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Abstract
Transparent persistence promises to integrate programming
languages and databases by allowing programs to access
persistent data with the same ease as non-persistent data.
In this work we demonstrate the feasibility of optimizing
transparently persistent programs by extracting queries to
efficiently prefetch required data. A static analysis derives
query structure and conditions across methods that access
persistent data. Using the static analysis, our system trans-
forms the program to execute explicit queries. The trans-
formed program composes queries across methods to handle
method calls that return persistent data. We extend an exist-
ing Java compiler to implement the static analysis and pro-
gram transformation, handling recursion and parameterized
queries. We evaluate the effectiveness of query extraction on
the OO7 and TORPEDO benchmarks. This work is focused
on programs written in the current version of Java, without
languages changes. However, the techniques developed here
may also be of value in conjunction with object-oriented lan-
guages extended with high-level query syntax.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors—Compilers,Optimization; H.2.3
[Database Management]: Languages

General Terms Languages, Performance

Keywords Programming Languages, Databases, Static Anal-
ysis, Object-Relational Mapping, Attribute Grammars

1. Introduction
Integrating programming languages and databases is an im-
portant problem with significant practical and theoretical in-
terest. Integration is difficult because procedural languages
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and database query languages are based on different seman-
tic foundations and optimization strategies [21]. From a pro-
gramming language viewpoint, databases manage persistent
data, which has a lifetime longer than the execution of an in-
dividual program [32, 1, 25]. Ideally a unified programming
model, transparent persistence, should be applicable to both
persistent and non-persistent data.

One of the key integration issues is the treatment of
queries. Queries are not fundamentally necessary, given an
object-oriented view of persistent data in which a program
can traverse from one object to another. But there are at
least two advantages to queries: they can provide higher-
level constructs for programmers to access data, and they
enable specialized query optimizations typically found in
databases.

In this work, we develop a technique for extracting
queries from programs that use traversals to access persis-
tent data. The goal is to support query optimization. We
also discuss how query extraction can be combined with
approaches that use higher-level queries. We previously pre-
sented a sound query extraction technique [29], but this work
was limited to a kernel language without procedures and did
not target a practical database platform. In this paper we
implement query extraction for Java and evaluate its effec-
tiveness on two benchmarks. The contributions of this work
are:

• An interprocedural static analysis to extract queries from
Java programs that use transparent persistence. The anal-
ysis handles virtual method calls by introducing addi-
tional queries where necessary and composing analysis
results at runtime.

• A Java-based implementation that converts analysis re-
sults to queries that target the popular Hibernate persis-
tence system [6].

• A practical approach to recursive data traversals that un-
folds the recursion in stages of finite depth.

• An evaluation of the system using the TORPEDO [22]
and OO7 [5] benchmarks.

The current implementation demonstrates the feasibility
of this approach, without making changes to the Java lan-
guage. Some important features are left for future work. Cur-



1 class Client { ...
2 void reportZip(DataAccess db, int zip) {
3 for (Employee e : db.getEmployees())
4 if (e. zip == zip)
5 printIfOver (e, 65000);
6 }
7 void printIfOver (Employee e, final int salaryLimit ) {
8 if (e. salary > salaryLimit )
9 printEmployee(e);
10 }
11 void printEmployee(Employee e) {
12 print (e.name); print (": ");
13 print (e.manager.name);
14 }}
15 class DataAccess { ...
16 Collection <Employee> getEmployees() {
17 return root.getEmployees();
18 }}

Figure 1: Procedures and transparent persistence.

rently only operations that read persistent data are supported,
not updates to persistent values. Aggregation operations and
sorting are also not considered. These features are easier to
implement using high-level queries, as in Linq [4, 24], but
would require changes to the Java language. It is important
to stress that the techniques developed here can also be used
in conjunction with queries, as illustrated in the following
section. This work suggests that the best solution may be a
combination of queries to specify aggregation and sorting,
and query extraction to specify prefetching and merging.

2. Problem
Transparent persistence can be added to most any language
by extending the concepts of automatic memory manage-
ment and garbage collection to the management of persistent
data: by identifying a root object as persistent, any object or
value reachable from the root is also persistent [2]. For ex-
ample, the Java program in Figure 1 uses several procedures
to operate on a collection of employee objects. The code
is typical of web-based applications in using a data access
layer, represented by the DataAccess class, to load persistent
data.

The DataAccess class has direct access to the root vari-
able, which represents a persistent store of objects. The
reportZip method calls the getEmployees method of the data
access layer to load employees. It then iterates through the
employees to find the employees in a given zip code; these
employees are printed using the printIfOver method. The
printIfOver method checks employee salaries before print-
ing. Loading of the employee’s manager is lazy: each man-
ager object is loaded when needed.

A key problem with this approach is that the entire
database of employees must be loaded, even though only
a few employees may be printed. The operation should

1 void reportZip(DataAccess db, int zip) {
2 Query q = db.createQuery( // create query
3 ”from Employee e
4 left join fetch e.manager
5 where e.zip == :zip
6 and e. salary > : salaryLimit ”);
7 // set the parameters
8 q.setParameter("zip", zip , Hibernate.INTEGER);
9 q.setParameter("salaryLimit", 65000, Hibernate.INTEGER);

10 for (Employee e : q. list ()) // execute the query
11 printEmployee(e); // no test required
12 }

Figure 2: Query execution using Hibernate.

1 void reportZip(DataContext db, int zip) {
2 // preload specification
3 DataLoadOptions dlo = new DataLoadOptions();
4 dlo .LoadWith<Employee>(e => e.manager); // ERROR!
5 db.LoadOptions = dlo;
6 // query
7 int salaryLimit = 65000;
8 var employees = from e in db.Employee
9 where e.zip == zip && e.salary > salaryLimit

10 select e;
11 foreach (Employee e in employees)
12 printEmployee(e);
13 }

Figure 3: Query and load options in Linq.

use an index to find the desired employees, using stan-
dard database optimizations. But transparent persistence
does not easily leverage the power of database query op-
timization. To solve this problem, many persistence mod-
els allow programmers to execute queries. For example,
Figure 2 is a hand-optimized rewrite of Figure 1 that uses
Hibernate, an object-relational mapping tool, and its query
language HQL [15] to execute a query. The query returns
only employees whose salary is over a salary parameter,
and whose zip code is a given zip code. The prefetch clause
left join fetch e.manager indicates that each employee’s
manager should also be loaded. The if statements in Fig-
ure 1 are not needed in Figure 2 because the query’s where

clause ensures the query only returns employees for which
the tests are true.

Although the programs in Figure 1 and Figure 2 print the
same results, they have different performance and software
engineering characteristics. For large data sets, the Hiber-
nate version will typically be orders of magnitude faster, be-
cause it leverages the power of relational query optimiza-
tion [7]. Despite its performance benefits, there are sev-
eral well-known drawbacks to the Hibernate version: Query
strings and parameters are not checked at compile time for
syntax or type safety, and passing parameters is awkward.



1 void reportZip(DataContext db, int zip) {
2 int salaryLimit = 65000;
3 var employees = from e in db.Employee
4 where e.zip == zip && e.salary > salaryLimit
5 join m in db.Employee on e.managerID equals m.ID
6 select new Employee( e.name, m );
7 foreach (Employee e in employees)
8 printEmployee(e);
9 }}

Figure 4: Creating results with Linq.

These problems have been fixed by more recent query
mechanisms, including Linq [4, 24] and Safe Query Objects
[8]. Figure 3 gives one attempt to implement this program
in C# with Linq. In this example, prefetch is specified by
setting LoadOptions on the DataContext object that executes
the query. The sample illustrates a LoadWith<Employee>(f)

option, which specifies that the object f(o) should be loaded
whenever an object o of a type T is loaded. Unfortunately,
the code will generate a runtime error, because load options
are not allowed to create cycles in the type graph; the exam-
ple loads an employee (manager) with every employee.

Alternatively, Figure 4 uses Linq to create an employee
object that contains a manager record, where the manager is
loaded via a join. In this case the select cause of the query
calls an Employee constructor that takes two arguments: the
name and the manager object.

A fundamental problem with queries is that the modular-
ity of the original program in Figure 1 is compromised, be-
cause the query in the main function reportZip contains im-
plementation details about the behavior of the printEmployee

subroutine. The reportZip function would have to be rewrit-
ten if printEmployee were changed to also print the em-
ployee’s department:

void printEmployee(Employee e) {
print (e.name); print (": ");
print (e.department.name); print(", "); // Added
print (e.manager.name);

}}

The query also merges the conditions that were origi-
nally given separately in reportZip and printIfOver . It may
be possible to preserve the original modularity of the pro-
gram by assembling the query from fragments. However,
this effort would significantly complicate the design and in-
troduce more potential for errors.

This paper presents query extraction, a technique that can
be used to infer queries from procedural programs. The goal
is to analyze the program in Figure 1 and derive the query
that is used in Figure 2, while preserving the procedure calls
and modularity of the original.

3. Overview of Query Extraction
Query extraction infers a description of the subset of database
values that a transparently persistent program needs in order
to execute. The technique is a source-to-source transforma-
tion that takes as input an object-oriented program written
in a transparent style and produces an equivalent program
that contains explicit queries. Query extraction proceeds in
two stages. First a path-based analysis computes an over-
approximation of the database records required by each
method in the program. Then the original program is trans-
formed so that each method executes an explicit query. The
explicit query pre-loads the database records specified by
the analysis.

In this section, we describe the kinds of programs query
extraction can handle. We then briefly outline the analysis
and transformation phases, which are discussed in more de-
tail in Sections 4–6.

Data Model Query extraction models the program’s per-
sistent data store as a rooted, directed graph of database
records. A persistent record is a labeled product whose fields
contain either basic values or references to other records. A
reference/relationship can be either single-valued or multi-
valued. Given an object, a traversal is a series of field ac-
cesses that loads one or more related objects. The special
variable root represents the unique root of the database. Our
implementation relies on Hibernate to provide a description
of the persistent data schema and to load database values into
memory.

Program Model Query extraction assumes the program ac-
cesses persistent data transparently. The technique requires
no change to the language, nor does it require the program-
mer to write annotations. The analysis identifies persistent
data via a transitive closure of traversals from root.

Our prototype implementation operates on a subset of
Java. It does not handle features like dynamic class load-
ing and reflection. Furthermore, query extraction is defined
for read-only operations on persistent data. Although our im-
plementation is for Java, our technique is applicable to any
object-oriented programming language.

Path-based Analysis The analysis phase of query extrac-
tion models program values as paths. A path describes a set
of database records and consists of three components:

1. The sequence of field names that the program traverses
to reach the records,

2. The condition(s) under which the program accesses the
records,

3. A data dependence flag that indicates whether the pro-
gram’s result depends on the value of the database
records.



f ∈ FieldName v ∈ VarName
l ∈ Literal op ∈ Op

p ∈ Path :
−−−−−−−→
FieldName × AbsOp × Dependence

o ∈ AbsOp : Op ×
−−−−−−→
AbsValue

d ∈ Dependence : {true | false}
av ∈ AbsValue : ⊥ + Literal + AbsOp + Path

s ∈ Store : VarName 7→ AbsValue

Figure 5: Abstract values.

Section 4 describes an intraprocedural path-based analy-
sis. Section 5 describes how the results of the intraprocedu-
ral analysis may be composed to compute a whole-program
analysis.

Program Transformation The program transformation
phase of query extraction first generates explicit queries
based on the analysis results. The phase then outputs a new
program that uses explicit queries to pre-load the necessary
database values. The new program operates over these pre-
loaded data values.

Soundness and Precision Query extraction is sound if
the queries for each method in a program load all the data
necessary to perform the method’s operations. A query can
be viewed as describing a subset of the database. For each
method, the analysis is sound if the subset of the database
specified by the explicit query can be substituted for the
entire database without changing the behavior of the method.

Query extraction is precise if it loads no more data than
is needed by each method in the program. Exact precision is
undecidable in general. Our analysis tries to be as precise as
possible, and our implementation contains some optimiza-
tions that improve precision.

4. Intraprocedural Query Extraction
Our previous approach to intraprocedural query extraction
was expressed as an abstract interpretation for a language
with no procedures [29]. This section recasts our previous
approach as an attribute grammar, which more closely fol-
lows our implementation technique. We first define query
extraction for a subset of Java that contains no methods. Sec-
tion 5 extends query extraction to the interprocedural case.

4.1 Abstract Values
The path-based analysis approximates real-world values
with abstract values. Figure 5 formally defines these abstrac-
tions. The domains FieldName and VarName describe the
fields and variables that appear in a program, respectively.
The domains Literal and Op contain literal values (e.g., 1

or "a") and operations (e.g., == or +) respectively. These

domains are syntactic, meaning their elements are described
by the syntax of the analyzed programming language.

The most important abstract value is a path, which de-
scribes database values. A path p is represented as a three-
tuple (

−→
f , c, d), consisting of an ordered sequence of field

names
−→
f that identifies the fields traversed to reach a set

of database values, a condition c under which the traversal
is performed, and information d about the traversal’s data
dependences. We sometimes elide a path’s condition and de-
pendence information when that information is not signifi-
cant or may be easily determined from context.

Paths abstract over collections, so that all the objects in
a collection share the same path. A special field name ι
stands for an arbitrary element of a collection. For example,
if root contains a collection employees, then the path for that
collection is employees; the path for any employee in that
collection is employees.ι; and the path for any employee’s
salary in that collection is employees.ι. salary .

A path’s condition describes the circumstances under
which a program accesses data values. The condition is taken
from the domain AbsOp, whose elements are syntactic ex-
pressions that contain operators for numerical and logical
operations over one or more abstract values.

Each path’s condition is derived from one or more con-
ditional expressions that appear in the program. For exam-
ple, the program in Figure 1 uses the expressions e.name

and e.manager.name only under the enclosing if statement’s
condition e. salary > salaryLimit . A conditional expression
that appears in a program is a query condition if it can be
included in a database query, as described in Section 4.3. If
a conditional expression does not satisfy the requirements
for being a query condition, then the expression will not be
associated with any path.

A path’s data dependence is a boolean flag that speci-
fies whether the path’s values affect the data produced by
the program. Data dependence determines whether a path
forces loading of objects in a collection. For example, Fig-
ure 1 uses the zip code and salary fields only in conditional
expressions. Even though these paths are used uncondition-
ally, they do not force loading of the entire collection of em-
ployees because they are only used to determine control flow
of the program.

An abstract value av can be the bottom element ⊥ (which
represents unknown information), a set of literals, a set of
abstract operations, or a set of paths. A Store maps a variable
name to an abstract value.

4.2 Attribute Grammars
An attribute grammar is a way to specify the semantics of a
context-free language [18]. An attribute is a semantic func-
tion that is associated with a given node of a program’s Ab-
stract Syntax Tree (AST). For a simple calculator language,
a value attribute would return the appropriate integer value



· Abstract Value Paths Output Store
AV(·) : AbsValue P(·) : Path OS(·) : Store

null ⊥ ∅

IS(·)

l { l} ∅
root {(ϵ, true, false )} AV(·)
e. f AV(e).f AV(·)

e1 op e2 AV(e1) op AV(e2) TS(e1) ∪ TS(e2)
v IS(·)[v] ∅

v=e

⊥

TS(e) [v 7→ AV(v) ∪ AV(e)]IS(·)
if e s1 else s2 TS(e) ∪ TS(s1) ∪ TS(s2) OS(s1) ∪ OS(s2)
for (v : e) s TS(e) ∪ AV(e).ι ∪ TS(s) OS(s)/v

s1;s2 TS(s1) ∪ TS(s2) OS(s2)
other[[e]] TS(e) IS(·)

(a) Synthesized attributes.

Inherited Attribute · Inherited Attribute Values
for Descendants

Input Store for (v : e) s IS(s) ← [v 7→ AV(e).ι]IS(·) ∪ OS(s)
IS :Store s1;s2 IS(s2) ← OS(s1)

Query Condition
if e s1 else s2

C(s1) ← C(·) ∧ AV(e)
C(s2) ← C(·) ∧ not(AV(e))

C : AbsOp if e is a valid query condition

Data Dependence
effectful[[e]] D(e) ← true

D : Dependence
Iterator Context

for (v : e) s
IT(s) ← IT(·) + AV(e).ι

IT :
−−→
Path if AV(e).ι extends IT(·)

(b) Inherited attributes.

· Traversal Summary
TS(·) : Path

v

{
(AV(·), C(·), true) if D(·)
(P(·), C(·), false ) if ¬D(·)

v=e TS(e) ∪ iter(·)

other[[·]] P(·) ∪

{
iter(·) if D(·)
∅ if ¬D(·)

where iter(·) = ({last(IT(·))}, C(·), true)

(c) Computing traversal summaries.

Figure 6: Attribute grammar that computes traversals for a subset of Java syntax.

for an AST node of type Int and would return the sum of the
operands for an AST node of type Add.

Attributes are typically partitioned into two classes: syn-
thesized and inherited. The value of a synthesized attribute
may depend on the values of its node’s descendants. The
value of an inherited attribute may depend on the values of
its node’s ancestors. Attribute values may induce a circular
dependence. A fixed-point algorithm computes the value for
each attribute [20].

4.3 Intraprocedural Path Analysis
The intraprocedural path analysis computes a traversal sum-
mary for each statement and expression in a method. A
traversal summary is a set of paths representing all the data
needed to execute a statement or expression. A method’s
traversal summary may be composed with those of other
methods to compute a whole-program analysis.

Figure 6 defines the path-based analysis as an attribute
grammar over Java abstract syntax. The traversal summary

of a syntactic element is defined by a synthesized attribute
TS. Attribute TS is itself defined with the help of three other
synthesized attributes: AV, P, and OS, whose definitions ap-
pear in Figure 6a. In this figure, the · symbol represents a
Java expression or statement. Attribute P is a synthesized
attribute that collects all the traversal summaries of an ele-
ment’s sub-expressions.

The attribute AV represents the abstract value of a given
expression or statement. The abstract value of null is ⊥, and
the abstract value of a literal is the set containing that literal.

The abstract value of the special variable root is a path
with no field traversals and the default condition and de-
pendence: (ϵ, true, false ). A field traversal e. f concatenates
field names to previously computed paths, according to this
definition:

AV(e).f = {(
−→
f .f, c, d) | (

−→
f , c, d) ∈ AV(e)}



Binary operations are interpreted as abstract operators over
abstract values; these operations are also used to represent
query conditions.

The synthesized output store attribute OS describes an
element’s effect on the store. The output store is typically a
function of the inherited input store attribute IS. The way in
which stores flow between elements and their constituents is
standard, although a few cases deserve mention.

Assignments affect the output store. The resulting store
maps the variable to the right-hand-side’s abstract value. If
the input store already contains a value for a given variable,
then the output store contains the union of the old and new
values.

A for statement creates a special path AV(e).ι that rep-
resents an arbitrary element of the collection value e. The
attributes of the for statement’s body are computed using
a store that maps loop variable v to the special path. The
body’s input store value depends on its output store value,
which forms a circular dependency (Figure 6b).

A variable’s abstract value is the value contained in the
input store. If the input store contains no binding for a
variable, then the variable’s abstract value is undefined (⊥).

All other Java statements (e.g., exception-handling blocks,
while loops, etc.) are given a default interpretation, by the
other case: the paths are unioned and the store is unchanged.

Query Conditions Under certain circumstances, a condi-
tional expression that appears in a program may be shipped
to the database as a query condition. Query conditions filter
the data loaded by a program. A condition in an if state-
ment can be a query condition only if it satisfies three re-
quirements: 1) it contains only portable operators, 2) it is
pointwise, and 3) if the condition appears in a nested loop,
the loop’s collections must participate in a master-detail re-
lationship.

An operation is portable if it can be performed both in
the database and in the program. For example, checking
the existence of a file is not a portable operation. It is also
essential that the operations have the same semantics in the
database as in the program. This requires some translation,
for example, to provide consistent handling of null values
in Java and SQL. Restricting query conditions to contain
portable operations has little effect on programmers, because
they would expect only portable operations to be included in
a query.

A condition is pointwise if it can be evaluated on each
item of a collection independently of all other items in
the collection. The restrictions on query conditions involve
checking for loop-carried dependences, which are identified
by a well-known static analysis. Programs very frequently
contain loop-carried dependences, since they are created by
any aggregation operation, including computing the sum or
maximum of a collection. However, it is much less common
that a variable involved in a loop-carried dependence will be
used in a filter condition. As an example, consider a program

that prints only the values that form an increasing sequence
from a collection:

int base = 0;
for (Data x in db.getItems()) {

if (x. value >= base) {
print (x.name);
base = x.value ;

}}

The analysis will not attach the condition in the example’s
if statement to any paths, because the condition induces a
loop-carried dependence.

A conditional expression that appears in nested loops is a
query condition only if the collections over which the loops
iterate participate in a master-detail relation. An inner-loop
collection is a detail of an outer-loop collection if the in-
ner collection is a traversal from the iteration variable of the
outer loop. These master-detail loops are a common idiom.
For example, a program might iterate over all purchase or-
ders, then iterate over each item in the purchase order. Other
kinds of nested loops do sometimes arise; they correspond to
ad-hoc joins that find correlations between collections that
have no explicit relationship between them.

The query condition attribute C—defined in Figure 6b—
collects conditions under which an expression or statement
is executed. The attribute is inherited by all sub-expressions.

Data Dependence and Iterators Figure 6b also defines
auxiliary inherited attributes data dependence D and iterator
context IT.

The data dependence attribute D flags expressions whose
execution directly affects the program output. It is true for
any statement or expression that can affect non-local state,
including assignment to object fields and arguments to li-
brary methods (like print methods). Rather than list all con-
texts that can affect the store, they are summarized as effect-
ful[[e]] contexts containing an expression e. Data dependence
defaults to false .

The iterator context attribute IT maintains a list of inner-
iteration variable paths that extend outer-iteration paths. This
attribute helps determine whether a conditional expression
satisfies the nested restriction for query conditions. IT also
helps the analysis keep track of which collections should be
marked data-dependent.

Traversal Summaries Figure 6c defines the traversal sum-
mary attribute TS. It combines the path, condition, and data
dependence attributes into a traversal summary. Given a set
of paths P , a condition c, and data dependence d, the nota-
tion (P, c, d) represents a new set of paths whose conditions
and data dependence are replaced:

(P, c, d) = {(
−→
f , c, d) | (

−→
f , , ) ∈ P}

The traversal summary computation depends on the kind
of statement or expression being analyzed. For variables, the



computation ensures that using an expression has the same
effect as using a variable that has been assigned the value
of the expression. Any data-dependent expression generates
an extra path that corresponds to the inner-most iteration.
The intuition behind this definition is that data dependence
inside a loop causes the program to have a data dependence
on the iteration variable of the loop. For example, if the loop
includes a statement x=x+1 then the program has a data
dependence on the existence of the items in the collection
(which satisfy the condition C). The formal definition adds a
data-dependent traversal path for the current iterator context
whenever the analysis encounters an assignment or a data-
dependent expression.

Example Figure 7 illustrates an application of the path-
based analysis. The analyzed program is a one-method ver-
sion of the example from Figure 1. Each program statement
is numbered, and each number corresponds to a node in the
program’s AST (nodes for expressions are elided). An AST
node is represented as a table whose middle column is the
statement number and whose left and right columns contain
values for synthesized and inherited attributes, respectively.
If a node contains no value for an inherited attribute, then
that attribute’s value is the same as the parent node’s value.

The analysis begins with an empty input store, a true

query condition, and an empty iterator context. Statements
one and three are assignments, and their corresponding out-
put stores contain the results of the assignment.

The for loop also modifies the store by assigning a path
to the loop variable e. Note that this assignment appears in
the input store for statement five. The for loop also sets the
iterator context value for statement five, to indicate that the
loop’s body operates on elements of the employees collection.

Statements five and six are if statements that set the query
condition for their corresponding children. Statement seven
is effectful because it prints data, so its traversal summary
includes the iterator context.

The traversal summary for the entire method consists of
the following paths:

−→
f c d

employees
true falseemployees.ι

employees.ι.zip
employees.ι. salary employees.ι.zip=="78751" false
employees.ι.name employees.ι.zip=="78751"

trueemployees.ι.manager.name ∧
employees.ι employees.ι. salary > 65000

5. Interprocedural Query Extraction
Interprocedural analysis allows query extraction to propa-
gate query information across procedure boundaries. While
the basic framework for our interprocedural analysis is stan-
dard, several aspects of the problems are unique—which call
for specialized solutions.

Query information can flow in two directions, corre-
sponding to procedure parameters and return values. For
procedure parameters, the caller prefetches the data needed
by the procedure. For persistent return values, the procedure
prefetches the data needed to support the traversals in the
caller from the procedure result. Thus the query information
moves in the opposite direction from the values.

Transmitting query information across procedure bound-
aries is difficult, especially in object-oriented programs that
make extensive use of virtual method calls. There are at
least five possible approaches to this situation: devirtualiza-
tion, specialization, over-approximation, query separation,
and dynamic composition.

Devirtualization, and closely related class hierarchy anal-
ysis, are techniques to identify a specific method that will be
called at a given virtual method call site. It works by exam-
ining a complete program to discover whether there is only
one implementation for a given method signature.

Polyvariant specialization is a technique for compiling
a separate version of the caller for each method that can
be called. This technique is used in JIT compilers, where
it is very effective. The main drawback is the potential for
significant increase in code size.

Over-approximation could be used to compute a query
that approximates the queries from all matching method
bodies. This technique works best if the queries from dif-
ferent virtual methods are similar. If not, extra data could be
loaded that is not needed.

Query separation is a simple approach: in cases where
devirtualization fails, simply require the procedure to exe-
cute a new query to load its own data.

Dynamic composition of static analysis allows queries to
be combined across virtual methods calls. It can be used for
method arguments and method return values.

Our current implementation uses devirtualization and
query separation to handle callsites with persistent parame-
ters. Our implementation uses dynamic composition to han-
dle virtual callsites that return persistent values.

The first three techniques all rely on the closed-world as-
sumption: the results are valid only if the dynamic class hier-
archy does not differ from the static class hierarchy. Java pro-
grams can violate this assumption by dynamic class loading
and runtime code generation. Techniques have been devel-
oped to update static analysis results when the set of classes
changes dynamically [17]. We believe that these techniques
could work with query extraction, but we have not yet tried
to integrate them.

5.1 Abstract Values
To extend the analysis of the previous section to the inter-
procedural case, we must first extend the abstract values.

Rooted Paths Whereas intraprocedural analysis considers
only paths that traverse from variable root, interprocedural
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void printData() {

   int zip = "78712";

   int salaryLimit = 65000;

   for (Employee e : root.employees)

      if (e.zip == zip) 

         if (e.salary > salaryLimit)

            print (e.name + ": " + 

                   e.manager.name);

}
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Figure 7: An illustrated example of the intraprocedural, path-based analysis. Each example statement is numbered, and each
number corresponds to a node in the AST. Each node is a table whose middle column is the statement number and whose
left and right columns contain values for synthesized and inherited attributes, respectively. If a node contains no value for an
inherited attribute, then that attribute’s value is the same as the parent node’s value.

analysis must consider paths traversed from method param-
eters and from method return values.

We extend the definition of paths from Section 4.1 to
include a path root. A rooted path is a four-tuple (r,

−→
f , c, d)

where the root r can be root, a persistent method parameter,
or a callsite return.

Path Composition Interprocedural query extraction com-
poses traversal summaries to create summaries of data
traversals that cross method boundaries. The composition
operation for paths is:

(r,
−→
f , c, d) ◦ (r′,

−→
f ′ , c′, d′) = (r,

−→
f .

−→
f ′ , c ∧ c′, d ∨ d′)

Composition is lifted to operate on sets of paths by compos-
ing all combinations of paths from each set.

Query Parameters A query parameter is a value that
comes from the Java program and may be different for each
execution of the query. For example, printIfOver in Figure 1
includes a condition that depends on the salaryLimit method
parameter. We extend the AbsOp domain to allow operations
and conditions to refer to local variables (including param-
eters). A condition may contain only bindable variables. A
variable is bindable if its last assignment occurs before the
query which uses the variable executes.

Our current implementation executes queries only at the
beginning of a method’s execution. Thus a variable must be
a final parameter, or a variable that makes a traversal from a
final parameter. This restriction still allows the condition in
Figure 1 to be attached but does not attach a condition that
depends on the results of, for example, a virtual method call
invoked after executing the query.

Conditions and Dependence Conditions present a prob-
lem for composing paths across procedure boundaries. If a
callee path’s condition references one of its parameters, then
the caller must replace the parameter with its corresponding
argument’s abstract value. If the callee path’s condition ref-
erences a local variable, then the caller must conservatively
replace that condition with true. If a callsite cannot be devir-
tualized, then its arguments are marked data-dependent.

5.2 Interprocedural Path Analysis
Interprocedural query extraction extends the language and
attribute grammar of Section 4 to include method declara-
tions M , callsites gl(a1, . . . , an) and returns return e. The
analysis assigns a unique label l to each callsite of a method
g. The remainder of this section describes how the analysis
computes values for declarations, call sites, and returns.

Return Statements and Method Declarations A return

statement’s attributes are computed from the attributes of the
returned expression. A method M ’s traversal summary is the
union of its statements’ summaries. The method’s abstract
value is the union of all the abstract values for the method’s
return statements:

TS(return e) = TS(e)
AV(return e) = AV(e)

TS(M) =
∪

s∈M

TS(s)

AV(M) =
∪

s=return e∈M

AV(s)

Callsites A callsite’s traversal summary and abstract
value depend on whether the analysis can predict the called



1 public void salaryInfo () {
2 for (Department d : root.departments) {
3 printSalariesAbove (d,65000);
4 printSalariesBelow (d,30000);
5 }}
6 public void printSalariesAbove (Department d,
7 final double amount) {
8 for (Employee e : d.employees) {
9 if (e. salary > amount)
10 print (e.name);
11 }}
12 public void printSalariesBelow (Department d,
13 final double amount) {
14 for (Employee e : d.employees) {
15 if (e. salary < amount)
16 print (e.name);
17 }}

Figure 8: Method salaryInfo can pre-load data for
printSalariesAbove and printSalariesBelow .

method’s data traversals. If so, then the analysis can com-
pose the caller’s traversals with those of the callee’s, in order
to pre-load the callee’s data.

If a callsite cannot be devirtualized, the called method
must execute its own query by using its traversal summary
and taking the actual method arguments as roots. We denote
by g̃l(a1, . . . , an) a callsite that cannot be devirtualized. The
callsite’s traversal summary includes its arguments’ sum-
maries:

TS(g̃l(a1, . . . , an)) =
n∪

i=1

TS(ai)

The callsite’s abstract values is a new path that is rooted at
the callsite’s label:

AV(g̃l(· · · )) = {(l, ϵ, c, d)}

In a static, final, or devirtualized method call, the method
implementation that will be invoked by the call is known
statically. If the called method takes persistent parameters,
the caller pre-loads the data needed to support that method’s
traversals from those parameters. For example, the pro-
gram in Figure 8 requires only those employees who make
less than $30,000 or more than $65,000. To load just these
records efficiently, the analysis must synthesize the condi-
tions from the two print methods.

We define a method’s traversal summary to be a map
from persistent roots to paths. The set of paths a method M
traverses from a given parameter Pi is:

PM
i = TS(M)[Pi]

The argument summaries in a devirtualized callsite are
composed with the traversal summary of the called method.
If method f calls method g at devirtualized callsite l, the
callsite’s traversal summary consists of the traversals made

1 public void employeeInfo() {
2 for (Department d : root.departments) {
3 for (Employee emp : d.employees) {
4 Employee e = getEmpToNotify(emp,65000);
5 print (e.department.name);
6 }}}
7 public Employee getEmpToNotify(Employee e,
8 final double amount) {
9 if (e. salary > amount)

10 return e;
11 else
12 return e.manager;
13 }

Figure 9: Traversal passes through getEmpToNotify back to
employeeInfo.

by the arguments plus the traversals performed within g.

TS(gl(a1, . . . , an)) =
n∪

i=1

{
TS(ai) ∪
(AV(ai) ◦ P

g
i )

}
If method g is recursive, then this analysis diverges. We
discuss how to ensure termination in Section 5.5.

A callee may return a persistent value that depends on
its parameters, and the caller may traverse from the returned
value. In this case, the caller’s traversals pass through the
callee. If the callee can be devirtualized, then the caller can
pre-load its pass-through traversals.

Figure 9 contains an example of pass-through traversals.
Method getEmpToNotify’s return value is the result of a
traversal from its first parameter e. Method employeeInfo,
which calls getEmpToNotify, traverses the return value’s
department field. The analysis of method employeeInfo de-
tects this pass-through path and generates a summary that
includes the department field.

If a method returns a path that traverses from a given
parameter Pi, then that path is denoted:

RM
i = AV(M)[Pi]

The abstract value domain is also extended by defining
AV(·)[R] to be the empty set if it contains only abstract
operations. A method’s pass-through paths are those paths
in its return value that are traversals from a parameter value:

TM =
n∪

i=1

RM
i

where n is the number of parameters for M .
The abstract value of a devirtualized callsite consists

of the caller’s pass-through paths, plus those values in the
callee’s abstract value not affected by pass-through traver-
sals:

AV(gl(a1, . . . , an)) = (
n∪

i=1

(AV(ai) ◦ R
g
i )) ∪ (AV(g) − Tg)



1 public void hrDeptInfo() {
2 Department d = getHRDepartment();
3 for (Employee e : d.employees) {
4 print (e.manager.name);
5 }}
6 public Department getHRDepartment() {
7 for (Department d : root.departments) {
8 if (d. id == 1)
9 return d;
10 }}

Figure 10: Callee can pre-load caller’s data.

5.3 Dynamic Query Composition
Although a caller may not pre-load data for a virtual call-
site, it is possible for the callee to dynamically pre-load some
of its caller’s data. For example, assume the analysis deter-
mines that method getHRDepartment in Figure 10 is virtual.
Then the callsite at line two cannot pre-load its pass-through
traversals.

Our program transformation modifies method calls and
definitions so that the callee may preload pass-through
traversals for the caller. Every method that returns a per-
sistent value is statically changed to take an additional argu-
ment Sf that contains the caller’s traversals from the callee’s
return value. The caller also passes a flag devirtualized that
indicates whether the callsite was devirtualized, in which
case the callee need not load pass-through paths. The callee
uses this information at runtime to generate a dynamic query
TS′ based on its own static traversal summary:

TS′(g) = TS(g) ∪

{
(AV(g) − Tg) ◦ Sf devirtualized

AV(g) ◦ Sf otherwise

Recall that static query composition from caller to callee
requires the caller to bind values for any parameters that ap-
pear in the callee’s abstract value. Dynamic query composi-
tion from callee to caller similarly requires the callee to bind
values for any parameters that appear in the callee’s return
summary. The caller helps satisfy this requirement by pro-
viding the callee with the necessary values.

5.4 Query Extraction and Object-Oriented
Programming

Object-oriented programs exhibit several features that re-
quire a customized solution. An instance of a persistent
record may use this to reference its fields. The analysis ac-
commodates this behavior by modeling this as a path root,
whenever this is a persistent record. If a program assigns a
persistent value to an object’s field, the analysis marks the
assigned expression as dependent.

Java strings are instances, rather than primitive values.
As such, string comparison in Java uses a string’s equals

method. Our analysis detects this comparison in if state-

ments and converts the expression to a query condition, if
the expression satisfies the restrictions from Section 4.3.

A common idiom in data-centric, object-oriented pro-
grams is to iterate through a collection and build a new
collection by adding an element only if the element satis-
fies some condition. In general, our analysis does not track
paths assigned to user-created data. However, for this idiom,
the analysis computes the collection’s abstract value as the
union of the abstract values added to the collection. This ap-
proach maintains soundness, under two assumptions: 1) the
add method makes no traversals of its own and 2) the pro-
gram does not modify the user-created collection after read-
ing it.

5.5 Recursion
The analysis may generate infinite-size values, by examin-
ing recursive methods or by examining recursive paths over
which the program iterates. For example:

int totalManagerSalaries (Employee e) {
if (e != null) {

return e. salary + totalManagerSalaries(manager);
} else {

return 0;
}

}

In our previous work, the analysis detected recursive field
traversal and widened the path immediately to ⊤. Thus
the analysis was uninformative in the presence of recursive
traversals. Our current implementation uses a path represen-
tation that is more expressive and generates the path

e.manager+. salary

Our current implementation also widens abstract values. The
join of two values is ⊤ if one of the values contains the
other. If the analysis widens a query condition to ⊤, then
that condition becomes true.

5.6 Soundness
We previously proved the soundness of our analysis for a
small kernel language. The analysis in this paper is not
sound, because persistent values may escape through object
fields; however, the program will fallback to the lazy loading
provided by the persistence architecture. There is an impor-
tant caveat; the persistent architecture does not know about
filtered collections. If the analysis allows a filtered collection
to escape, then such a collection may be used by other parts
of the program that expect a differently filtered collection.
A conservative solution is to remove conditions on a path
that represents collection values, if the path can escape. A
more sophisticated analysis could keep track when a collec-
tion reference escapes the scope of a method and reload it as
an unfiltered collection.

The current analysis also does not handle reflection. In
particular, class loading and dynamic class generation break



the devirtualization’s closed-world assumption. Finally, our
implementation like most persistent architectures preserves
object reference identity within a single query, but does
not guarantee reference identity across the entire program
lifetime.

6. Implementation
We implemented query extraction using JastAdd—an attribute-
grammar-based compiler system for Java that enables pro-
gram analyses to be written in a modular, declarative fash-
ion [14]. Query extraction is implemented as a source to
source transformation which rewrites the program to include
queries. The transformed program executes queries in HQL
(Hibernate Query Language). The input to the system is a
Java program and a Hibernate configuration file that identi-
fies persistent classes, the mapping of persistent classes to
database tables, and the location of the database. The output
is a Java source program which can be compiled and run on
a standard Java virtual machine.

6.1 JastAdd
JastAdd compiles circular reference attribute grammars into
compilers. JastAdd includes a Java 1.5 compiler specifica-
tion, which we extended to perform query extraction. Jas-
tAdd provides as part of the Java specification a control flow
analysis which handles all Java control flow constructs in-
cluding exceptions. Our analysis takes advantage of this con-
trol flow analysis to connect the input and output store at-
tributes. The Java specification also includes an experimen-
tal devirtualization analysis.

6.2 Code transformation
A persistent method is a method that accesses the special
variable root, takes persistent parameters, or returns a per-
sistent value. For each persistent method m, the analysis pro-
vides two values:

1. A traversal summary for root, persistent parameters, and
devirtualized callsites.

2. A traversal summary for the method return value.

The two traversal summaries are encoded into helper
methods named m AV and m RAV, for “abstract values” and
“result abstract value”, respectively.

Persistent methods are augmented with three extra ar-
guments: callerPaths , callerParams, and loadParams. The
callerPaths parameter is a traversal summary for paths
rooted at the return value of the method. This summary is
composed with the traversal summary of the method at run-
time. The callerParams parameter provides values for any
parameters mentioned in callerPaths . The loadParams pa-
rameter specifies that the caller could not devirtualize the
call to this method. In this case, the method will have to ex-
ecute queries for any persistent parameters. For example the

1 public Bid highBid(double threshold) {
2 AuctionService as = new AuctionService1();
3 for (Bid b : root. bids) {
4 if (b.amount > threshold) {
5 as. printBid (b);
6 System.out. println ("Bid of " + b.amount);
7 return b;
8 }}
9 return null ;

10 }

Figure 11: An example of a method which accesses persis-
tent data.

1 public Bid highBid( double threshold ,
2 AbstractValueSet<Path> avs,
3 Map<String, Object> callerParams,
4 boolean loadParams)
5 {
6 // Prologue
7 AbstractValueSet<Path> returnAV = highBid RAV();
8 AbstractValueSet<Path> ts = highBid AV();
9 Map<String, Object> queryParamValues =

10 new HashMap<String, Object>();
11 queryParamValues.put("threshold",threshold);
12 ts = QueryExecutor.composeWithReturnAV(ts, returnAV, avs,
13 queryParamValues, callerParams, false );
14 Map<PathRoot, AbstractValueSet<Path>>
15 tsPartitioned = Path.mapRootToPaths(ts);
16 Root root = new edu.utexas.plq.Root();
17 Map<String, Object> methodParamMap =
18 new QueryExecutor().executeQueries(session ,
19 root, ts , Root. persistentClasses (),
20 queryParamValues, returnAV, avs,
21 callerParams , loadParams);
22

23 // Original Code
24 AuctionService as = new AuctionService1();
25 for (Bid b : root. bids) {
26 if (b.amount > threshold) {
27 as. printBid (b, ts .get(new PathRoot("callsite_0"),
28 queryParamValues,true);
29 return b;
30 }}
31 return null ;
32 }

Figure 12: Code transformation for method in Figure 11.

code in Figure 11 is transformed to the code in Figure 12
which is simplified to omit type packages.

Callsites inside the method (e.g., lines 27–28 in in Fig-
ure 12) are transformed to use the version of the method that
accepts additional traversal information.



6.3 Query Translation
Our prototype compiler targets the Hibernate Query Lan-
guage (HQL), which is automatically translated to SQL by
the Hibernate library. A traversal summary is translated into
as few queries as possible given the constraints of HQL. If
a query condition contains a traversal from an object which
may be null, then the transformed program may eliminate a
NullPointerException that would have occurred in the origi-
nal program. This can be fixed by adding null checks to the
HQL condition or more productively warning the user of this
potential bug. Supporting recursive queries is challenging,
because HQL/SQL do not support transitive closure.

The implementation supports recursion by unfolding re-
cursive paths a finite number of times. A query is generated
for the unfolded traversal summary. If the program traverses
beyond the objects already loaded, additional queries are
executed using the same unfolded traversal summary. The
number of unfoldings is a parameter nUnfold to query extrac-
tion allowing the user to tune how recursive queries are gen-
erated. Concretely, if a program recursively traverses data
organized as a binary tree of depth n and nUnfold = m, then
the first query will retrieve the top m levels of the tree. When
the program reaches one of 2m nodes at depth m, another
query is executed which retrieves m levels of the subtree
rooted at that node. This continues until the program fin-
ishes its traversal. In the current implementation, recursive
paths are only allowed if they are generated by method re-
cursion, because the implementation only performs queries
at method boundaries. Further engineering is required to al-
low the full generality of recursive paths supported by the
analysis.

7. Evaluation
We evaluated query extraction’s potential by examining
benchmarks that contain transparent code and hand-optimized
queries. The results demonstrate that query extraction is a
viable concept. The analysis extracts the same number of
queries that appear in the hand-optimized version of per-
sistent programs—programs that perform only transparent
persistence and that contain no explicit queries. The pro-
gram generated by query extraction sometimes loads more
objects from the database than an equivalent hand-optimized
program, because query extraction must statically over-
approximate a program’s data requirements. However the
results demonstrate that the analysis is not overly conser-
vative: The extracted program loads fewer objects than the
transparent program in many cases, and the same number of
objects as the equivalent hand-optimized program in some
cases.

These two metrics—number of queries executed and
number of objects loaded—are the most important indica-
tors of query extraction’s scalability, because they charac-
terize a program’s behavior with respect to persistence. Our
prototype performs well for these metrics. Other metrics—

such as total execution time and analysis time—indicate the
quality of our prototype implementation. We present our im-
plementation’s performance for these metrics and conclude
that our prototype performs well except in a few cases.

Experimental Configuration Our experimental configura-
tion consists of a server that hosts the database and a client
machine on which the benchmarks run. The machines are
located on the same local network, and ping reports an av-
erage roundtrip time of about 250 microseconds. The server
has a 2.4 GHz Intel Pentium 4 processor with an 8KB L1
cache, 512KB L2 cache, and 1GB RAM. The server’s oper-
ating system is based on the 32bit Linux 2.6.22 kernel, and
the database is PostgreSQL version 8.2.6. The client has dual
3.0 GHz Pentium-D processors with a 16KB L1 cache, 1MB
L2 cache, and 2GB RAM. The client’s operating system is
based on the 32bit Linux 2.6.22 kernel. All the benchmarks
ran on Sun’s HotSpot JVM version 1.5.0, with a maximum
heap size of 256MB and the ParallelOld garbage collector.

Measuring Execution Time Execution time is non-
deterministic, due to the random behaviors of the operating
system and the JVM. To account for non-determinism, we
gather a group of sample values and report the sample size,
mean, and confidence interval for a 95% confidence level.
We follow a multiple-iteration, multiple-JVM-invocation
methodology [11, 12] to gather samples. We run several it-
erations of each benchmark within a single JVM invocation
until the execution time reaches a steady state. Then we dis-
able the JVM compiler, execute another iteration to clear the
compilation queue, and compute the mean execution time
of ten iterations. This value constitutes a sample execution
time for a single benchmark invocation. We gather a group
of samples by running multiple invocations.

Benchmarks No standard suite of benchmarks exists
for comparing transparent programs with equivalent, hand-
optimized programs that contain explicit queries. We ex-
amined existing database benchmarks and located two that
serve our purposes. The TORPEDO [22] benchmark mea-
sures the number of queries executed by object-relational
mappers for Java. The OO7 benchmark [5] measures the
performance of object-oriented database management sys-
tems. We had to modify both benchmarks, so that we could
use them to evaluate our analysis.

7.1 TORPEDO
The TORPEDO [22] benchmark consists of a simple data
model for an online auction service and 17 use cases which
perform various operations on sample data. Six of these
use cases perform read-only operations; the other 11 use
cases modify the data. The application is separated into three
layers: a data and persistence layer responsible for loading
data from the database, a business logic layer responsible
for implementing use cases, and a view layer responsible for



Method Declarations Callsites
Benchmark Total Persistent? Preload? Recursive? Total Persistent? Preload? Recursive?
TORPEDO 136 67 54 0 274 41 34 0
OO7 187 123 113 3 239 79 78 6

Table 1: Number of (possibly recursive) methods/callsites in TORPEDO and OO7 across which query extraction statically
extracts a query.

presenting results. The benchmark code is close to 900 lines,
and the benchmark database contains 40 objects.

We evaluated query extraction for TORPEDO by creat-
ing three versions of the benchmark. The hand-optimized
version employs explicit queries to perform each use case.
The transparent version uses simple queries to load the top-
level object(s) required for each use case, then uses transpar-
ent persistence to load any subsequent objects. The query-
extracted version is the result of applying our analysis to the
transparent version, where each top-level query is replaced
with the special variable root. All three versions use Hiber-
nate 3 to access the database. To simplify our testing we
merged the view and business layers; the view layer did not
contain any persistent traversals or types. We implemented
only the six use cases that performed no data updates.

Although TORPEDO contains relatively simple traver-
sals over a small database, the benchmark presents some
difficulties for interprocedural analysis. Table 1 lists how
many methods and callsites the benchmark contains, how
many of those declare persistent parameters or return per-
sistent value, how many of those for which query extraction
can preload the method’s data, and how many are recursive.
TORPEDO has many persistent methods, but the application
layers communicate through interfaces making devirtualiza-
tion impossible in some cases. Every use case involves at
least three methods in the different architectural layers and
most involve many more. The query extraction analysis for
TORPEDO took about 33 seconds.

TORPEDO specifies only that researchers must report the
number of queries executed. We report number of queries
executed, number of objects loaded, and execution time,
because these metrics provide a more accurate picture of
the behaviors of transparent, hand-optimized, and query-
extracted programs.

Queries Executed Figure 13 shows that query extrac-
tion locates and executes the same number of queries as the
hand-optimized TORPEDO. Both of these versions execute
fewer queries than the transparent TORPEDO. The num-
bers for each use case include commits. Each use case re-
quires a minimum of two queries because each use case exe-
cutes a commit. For example, the hand-optimized and query-
extracted TORPEDO versions execute two queries for the
“Find All Auctions” use case: one query to load all the auc-
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Figure 13: Number of queries executed, number of objects
loaded, and execution time for the TORPEDO benchmark.
Query extraction locates and executes the same number of
queries as the hand-optimized version in all use cases, loads
fewer objects than the transparent version in all but one use
case, and outperforms the transparent version in many cases.



tions and related objects plus one commit. By contrast, the
transparent TORPEDO requires eight queries to perform the
same task: one to load all the auctions, three to load the items
for each auction, three to load the collections of bids for each
auction, and the commit.

Objects Loaded In four of the six benchmarks, the query-
extracted version loads the same number of objects as the
hand-optimized version, and both versions load at most as
many objects as the transparent version. “Find High Bids”
is naturally an aggregation task, because it searches for the
maximum amount bid for a specified auction. The hand-
optimized TORPEDO contains an aggregation query and
loads the minimum number of objects. The query-extracted
TORPEDO loads all the auctions’ bids and computes the
maximum in the client; however it still loads fewer objects
than the transparent version, because the transparent version
must first search for the specified auction.

The query-extracted TORPEDO loads many objects for
“List Partial Auction”, because the code for this use case
invokes the same method as “List Auction”, but passes a
boolean flag that indicates the method should list only a
portion of an auction. The analysis is context insensitive
and cannot distinguish between the two cases, so it conser-
vatively loads all the objects that may be required by the
method.

Execution Time The TORPEDO database does not con-
tain much data, so the use cases execute quickly, and there
is little difference in execution time among the three ver-
sions. The results show that our research-quality implemen-
tation is comparable to a hand-optimized program and out-
performs the transparent version in all but two cases. The
query-extracted version of “List Partial Auction” executes
more complex queries (i.e., with more joins) than its trans-
parent counterpart, so it takes about twice as much time
to execute. The transparent version of “List Auction Twice
With Transaction” takes less time than the other two versions
because it takes advantage of caching. We found the over-
head of run-time query composition to be negligible (around
.004% of total execution time). We believe that more engi-
neering effort would yield even better results.

7.2 OO7
The OO7 [5] benchmark is based on a CAD/CAM applica-
tion that defines a composite structure by a highly recursive
and interrelated graph of components and parts. The OO7
benchmark is not representative of the most common op-
erations in typical transactional/enterprise applications, be-
cause OO7 focuses on extensive traversals of hierarchical
structures. However, the benchmark is widely used in the re-
search community and presents some interesting challenges
for query extraction.

The OO7 specification defines three kinds of use cases:
queries, traversals, and structural modifications. The queries

perform read-only operations on the data. There are seven
query use cases labeled Query 1 through Query 8 (Query 7
does not exist). The traversals scan the object graph and col-
lect information. There are six traversal use cases, labeled
Traversal 1 through Traversal 9 (Traversal 4, Traversal 5,
and Traversal 7 do not exist). Traversal 2 and Traversal 3
perform database updates; the remaining traversals perform
read-only tasks. Traversal 1, Traversal 2, Traversal 3, and
Traversal 6 rely on recursion to scan the assembly hierarchy
and part graphs. There are two structural modification use
cases. One use cases inserts values into the database, and
the other deletes values from the database. The specification
describes three database sizes: small, medium, and large.
Our evaluation is for the small database size, which contains
about 41,000 objects. Our version of the OO7 code contains
close to 1,300 lines of code.

Our evaluation is based on a version of OO7 that uses
Hibernate 3, which we had implemented for a previous re-
search effort. Our OO7 version implements the 11 read-only
use cases in the specification and omits the four use cases
that perform updates. The query use cases contain hand-
optimized, explicit queries. We created equivalent, transpar-
ent versions of these use cases. We then applied query ex-
traction to the transparent use cases to generate versions that
contain explicit queries. We compare the performance of all
three versions. The traversal use cases are based on trans-
parent persistence. We applied query extraction to these use
cases. Neither the OO7 specification nor reference imple-
mentations provide a version of the traversals that contain
hand-optimized queries, so our evaluation for these use cases
compares query-extracted performance to transparent persis-
tence performance.

Table 1 lists the persistent characteristics of the methods
in OO7. The query extraction analysis for OO7 took about
100 seconds.

OO7 does not specify which metrics to report, so we re-
port number of queries executed, number of objects loaded,
and execution time. Because OO7 contains recursive traver-
sals of an object graph, the performance of the query-
extracted version for some use cases depends on how deep
the analysis unfolds recursive traversals. Query extraction is
parameterized by this depth, as described in Section 6.3. We
first performed query extraction with an unfolding depth of
one. Figures 14a contains the results for the query use cases,
and Figure 14b contain the results for the traversal use cases.
All execution time values are for a confidence level of 95%
and a sample size of ten benchmark iterations.

Performance for Query Use Cases The evaluation for
these uses cases compares the performance of hand-optimized,
transparent, and query-extracted versions. The query-extracted
version executes the same number of queries as the hand-
optimized version for every use case except Query 8, which
performs an ad-hoc join of two collections. Query extrac-
tion does not optimize these kinds of traversals. The hand-
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(a) Performance for query use cases. In general, query extraction per-
forms comparably to hand-optimized code and favorably to transpar-
ent persistence. Query extraction does not perform well for Query 8,
because that use case contains a query condition that query extraction
does not optimize.
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(b) Performance for traversal use cases. Query extraction performs bet-
ter than transparent persistence for Traversal 6 and worse than transpar-
ent persistence for Traversal 1. This difference occurs because Traver-
sal 1 traverses a highly connected graph, and an HQL query cannot
efficiently retrieve such a structure.

Figure 14: Queries executed, objects loaded, and execution time per OO7 query (a) and traversal (b) use case.

optimized version loads all the required objects with a single
query. The query-extracted version performs one query for
each collection, and loads too many objects because the use
case’s condition violates the master-detail restriction dis-
cussed in Section 4.3. The transparent version executes at
least as many queries as the query-extracted version for all
use cases.

The query-extracted versions of Query 4 and Query 5
execute the same number of queries as the corresponding
hand-optimized version, but load more objects. These extra
objects are due to the fact that the transparent program from
which the query-extracted version is generated traverses a
relationship to evaluate a condition, so query extraction must
load the traversed object to maintain the program’s seman-

tics. The hand-optimized query references the same relation-
ship in the query’s where clause, but does not need to load the
objects referenced in the condition. The transparent version
loads more objects than the other two versions for Query 4
and Query 5.

For all use cases except Query 8, the query-extracted
version takes time comparable to the other two versions.
The query-extracted version of Query 8 takes three orders
of magnitude longer to execute than the hand-optimized
version, because query extraction does not optimize this
query.

Performance for Traversal Use Cases The evaluation
for these uses cases compares query-extracted performance
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(a) Query extraction takes more time but executes fewer queries than trans-
parent persistence for Traversal 1. The inverse relation between execution
time and number of queries executed is due to the redundant data that a re-
lational query must load to express traversal of a highly connected graph.
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(b) Query extraction usually takes less time and executes fewer queries
than transparent persistence for Traversal 6. This use case traverses a
tree of height six.

Figure 15: Query extraction performance depends upon the
structure of traversed data and upon unfolding depth.

against transparent persistence performance. Traversal 8 and
Traversal 9 yield uninteresting comparisons for queries exe-
cuted and objects loaded, because these use cases traverse a
single object. Query extraction executes fewer queries than
transparent persistence for Traversal 1 and Traversal 6. The
transparent versions of these use cases load objects lazily, as
they are traversed. The query-extracted version prefetches
these objects and so uses fewer queries. The query-extracted
versions of these two use cases always load the same number
of objects as the transparent version, because the use cases
traverse all the objects in the database along a certain path.

The execution time for both versions is comparable for
Traversal 8 and Traversal 9. The transparent version per-
forms better for Traversal 1; but the query-extracted version
performs better for Traversal 6. Figure 15 illustrates this dif-
ference in more detail by varying the unfolding depth for
these two use cases. Figure 15a shows how the number of

queries and the execution time vary with unfolding depth for
Traversal 1. This use case traverses the entire object graph
stored in the database—a behavior that cannot be easily ex-
pressed with a relational query language like HQL. Although
the query-extracted version executes fewer queries than the
transparent version, the query-extracted version takes much
more time to execute. This overhead is due to the large
amount of redundant data in each row that is required to rep-
resent an object graph in a relational table. As the number of
queries decreases, the amount of redundant data increases,
so there is an inverse relation between the number of queries
and the execution time.

The results for Traversal 6 highlights query extraction’s
advantages. This use case traverses a sub-tree of the object
graph. Figure 15b shows how the number of queries and
the execution time vary with unfolding depth for this use
case. Note that the number of queries is a good indication
of execution time for this use case. The query-extracted
version always executes fewer queries than the transparent
version, and takes less time than the transparent version
except when the unfolding depth is five. This spike occurs
because the data happens to have a complete tree structure of
height six. Thus our implementation of recursion described
in Section 6.3 is suboptimal for unfolding depths which are
not a factor of six. In general, the optimal unfolding depth
depends on the data characteristics.

8. Related Work
Interest in the problem of integrating programming lan-
guages and databases has enjoyed a recent resurgence. Most
researchers have focused on providing queries as first-class
members of a programming language. Kleisli [31], Haskel-
l/DB [19] and Links [9] are functional programming en-
vironments that provide comprehension syntax as a means
to specify database queries. LINQ extends C#’s syntax and
type system to include similar features [4]. Safe queries pro-
vide typed, first-class queries for Java [8]. The Java Query
Language (JQL) extends Java to support optimizable queries
of in-memory objects [30].

These solutions all provide a language-based, safe alter-
native to embedded query strings. They differ from our solu-
tion in that they require programmers to learn a new syntax
or API, and that the programmer must write explicit queries.
Although these queries benefit from type-safety and auto-
matic conversion to a database query language, program-
mers still bear the burden of declaring their needs for per-
sistent data. This declaration introduces a subtle dependency
in the program between the structure of the data declared
in the query and the structure of data traversed by the pro-
gram. Furthermore, explicit queries reduce the modularity of
programs by concentrating queries in one program location,
reducing opportunities to exploit redundant data traversals.

Our approach infers a programmer’s persistent data use
by analyzing programs in an existing language. However,



static analysis cannot in general detect common query id-
ioms like aggregation and existence. New languages, type
systems, and constructs also are better solutions for other
artifacts of impedance mismatch like null values. It is an
open problem to find the “sweet spot” between these two
approaches, but we believe their combination provides the
most promise for integrating programming-languages and
databases.

Neubauer and Thiemann partition a sequential program
executed at one location into semantically equivalent, in-
dependent, distributed processes [26]. Their approach pro-
vides software engineering benefits similar to ours, except
for multi-tier applications.

The DBPL language [28] and it successor Tycoon [23]
explored optimization of search and bulk operations within
the framework of orthogonal persistence. Tycoon proposed
integrating compiler optimization and database query opti-
mization [10]. Queries that cross modular boundaries were
optimized at runtime by dynamic compilation [27]. The lan-
guages included explicit syntax for writing queries or bulk
operations on either persistent or non-persistent data.

Several researchers have extended object persistence ar-
chitectures to leverage traversal context—access patterns,
including paths—to dynamically predict database loads and
prefetch the predicted values [3, 13, 16]. Because our work
generates queries which could be used in object persis-
tence architectures, the two techniques could be combined
to achieve further performance benefits.

9. Conclusion
This paper presented an automatic technique for extracting
queries from object-oriented programs that use transparent
persistence. The work builds on our previous formal study
for query extraction in a kernel language without procedures.
The key problem for interprocedural analysis is propagating
query information across procedure boundaries: persistent
data needed for procedure parameters is preloaded by the
caller; and conversely, the procedure preloads all the data
needed by the call site from its return value. Procedure pa-
rameters are handled by devirtualization and query separa-
tion, while procedure results are handled by a novel com-
bination of static analysis and dynamic query composition.
While parameters are only preloaded if devirtualization suc-
ceeds, the dynamic composition always allows a callee to
preload data for its caller. We presented a prototype Java
compiler with query extraction including support for recur-
sion query parameters, persistent parameters and return val-
ues. We evaluated the technique using the TORPEDO and
OO7 benchmarks. This work demonstrates the feasibility of
query extraction in a practical setting.
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