+p+1,2 + ηn+p+1 − ηn+p,2 − ηn+p+1,1) · (sn+p+1 − r) + (ηp,0 + ηn,1 − ηn,0 − ηp,1) · (r − sn)

The numerator is non-negative by inequality 4. The denominator is negative,
which we can prove by combining inequalities of S labeled (2) and (3). Thus,
E(Δφ+ costR–LINE) = v(G) ≤ 0 as claimed.

Theorem 3 follows immediately from Lemmas 1, 2, 4, and 6.

128 L. Bang, W. Bein, and L.L. Larmore

4 Finding a Solution to the Inequalities

We need to find a solution to the system S for which C is smaller than 2,
preferably as small as possible. We first reduce S to a system, which we call S′,
that is easier to work with.

Let n ≥ 3 be fixed. We introduce variables εi and δi for all 0 ≤ i < n. Our
system S

′ consists of the following constraints.

(2i+ εn−i)(2− εi + εi−1) = 4i ∀ 0 < i < n
(2n+ ε0)(2 + εn−1) ≥ 4n

δ = −ε0/2
C = (2n− δ)/n
δi = εi + 2δ ∀ 0 ≤ i < n

αi,0 = 3i− δi ∀ 0 ≤ i < n
αi,0 = 2n+ i− 2δ ∀ n ≤ i ≤ 2n
αi,1 = 2n− i− δ ∀ 0 ≤ i < n
αi,1 = i− δ ∀ n ≤ i ≤ 2n
αi,2 = α2n−i,0 ∀ 0 ≤ i ≤ 2n

A solution to the system S
′. also provides a solution to S.

4.1 The Case n = 3

For n = 3 the competitiveness of R–LINE can be calculated in closed form. The
solution to S

′ for which C is minimum can be obtained by 4th degree polynomial.

For n = 3, R–LINE has competitiveness 1 +

√
71+17

√
17

12 ≈ 1.98985407. We also
provide the values of the isolation index coefficients. The values of the constants
δ, δ1, δ2, and the ηi,j are shown in the following tables.

Constants

δ = 3−
√

71+17
√
17

4 ≈ 0.030437789

δ1 = 2−
√

7+
√
17

2 ≈ 0.332433987

δ2 = 4−
√

79−7
√
17

2 ≈ 0.459581218

ηi,j =

0 1 2

0 0 6− δ 12− 2δ
1 3− δ1 5− δ 11− 2δ
2 6− δ2 4− δ 10− 2δ
3 9− 2δ 3− δ 9− 2δ
4 10− 2δ 4− δ 6− δ2
5 11− 2δ 5− δ 3− δ1
6 12− 2δ 6− δ 0

The analytic methods used to find the above constants do not easily generalize
and so we utilize approximation methods to determine the values of the constants
for larger values of n. It is worth noting that Bartal et. al. provided an algorithm
for the (6, 3)-server problem in [5] with competitiveness 155

78 ≈ 1.9871795 which

R–LINE: A Better Randomized 2-Server Algorithm on the Line 129

is better than the result shown here. However, by using larger values of n we
achieve a better upper bound on the competitiveness of the 2-server problem.

4.2 The Program

For n > 3, we approximate the value of C numerically, using a program to find
a solution to S

′. Our program computes a function f , where δ = f(ε�n/2�). To
find the maximum value of δ, we assumed that f is bimodal,1 that is, there is
some x∗ > 0 for which f(x) is maximum, and that f(x) is monotone increasing
for 0 < x < x∗ and monotone decreasing for x > x∗. We then use a divide and
conquer algorithm similar to binary search to find f(x∗).

1. Guess ε�n/2�, using our search algorithm.
2. If n is odd, then solve the following equation for ε(n+1)/2:

(n+ 1 + ε(n−1)/2)(2 − ε(n+1)/2 + ε(n−1)/2)

3. For all 0 < i < �n2 � in decreasing order:
(a) Solve the following equation for εi:

(2(i + 1) + εn−i−1)(2 − εi+1 + εi) = 4(i+ 1)

(b) Solve the following equation for εn−i:

2(n− i) + εi2− εn−i + εn−i−1 = 4(n− i)

4. Solve the following equation for δ:

(2 + εn−1)(2− ε1 − 2δ) = 4

5. Verify the following inequality:

(2n− 2δ)(2 + εn−1) ≥ 4n

6. If our search interval is small enough, proceed to the last step. Otherwise,
return to step 1.

7. C ← 2n−δ
n .

Our calculations show that C ≈ 1.90098671 for n = 2000. Running the program
for larger n leads us to believe that

lim
n→∞

C ≈ 1.9007617

1 However, the validity of the program does not depend on the bimodality of f .

130 L. Bang, W. Bein, and L.L. Larmore

5 Future Work

There are two possible directions in which to improve the results in this paper.
We conjecture that the set of possible distributions can be expanded in order
to obtain an even lower competitiveness. But the real gist of our work is to get
a “better than 2” result for general spaces. Since our R–LINE is based on a
potential defined in terms of isolation indices it is natural that a generalization
to arbitrary metric spaces could make use of T-theory, where a more complex
potential will be utilized.

Though not claimed in this paper, our preliminary investigation indicates that
R–LINE – unlike the Bartal et al. algorithm – generalizes to trees.

Furthermore, it is known that Theorem 1 does not extend to k ≥ 3 for all
metric spaces. However, it does extend to k ≥ 3 for the line, and should extend
easily to the circle.

References

1. Bandelt, H.-J., Dress, A.: A canonical decomposition theory for metrics on a finite
set. Adv. Math. 92, 47–105 (1992)

2. Bansal, N., Buchbinder, N., Madry, A., Naor, J.: A polylogarithmic-competitive
algorithm for the k-server problem. In: Proc. 52nd Symp. Foundations of Computer
Science (FOCS), 10 pages. IEEE Computer Society (2011)

3. Barron, E.N.: Game Theory: An Introduction. John Wiley & Sons, New Jersey
(2008)

4. Bartal, Y., Bollobás, B., Mendel, M.: A Ramsey-type theorem for metric spaces
and its applications for metrical task systems and related problems. In: Proc. 42nd
Symp. Foundations of Computer Science (FOCS), pp. 396–405. IEEE (2001)

5. Bartal, Y., Chrobak, M., Larmore, L.L.: A randomized algorithm for two servers
on the line (Extended Abstract). In: Bilardi, G., Pietracaprina, A., Italiano, G.F.,
Pucci, G. (eds.) ESA 1998. LNCS, vol. 1461, pp. 247–258. Springer, Heidelberg
(1998)

6. Bein, W., Chrobak, M., Larmore, L.L.: The 3-server problem in the plane. Theoret.
Comput. Sci. 287, 387–391 (2002)

7. Bein, W., Iwama, K., Kawahara, J.: Randomized competitive analysis for two-
server problems. Algorithms 1, 30–42 (2008)

8. Bein, W., Iwama, K., Kawahara, J., Larmore, L.L., Oravec, J.A.: A randomized
algorithm for two servers in cross polytope spaces. Theoretical Computer Sci-
ence 412(2), 563–572 (2011)

9. Bein, W., Larmore, L., Noga, J., Reischuk, R.: Knowledge state algorithms. Algo-
rithmica 60(3), 653–678 (2011)

10. Chrobak, M., Larmore, L.L.: An optimal online algorithm for k servers on trees.
SIAM J. Comput. 20, 144–148 (1991)

11. Chrobak, M., Larmore, L.L., Lund, C., Reingold, N.: A better lower bound on the
competitive ratio of the randomized 2-server problem. Inform. Process. Lett. 63,
79–83 (1997)

12. Koutsoupias, E., Papadimitriou, C.: Beyond competitive analysis. In: Proc. 35th
Symp. Foundations of Computer Science (FOCS), pp. 394–400. IEEE (1994)

13. Manasse, M., McGeoch, L.A., Sleator, D.: Competitive algorithms for server prob-
lems. J. Algorithms 11, 208–230 (1990)

	R–LINE: A Better Randomized 2-ServerAlgorithm on the Line�
	1 Introduction
	2 The Algorithm R–LINE
	2.1 The Potential
	2.2 Algorithm Description

	3 Proof of Competitiveness
	4 Finding a Solution to the Inequalities
	4.1 The Case
	4.2 The Program

	5 Future Work
	References

