
Extracting Queries by Static Analysis of Transparent Persistence∗

Ben Wiedermann and William R. Cook
Department of Computer Sciences, The University of Texas at Austin

{ben,wcook}@cs.utexas.edu

Abstract
Transparent persistence promises to integrate programming lan-
guages and databases by allowing procedural programs to access
persistent data with the same ease as non-persistent data. When the
data is stored in a relational database, however, transparent persis-
tence does not naturally leverage the performance benefits of rela-
tional query optimization. We present a program analysis that com-
bines the benefits of both approaches by extracting database queries
from programs with transparent access to persistent data. The anal-
ysis uses a sound abstract interpretation of the original program to
approximate the data traversal paths in the program and the condi-
tions under which the paths are used. The resulting paths are then
converted into a query, and the program is simplified by remov-
ing redundant tests. We study an imperative kernel language with
read-only access to persistent data and identify the conditions under
which the transformations can be applied. This analysis approach
promises to combine the software engineering benefits of trans-
parent data persistence with the performance benefits of database
query optimization.

Categories and Subject DescriptorsD.3.4 [Programming Lan-
guages]: Processors; H.2.3 [Database Management]: Languages

General Terms Languages, Performance

Keywords Programming Languages, Databases, Static Analysis

1. Introduction
The effective integration of programming languages and databases
is a long-standing and critical open problem. From a programming
language viewpoint, databases managepersistentdata, which has a
lifetime longer than the execution of an individual program. Ideally
a unified programming model should be applicable to both persis-
tent and non-persistent data. This goal has been pursued for the
last 30 years in numerous forms, including orthogonal persistence
[2, 3, 4, 25, 30], object-relational mapping [16, 22, 28, 34], and
object-oriented databases [12, 15, 27]. Despite differences in par-
ticular details, these approaches all share the goal oftransparent
persistence—a programming paradigm wherein the programmer
need not distinguish between persistent and non-persistent values.

Transparent persistence can be added to most any language
by extending the concepts of automatic memory management and

∗ This work was supported by the National Science Foundation under Grant
No. 0448128.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’07 January 17–19, 2007, Nice, France.
Copyright c© 2007 ACM 1-59593-575-4/07/0001. . . $5.00.

for (Employee e : root .employees) {
if (e. salary > 65000) {

print (e.name + ": " + e.manager.name);
}}

Figure 1. A program using transparent persistence.

// define an explicit query
String query = ”from Employee e

left join fetch e.manager
where e. salary > 65000”;

// execute the query
List result = executeQuery(query);
for (Employee e : result . list ()) {

// no test required : all elements already satisfy
// the condition salary> 65000
print (e.name + ": " + e.manager.name);

}

Figure 2. Explicit query execution using Hibernate.

garbage collection to the management of persistent data: by iden-
tifying a persistent root object, any object or value reachable from
the root is also persistent [4]. For example, the Java program in
Fig. 1 manipulates a collection of employee objects associated with
a root object. Ifroot identifies a persistent store of objects, then the
employee objects may be loaded from that store. However, the pro-
gram’s result is independent of whetherroot is persistent or not.

This kind of transparent persistence does not easily leverage
the power of database query optimization. Database optimizations
work best when records are loaded in bulk and conditions for se-
lecting records are executed in the database rather than the proce-
dural program. The mismatch between one-at-a-time processing in
procedural language and bulk data processing in query operations
is called “impedance mismatch” [26]. To solve this problem, many
persistence models allow programmers to execute explicit queries.
For example, Fig. 2 uses Hibernate, an object-relational mapping
tool, and its query language HQL [22] to execute an explicit query.
The executeQuery method is a (unspecified) helper function that
hides some of the details of executing a query with Hibernate. The
query returns only employees with salary greater than $65,000; the
prefetch clauseleft join fetch e.manager indicates that each
employee’s manager should also be loaded. Theif statement in
Fig. 1 is not needed in Fig. 2 because the query’swhere clause
ensures the query only returns employees for which the test is true.

Although the programs in Fig. 1 and Fig. 2 print the same re-
sults, they have different performance and software engineering
benefits. In the transparent persistence version, all employees will
be loaded even though only those with salary greater than $65,000
are printed. Manager objects will be loaded individually, because
the persistence layer cannot predict which ones will be needed.

In the Hibernate version, the underlying relational query optimizer
will likely use an index to locate all employees whose salary is
greater than $65,000. The optimized version runs in time propor-
tional to the size of the query result, rather than the total number of
employees and may be orders of magnitude faster [9].

Despite its performance benefits, there are some drawbacks to
the Hibernate version. Query strings are not checked at compile
time for syntax or type safety, and they reduce modularity and in-
crease the complexity of programming. Proposals to address these
problems [7, 11, 20] either reduce or do not address the trans-
parency of persistence. There is also a subtle dependency between
the query and the code: the prefetch clause is logically redundant
with the use of the employee’s manager in theprint method.

This paper describes a static analysis technique that allows a
programming language with transparent persistence to leverage the
power of query optimization. Our approach automatically partitions
programs by extracting data traversals and conditions into a query,
and removing them from the program—essentially transforming
the program in Fig. 1 into the program in Fig. 2. This transfor-
mation requires that the extracted query return a structural subset
of the original database. The analysis creates queries written in a
subset of the Object Query Language (OQL) [8] that can express
these kinds of queries.

Our analysis consists of three parts. The first part (Section 3)
identifies the traversals used in the program; these traversals spec-
ify the data that must be loaded by the query. The second part (Sec-
tion 4) identifies the conditions under which data is used, so that
the conditions can be included in the query. In the final part (Sec-
tion 5) the individual conditions on the use of fields are promoted to
apply to entire records, and a query is created. This final step also
modifies the program to use the results of the query, and eliminates
redundantif statements.

The primary contribution of this paper is a new approach to
optimization of transparent persistence by extracting queries from
imperative programs. This result is based on a sound abstract in-
terpretation of programs, together with techniques for converting
the resulting abstract values into queries and simplifying the orig-
inal program. We have developed a prototype implementation of
the analysis and applied it to simple examples to demonstrate its
viability. While this work re-opens an important line of research,
there are many topics left to future work. In particular, we have
not analyzed the performance of the analysis or the transformed
programs—although the performance gains from query optimiza-
tion are well-known. We have not applied the analysis to large
programs with procedures, or addressed the problem of identify-
ing where in a large program the analysis should be applied. Com-
plex query behaviors, like aggregation, exists queries, and database
mutations (creations, updates, and deletions) are not considered.
We expect that the current work will serve as a solid foundation
for ongoing work on these problems, with the goal of combining
the software engineering benefits of transparent persistence and the
performance benefits of query optimization.

2. A Kernel Language with Persistent Data
We study a simple imperative language with records and access
to persistent data. The persistent data is an instance of an Entity-
Relationship (ER) Model [10], which provides natural mappings
to both relational databases [5] and class models in UML/object-
oriented programming [37]. A persistent value is a record, or la-
beled product, whose fields are either basic values or references to
other records (these are called “attributes” and “relationships” in
an ER model). A reference/relationship field may be either single-
valued or multi-valued. Multi-valued relationships correspond to
collection objects in object-oriented programming. The language
expresses key concepts in practical orthogonally persistent object-

l ∈ Variable

f ∈ Field

e ∈ Expression ::= l | e.f | opn(e1, . . . , en)

op0 ∈ Constant ::= true | false | number | string

op1 ::= ¬ | print

op2 ::= ∧ | ∨ | > | < | = | ≥ | ≤ | 6=
c ∈ Command ::= skip | l := e | c; c

| if e then c [else c]

| for l in e do c

Figure 3. Syntax of a persistent data kernel language.

manager

ι ι manager

manager

employees

ι

50000

namesalary

“Adam”

namesalary

60000 “Bob” 70000

namesalary

“Cathy”

r1

r0

r3r2

Figure 4. An object graph example.

oriented languages, but it also has several restrictions. Only the
structural representation of data is considered, not behavioral meth-
ods, and the language contains no procedures. We do not model
the three-valued logic of null values that is used in SQL, but as-
sume that a value is defined for every persistent element a program
accesses. While the language supports imperative update of local
variables, persistent data is read-only. We believe these restrictions
to be reasonable, as the current work is designed to introduce a
technique for extracting procedural queries. Section 7 discusses ex-
tensions to support interprocedural analysis, analysis of more com-
plicated query idioms, and creation, update, or deletion of persis-
tent data.

2.1 Syntax

The abstract syntax of the kernel language is defined in Fig. 3. The
traversal expressione.f projects a fieldf of a recorde. The value
of e.f can be a simple value, or references to one or more records.

Persistent data is introduced through a specialroot variable that
refers to a record representing persistent data [4]. Any value that
is reachable from the root is also persistent. As mentioned above,
no constructs create or modify persistent records; all records are
loaded from the persistent store.

Primitive functionsopn have a specified number of arguments
n. Infix notation is used where appropriate.

The for command allows iteration over the elements of a collec-
tion. For simplicity, iteration is supported only for multi-valued re-
lationship fields—that is, collections of persistent objects. The lan-
guage could easily be extended to allow iteration of non-persistent
collections or basic values.

A simple static type system for records is assumed for this
language [32]; programs are assumed to be well typed.

2.2 Values

A program operates over the domain:

v ∈ Value = Basic + RecordID + RecordID∗

〈l, σ〉 → σ[l] (S-VAR)

〈skip, σ〉 → σ (S-SKIP)

〈e, σ〉 → r

〈e.f, σ〉 → Load(r, f)
(S-TRAVERSE)

〈ei, σ〉 → vi for i ∈ {1, . . . , n}
〈opn(e1, . . . , en), σ〉 → fopn

(v1, . . . , vn)
(S-OP)

〈c1, σ〉 → σ′ 〈c2, σ
′〉 → σ′′

〈c1; c2, σ〉 → σ′′
(S-SEQ)

〈e, σ〉 → v

〈l:=e, σ〉 → [l 7→ v]σ
(S-ASSIGN)

〈e, σ〉 → true 〈c1, σ〉 → σ′

〈if e then c1 else c2, σ〉 → σ′
(S-IFT)

〈e, σ〉 → false 〈c2, σ〉 → σ′

〈if e then c1 else c2, σ〉 → σ′
(S-IFF)

〈e, σ〉 → {r1, . . . , rn}
〈c, [l 7→ ri]σi〉 → σi+1 for i ∈ {1, . . . , n}

〈for l in e do c, σ1〉 → σn+1\l (S-FOR)

Figure 5. Operational semantics of the kernel language.

whereBasic is the domain of basic values (integers, Booleans,
and strings), andRecordID is the domain ofrecord identifiersthat
reference persistent database values. When a program traverses a
record identifier, a runtime functionLoad :: RecordID×Field →
Value retrieves the corresponding record’s field value(s). A special
record identifierr0 corresponds to the persistent store’s root, and
the store’s structure is the graph formed by the transitive closure of
traversals fromr0.

Figure 4 illustrates a persistent object graph, against which
the program in Fig. 1 can be evaluated. The graph’s solid dot
denotes a collection of record identifiers, where the target of each
outgoing edge is a member of the collection. Each of these edges
is implicitly labeled with aniterator field nameι, which identifies
distinct elements of the collection.

2.3 Semantics

Figure 5 defines a big-step operational semantics for the kernel lan-
guage. A storeσ maps variables to values. The evaluation relations
for expressions〈e, σ〉 → v and commands〈c, σ〉 → σ′ follow
standard form. All programs begin computation with a storeσ0 that
maps the variableroot to the persistent valuer0.

RuleS-VAR retrieves a variable’s value from the store. For op-
erations, ruleS-OP evaluates the operands, then applies the opera-
tor’s function to the result. The functionsftrue, f¬, f<, etc., have
the standard mathematical meanings. Note that these functions are
defined so that they return only primitive values, not record identi-
fiers. RulesS-SKIP, S-ASSIGN, S-SEQ, S-IFT andS-IFF are stan-
dard. The expression[l 7→ v]σ denotesσ updated so thatσ[l] = v.

RuleS-TRAVERSE loads persistent data. If expressione evalu-
ates to the record identifierr, then the expressione.f evaluates to
the result of callingLoad(r, f).

Rule S-FOR defines iteration over a collection of record iden-
tifiers. For each record identifierri in the collection, thefor com-
mand’s bodyc is evaluated in a new storeσi that maps the loop
variablel to record identifierri. The result of the entire command
is the final store producedσn+1. A loop variable is defined only in
the loop’s body, so the variable is removed from the final store.

One subtle difference between the semantics of object-oriented
programming languages and relational databases is that program-
ming languages assume that collections have an inherent order,
whereas databases do not. For our purposes, we assume a default
order exists for every database collection and that programs iterate
over collections in that order.

Output from theprint function is modeled by a special variable
output; the print function simply concatenates onto the end of
this variable.

Evaluating the example program in Fig. 1 against the persistent
data in Fig. 4 generates a final store with the following mappings:

root 7→ r0, output 7→ “Cathy : Cathy”

2.4 Operational Semantics with Explicit Used-Set

Our analysis summarizes the set of persistent values a program
uses. These values—which we refer to as the program’sused-set—
can then be loaded in bulk before the program needs them. The
operational semantics of the base language is extended in Fig. 6
to keep track of a computation’s used-set. The modified semantics
has evaluation relations〈e, σ〉 → 〈v, ρ〉 and〈c, σ〉 → 〈σ, ρ〉 where
ρ is the set of database values that were loaded during the entire
computation.S-TRAVERSE is the only rule that loads database
values, so the rule adds the newly loaded valuesρf to the set.

All other rules are modified to collect the loaded values for
any sub-computation, where

S
ρi is shorthand for

S
i∈{1,...,n} ρi.

Evaluating our running example with the extended semantics gen-
erates the following set of database values:

{r0, r1, 50000, r2, 60000, r3, 70000, “Cathy”}

3. Analyzing Traversals
Traversal analysis is an abstract interpretation [13] of the op-
erational semantics in which database values are replaced by
paths. Thepath corresponding to a database value is the se-
quence of field names traversed to load that value. Note that many
database values may have the same path; for example, in Fig. 4
the paths to record identifiersr1, r2, and r3 are identical. Many
paths may lead to the same database value; for example, the value
“Bob” can be reached by following eitheremployees.ι.name or
employees.ι.manager.name.

Abstract interpretation uses abstraction and concretization func-
tions to specify the relationship between abstract and concrete val-
ues. Given an abstract path, its concretization is the set of database
values that can be reached by following the path. If the path in-
cludes a collection field, the concretized result includes all the
traversals of items in the collection. Thus concretization corre-
sponds to interpreting the path as a query against the database.

The analysis is conservative and sound, so that the concretiza-
tion of a path may return a larger set of database values than the
concrete execution of the program actually loads. However, be-
cause a program typically operates over a small subset of a large
database, the amount of data represented by the concretized paths
should be small relative to the overall database size. Soundness jus-
tifies bulk loading of data before executing the program; precision
gives better performance. The analysis in this section uses a loose

〈l, σ〉 → 〈σ[l], ∅〉 (U-VAR)

〈skip, σ〉 → 〈σ, ∅〉 (U-SKIP)

〈e, σ〉 → 〈r, ρe〉
ρf = Load(r, f)

〈e.f, σ〉 → 〈ρf , ρe ∪ ρf 〉 (U-TRAVERSE)

〈ei, σ〉 → 〈vi, ρi〉 for i ∈ {1, . . . , n}
〈opn(e1, . . . , en), σ〉 → 〈fopn

(v1, . . . , vn),∪ρi〉 (U-OP)

〈c1, σ〉 → 〈σ′, ρ1〉 〈c2, σ
′〉 → 〈σ′′, ρ2〉

〈c1; c2, σ〉 → 〈σ′′, ρ1 ∪ ρ2〉 (U-SEQ)

〈e, σ〉 → 〈v, ρe〉
〈l:=e, σ〉 → 〈[l 7→ v]σ, ρe〉 (U-ASSIGN)

〈e, σ〉 → 〈true, ρe〉 〈c1, σ〉 → 〈σ′, ρc〉
〈if e then c1 else c2, σ〉 → 〈σ′, ρe ∪ ρc〉 (U-IFT)

〈e, σ〉 → 〈false, ρe〉 〈c2, σ〉 → 〈σ′, ρc〉
〈if e then c1 else c2, σ〉 → 〈σ′, ρe ∪ ρc〉 (U-IFF)

〈e, σ〉 → 〈{r1, . . . , rn}, ρ1〉
〈c, [l 7→ ri]σi〉 → 〈σi+1, ρi+1〉 for i ∈ {1, . . . , n}

〈for l in e do c, σ1〉 → 〈σn+1\l,∪ρi〉 (U-FOR)

Figure 6. Operational semantics, extended to collect used-sets.

〈e, σ̂〉→̂〈πe, π〉
πf =

(
> f t ∈ πe

{p.f t | p ∈ πe} otherwise

〈e.f t, σ̂〉→̂〈πf , π t πf 〉
(A-TRAVERSE)

〈ei, σ̂〉→̂〈v̂i, πi〉 for i ∈ {1, . . . , n}
〈opn(e1, . . . , en), σ̂〉→̂〈>,

F
πi〉 (A-OP)

〈e, σ̂〉→̂〈v̂, πe〉
〈c1, σ̂〉→̂〈σ̂1, π1〉 〈c2, σ̂〉→̂〈σ̂2, π2〉

〈if e then c1 else c2, σ̂〉→̂〈σ̂1 t σ̂2, πe t π1 t π2〉 (A-I F)

〈l, σ̂〉→̂〈σ̂[l], ∅〉 (A-VAR)

〈e, σ̂〉→̂〈v̂, π〉
〈l:=e, σ̂〉→̂〈[l 7→ v̂] t σ̂, π〉 (A-A SSIGN)

〈e, σ̂〉→̂〈πe, π〉
πι = {p.ιl | p ∈ πe}

(σ̂′, π′) =
F{(do〈c, l, πι〉)n(σ̂, ∅) | n ∈ N}

〈for l in e do c, σ̂〉→̂〈σ̂′\l, π t πι t π′〉 (A-FOR)

〈c, [l 7→ πι] t σ̂〉→̂〈σ̂′, π′〉
do〈c, l, πι〉(σ̂, π) = (σ̂′, π t π′)

(A-DO)

Figure 7. Path-based abstract interpretation for approximating used-sets.

approximation, but serves as a useful foundation for the more pre-
cise analysis in Section 4.

3.1 Abstract Value Domain

The abstract value domain is

v̂ ∈ V̂alue = ℘(Path) +>
where℘ is the powerset operator andPath is the set of paths a
program can traverse. This version of the analysis focuses only
on paths; all non-path values (e.g., constants) are abstracted away
as>.

The domain forms a potentially infinite, complete lattice or-
dered by the subset relation (⊆). To ensure that the analysis ter-
minates, we force the lattice to be finite by restrictingPath to be a
finite subset of the all possible sequences of fieldsField∗. One pos-
sible finite subset is the set of paths in which each field name occurs
at most once—any other paths would be abstracted as>. With this
domain, the expressionroot.manager.manager would be assigned
abstract value>, even though it is a finite path. On the other hand,
in the following programx should be assigned value>, because it
produces a path of unbounded length:

for employee in root .employees do
x := x.manager;

Note that this program is not very useful because there is usually
not a meaningful relationship between the number of employees in
a list and the depth of a manager traversal.

To distinguish these cases, we create the domainPath by label-
ing each field in the program, and considering all paths in which
each labeled field occurs at most once. With labels, the first expres-
sionroot.manager1.manager2 has a finite path, butx in the exam-
ple above would still be assigned abstract value>. More expressive
abstractions for representing infinite paths would certainly be use-
ful, for example in the analysis of recursive procedures. Section 6
discusses a more sophisticated alternative; however, such abstrac-
tions are beyond the scope of the current work.

3.2 Abstract Semantics for Traversals

The operational semantics in Fig. 7 computes the paths a program
may traverse. For brevity we omit the rulesA-SKIP and A-SEQ,
which merely collect values and paths for subcomputations.

The abstract semantics has evaluation relations for expressions
〈e, σ̂〉→̂〈v̂, π〉 and commands〈c, σ̂〉→̂〈σ̂′, π〉, wherev̂ is an ab-
stract value,̂σ maps variables to abstract values, andπ is the set of
paths traversed by a computation.

Rule A-TRAVERSE defines how field traversal extends a path.
In evaluatinge.f t, if e yields the set of pathsπe then the result
of the traversal extends each path inπe with the labeled fieldf t.
The traversal rule also includes a widening clause to ensure the
analysis converges. If the field labelt already appears in one of
the paths thate may traverse, then the program traverses an invalid
path in the sense described by Section 3.1. In this case, the analysis
approximates the expression’s traversals with>.

Rule A-OP gives> as the abstract value for any operation,
because the analysis ignores basic values. In Section 4 we extend
the analysis to include abstractions for basic values.

Rule A-I F combines the paths traversed in evaluating the con-
dition and the two command branches of anif statement. The join
σ̂1 t σ̂2 of two mapŝσ1 andσ̂2 is a map that includes all elements
of both maps:

(σ̂1 t σ̂2)[l] = σ̂1[l] t σ̂2[l]

If σ̂i is not defined forl, thenσ̂i[l] = ∅.
RuleA-VAR retrieves a variable’s abstract value from the store

and does not generate any new paths.
RuleA-A SSIGNdescribes how a program binds a variable to an

abstract value. To ensure soundness, the store maintains a may-be-
bound-to relationship between variables and abstract values. Thus
the binding operation is a join, rather than an overwrite.

Rule A-FOR evaluates the expressione to determine the paths
πe representing the possible collections to be iterated. The rule
generates a set of possible pathsπι to which the loop variable
may refer by appending toπe the iterator field nameιl. These
loop variable paths stand for a particular element of the collection.
Thus, if the path to the collection isf1.f2 and the collection’s
elements each has a fieldf3, then the path to one of the element’s
f3 field is f1.f2.ι

l.f3. Each collection iteration (for loop) that
appears in a program has a unique iterator field nameιl, wherel
is the corresponding loop variable. Iterator field names are used
in transforming the analysis results into a query, as discussed in
Section 5.

The analysis approximates the loop body’s concrete behavior
by taking the transitive closure of abstractly executing the loop an
arbitrary number of times. This value is the least upper bound of a
functiondo that is specialized for a given commandc, loop variable
l, and set of loop variable pathsπι. The function takes an initial
storeσ̂ and set of pathsπ and evaluatesc under an updated store
that mapsl to πι to yield a new storêσ′ and a new set of pathsπ′.
The result of the function iŝσ′ and the combined path setπ t π′.

The abstract evaluation of our running example generates a final
store with the following mappings:

root 7→ {ε}, output 7→ >
and generates the following set of paths:

{ ε, employees, employees.ιe, employees.ιe.salary,
employees.ιe.name, employees.ιe.manager,
employees.ιe.manager.name }

3.3 Soundness

The analysis is sound if it safely approximates the values a pro-
gram loads. If the database stores a set of valuesV , and if exe-
cuting a program causes the set of persistent valuesρ ⊆ V to be
loaded, then the analysis should describe a set of valuesρ̂ such that
ρ ⊆ ρ̂ ⊆ V . We formalize this relation between concrete and ab-
stract values and show that the operational semantics preserves the
relation.

The set of concrete values described by an abstract path is the
set of values reachable by following that path from the root. We
can formalize this description by lifting the definition ofLoad to
operate on paths:

Load(r, ε) = {r} (P-LOAD1)

Load(r, f) = {r1, . . . , rn}
Load(r, f.p) =

S
Load(ri, p)

(P-LOAD2)

Load(r, ιl.p) = Load(r, p) (P-LOAD3)

Rule P-LOAD1 states that traversing an empty path from record
identifier r yields the set containingr. Rule P-LOAD2 loads one
level of the traversal hierarchy, then recursively loads the remainder
of the hierarchy. RuleP-LOAD3 removes an iterator field name
from a path, essentially binding the name to record identifierr.

A set of pathsπ safely approximates a set of valuesρ if the set
of values reachable by following all paths inπ is a superset ofρ:

ρR π ⇔ ρ ⊆
[
p∈π

Load(r0, p)

For our running example,
S

p∈π Load(r0, p) =

{ r0, r1, 50000, “Adam”, r2, 60000, “Bob”,
r3, 70000, “Cathy” }

which safely approximates the concrete results.
The abstract domain consists of sets of paths and>, so we lift

R to relate a concrete valuev to an abstract valuêv as follows:

v R v̂ ⇔

8
><
>:

{v} R v̂ v = r, v̂ = π

v R v̂ v = {r1, . . . , rn}, v̂ = π

true v̂ = >
The first two cases relate record identifiers and paths, as above. The
final case states that> always safely approximates a basic program
value. We lift R to relate stores as follows:

σ R σ̂ ⇔ ∀x ∈ Dom(σ) ∩Dom(σ̂).σ[x]R σ̂[x]

By these definitions, the initial stores arecompatible, in that the
initial abstract store safely approximates the initial concrete store.

We define an ordering on abstract stores as follows:

σ̂1 v σ̂2 ⇔ Dom(σ̂1) ⊆ Dom(σ̂2)

∧ ∀x ∈ Dom(σ̂1) ∩Dom(σ̂2).σ̂1[x] v σ̂2[x]

The abstract semantics rules must be monotone with respect to this
ordering, to ensure fixpoint convergence. Conceptually, the rules’
monotonicity is evident because the rules never discard a path,
assign the value> to non-path-based expressions, and combine the
results of variable assignment. A standard induction over the rules
in Fig. 7 formalizes this argument; for brevity, we omit its details.

Theorem 1 (Soundness of expression evaluation).For all σ, σ̂, e,

〈e, σ〉 → 〈v, ρ〉 〈e, σ̂〉 → 〈v̂, π〉 σ R σ̂

(v, ρ)R (v̂, π)

Proof. The proof is a straightforward induction on the structure
of e. The only interesting case is for ruleA-TRAVERSE, when
the rule givesπf = {p.f t | p ∈ πe}, whereπe are the paths
e traverses. In this case, the induction hypothesis states that the
subexpression pathsπe relate to database valuesρe. A simple
inductive argument onP-LOAD guarantees that the extended paths
πf safely approximate the values the program loads by traversing
field f for each value inρe.

Theorem 2 (Soundness of command evaluation).For all σ, σ̂, c,

〈c, σ〉 → 〈σ′, ρ〉 〈c, σ̂〉 → 〈σ̂′, π〉 σ R σ̂

(σ′, ρ)R (σ̂′, π)

Proof. By induction on the structure ofc. Rule A-A SSIGN com-
putes a safe approximation of the store by joining stores. RuleA-I F
computes a safe approximation of the program behavior by com-
bining the results of the statement’s two branches. The proof of
soundness for ruleA-FOR makes the natural reliance on the finite
domain lattice and the monotonicity of the abstract semantics rules
to ensure the existence of a safe fixpoint.

The analysis in this section is quite imprecise and can there-
fore lead to an excessive over-approximation of the database val-
ues a program requires. For example, the analysis conservatively
estimates that the program in Fig. 1 needs thename field for every
employee even though the program traverses thename field only if
the employee’s salary is greater than $65,000.

4. Analyzing Traversal Conditions
The precision of the analysis can be significantly increased by con-
sidering the conditions under which a program traverses data paths.
If a program condition can be expressed in a query language, then
the analysis can incorporate that condition in the traversal sum-
mary. In this section we describe a class of program conditions
expressible in our chosen query language, OQL. We discuss how
traversals affect program data dependences, which inform the anal-
ysis of persistent values the program must load. We then show how
to extend the analysis to handle query conditions and data depen-
dence, and we prove the extension’s soundness.

4.1 Query Conditions

A query conditionis a conditional program expression that can be
expressed as part of an explicit query and evaluated by a database.
Not all program conditions are query conditions. For example,
if a program condition contains an operation that the database
cannot evaluate (e.g., a test for the presence of a local file), then
the program condition cannot be expressed in a query. Thus, the
database must be able to evaluate all operations that appear in the
condition. The database evaluation should produce the same result
as program evaluation.

Databases typically only allow conditions that operate on indi-
vidual records of a collection; for example, theselect operator in
relational algebra evaluates a condition separately for each tuple in
a relation. A program condition can introduce a relation between
two different collection elements through either: 1) a loop-carried
dependence [1] or 2) multiple iterations over the same collection.

If a program condition contains a loop-carried dependence, then
that condition depends upon two values from the same collection
and is therefore not a query condition. A loop-carried dependence
occurs when the evaluation of an expression in a loop depends
upon variables assigned in previous iterations of a loop. Figure 8
(a) and (b) contain examples, where the notationC[l] means that
conditionC can depend upon variablel . The condition in (a) is a
query condition becausex is redefined in each iteration of the loop.
The condition in (b) is not becausex has a loop-carried dependence.

Aggregations (counts or sums) necessarily involve a loop-
carried dependence; however, these aggregations are typically not
used in conditions inside the loop. Note that the current analy-
sis does not convert aggregations into queries, but leaves them as
procedural code.

If a program condition depends on loop variables from different
iterations of the same collection, then it is not a query condition.
If a program condition depends only on the loop variable for the
iteration in which the condition appears, then that condition’s paths
are distinct. Both conditions of example (c) have distinct paths
and are query conditions. Condition C2 of example (d) is not a
query condition, because it depends on a loop variable bound in
a different iteration. Note that the subset of OQL the analysis
employs can return only one collection for pathp, so the conditions
from example (b) would be merged in the query asC1∨C2.

The requirements that a query condition contain distinct paths
and be free of loop-carried dependences means that query condi-
tions can refer to no more than one element from a given collection.
These requirements are related to the requirements for parallelizing
code in a parallelizing compiler [1, 33].

for l1 in p
x := E[l1]
if C[l1,x] then S

for l1 in p
x := E[l1] + x
if C[l1,x] then S

(a)C is a query condition (b)C is not a query condition

for l1 in p
if C1[l1] then S1

for l2 in p
if C2[l2] then S2

for l1 in p
if C1[l1] then

x := e[l1]
for l2 in p

if C2[l2,x] then S

(c) C1,2 are query conditions (d)C2 is not a query condition

for l1 in p
for l2 in l1.f

if C[l1,l2] then S

for l1 in p1

for l2 in p2

if C[l1,l2] then S

(e)C is a query condition (f)C is not a query condition

Figure 8. Examples of conditions and iterations.

A query condition may contain paths that refer to elements
of more than one collection. However, those elements must be
structurally related in the database, because the analysis creates
a query whose structure mirrors the database. Thus a program
condition that appears in a nested iteration is a query condition
only if each nested loop iterates over a path that extends the path
of its outer loop(s). Example (e) is a query condition because the
expression depends only on paths that satisfy this requirement.
Example (f) is not a query condition because the inner loop does
not extend the path of the outer loop.

Although these requirements restrict the program conditions
that may characterize data traversals, we believe these restrictions
support common programming idioms used in data-intensive ap-
plications. A more powerful query translation could support even
more complex conditions.

4.2 Data Dependences

A program’s data dependences [1] provide information about which
persistent values the program must retrieve. If a persistent value
affects the contents of the final store, the program must retrieve that
value. Assignment statements introduce data dependences, because
any assigned value may affect the contents of the final store. Loop
variables, however, do not directly induce a data dependence on
the final store, because these variables are removed from the store
after the loop terminates. Program conditions also do not introduce
data dependence, because conditional expressions cannot modify
the store. We extend our analysis to collect information about which
paths induce data dependences. The query creation algorithm in
Section 5 uses this information to ensure retrieval of all values
represented by data-dependent paths.

4.3 Domains for Paths with Conditions

A conditional pathp[k] represents a query of the database for
values located at pathp for which the conditionk is true. The
condition is expressed as an operation on abstract values, including
other paths. The domain of abstract values is extended to include
conditions:

k ∈ Condition ::= opt
n(v̂1, . . . , v̂n)

cp ∈ CPath ::= p[k] | p[k]↓

v̂ ∈ V̂ alue ::= ℘(CPath) + ℘(Condition) +>

e contains no loop-carried dependences
k, I ` 〈e, σ̂〉→̂〈v̂, πe〉

Distinct(Paths(v̂)) Trim(Paths(v̂)) ⊆ I
(k ∧ v̂), I ` 〈c1, σ̂〉→̂〈σ̂1, π1〉

(k ∧ ¬v̂), I ` 〈c2, σ̂〉→̂〈σ̂2, π2〉
π′ = πe t π1 t π2

k, I ` 〈if e then c1 else c2, σ̂〉→̂〈σ̂1 t σ̂2, π
′〉 (K-I F1)

K-I F1 does not apply
k, I ` 〈c1, σ̂〉→̂〈σ̂1, π1〉
k, I ` 〈c2, σ̂〉→̂〈σ̂2, π2〉

π′ = πe t π1 t π2

k, I ` 〈if e then c1 else c2, σ̂〉→̂〈σ̂1 t σ̂2, π
′〉 (K-I F2)

k, I ` 〈e, σ̂〉→̂〈v̂, π〉
k, I ` 〈l:=e, σ̂〉→̂〈[l 7→ v̂] t σ̂, π↓ t I|I|[k]↓〉 (K-A SSIGN)

∀p1, p2 ∈ π : Erase(p1) = Erase(p2) ⇒ p1 = p2

Distinct(π)

Erase(f̄1.ι
l1 . · · · .ιln .f̄n+1) = f̄1. · · · .f̄n+1

Trim(π) = {p.ιl | p.ιl.f̄ ∈ π}
Paths(π) = π

Paths(opn(v̂1, . . . , v̂n)) = Paths(v̂1) t · · · t Paths(v̂n)

k, I ` 〈e, σ̂〉→̂〈πe, π〉
πf =

(
> f t ∈ πe

{p.f t[k] | p ∈ πe} f t 6∈ πe

k, I ` 〈e.f t, σ̂〉→̂〈πf , π t πf 〉
(K-TRAVERSE)

k, I ` 〈ei, σ̂〉→̂〈v̂i, πi〉 for i ∈ {1, . . . , n}
v̂ =

(
> opt

n ∈ v̂i

opt
n(v̂1, . . . , v̂n) opt

n /∈ v̂i

k, I ` 〈opt
n(e1, . . . , en), σ̂〉→̂〈v̂,

F
πi〉 (K-OP)

k, I ` 〈e, σ̂〉→̂〈πe, π〉
πι = {p.ιl | p ∈ πe}
I ′ = Extend(I, πι)

(σ̂′, π′) =
F{(do〈k, I ′, c, l, πι〉)n(σ̂, ∅) | n ∈ N}

k, I ` 〈for l in e do c, σ̂〉→̂〈σ̂′\l, π t πι t π′〉 (K-FOR)

k, I ` 〈c, [l 7→ πι] t σ̂〉→̂〈σ̂′, π′〉
do〈k, I, c, l, πι〉(σ̂, π) = (σ̂′, π t π′)

(K-DO)

Extend(I, πι) =

8
><
>:

πι |I| = 0

I, πι Prefixes(I|I|, πι)

I otherwise

∀p2 ∈ π2 : (∃p1 ∈ π1,∃p′ ∈ Field∗ : p1.p
′ = p2)

Prefixes(π1, π2)

Figure 9. Abstract interpretation with paths and conditions.

A path markedp[k]↓ is involved in a data dependence. A non-
conditional pathp is lifted to a conditional pathp[true] signifying
that the path is always traversed. The labelt on an operator is
analogous to field labels in Section 3.1. Conditions are restricted
to include only one occurrence of a labeled operator, allowing the
domainCPath to be finite.

4.4 Abstract Semantics for Conditional Traversals

Figure 9 extends the abstract semantics to include the condition
under which a program traverses a path. The evaluation relation
k, I ` 〈e, σ̂〉→̂〈v̂, π〉 now carries a context that consists of the
conditionk under which traversals may take place and thecollec-
tion traversal listI. This list represents the nesting structure of col-
lection traversals and is used to identify query conditions. The first
element of the list is the set of paths for the outermost loop variable,
and the last element is the set of paths for the innermost (current)
loop variable. If listI has length|I|, thenI|I| denotes the innermost
loop variable paths. Initiallyk is set totrue, andI is empty.

Our discussion of the extended semantics highlights the addi-
tions necessary to identify and attach query conditions, according
to the requirements described in Sections 4.1 and 4.2. These ad-
ditions generally either use or modify the context. We omit rules
K-VAR, K-SKIP, andK-SEQ because these rules only collect the
results of subcomputation and do not directly alter the context.

RuleK-I F1 identifies query conditions. The analysis first deter-
mines thate contains no loop-carried dependences. This determi-
nation is the result of a standard analysis; for brevity, we omit its
details.

The premiseDistinct(Paths(v̂)) ensures that all the paths in
the condition’s abstract value aredistinct, in the sense that they

do not traverse the same set of fields with different iteration field
names.

The analysis also checks that all the paths used in the expres-
sion are based on lexically enclosing iteration paths. The function
Trim applied to a set of pathsπ returns all possible paths for the
inner-most loop variable. Thus, the premiseTrim(Paths(v̂)) ⊆ I
ensures that any iteration paths that appear in the condition’s ab-
stract value are based on lexically enclosing iteration paths.

The lexically enclosing iterations needed byK-I F1 are created
by K-FOR. The rule appends a new set of pathsπι to the list of
iteration pathsI only if all paths inπι extend some path inI|I|, the
list’s most recently added member. In this way,K-FOR maintains
the constraint thatI is a list of lexically enclosing iteration paths.
Other than imposing this constraint onI, K-FOR is the same as
A-FOR (Fig. 7).

Query conditions are used in the true and false branches of the
if command. Given the abstract valuev̂ of conditione, the true-
branch body is evaluated under the conditionk ∧ v̂ and the false-
branch body under the conditionk∧¬v̂. When the program makes
a traversal, ruleK-TRAVERSE attaches the conditionk to the path
generated by the traversal.

If the condition does not satisfy the requirements of a query
condition, ruleK-I F2 does not augment the paths with conditions.

RuleK-A SSIGNperforms assignments but also marks all paths
in the bound expression as having data dependences.π↓ means
the marking of all paths inπ with ↓, andI|I|[k]↓ means marking
all paths inI|I| with conditionk and ↓. The loop variable paths
themselves are marked as a data dependence because the execution
of any assignment can depend upon theexistenceof an element
in an iteration, even if no fields of the loop variable are used. For

example, in the programfor x in p do y := y + 1, the variable
x is never used, yet there is still a data dependence upon it because
its elements must be enumerated.

RuleK-OP defines the semantics of operations on abstract val-
ues. The operands are evaluated and the operator is retained in the
result. The rule also includes a widening clause to ensure conver-
gence to a fixed-point. The rule is similar to the one for traversals:
If the syntactic use of the operatoropn already occurs in somêvi,
then the expression evaluates to>.

The abstract evaluation of our running example generates a final
store with the following mappings:

root 7→ {ε},
output 7→ {print(employees.ιe.name[k]+

employees.ιe.manager.name[k])}

and the following set of paths:

{ ε, employees, employees.ιe, employees.ιe.salary,
employees.ιe.name[k], employees.ιe.manager[k],
employees.ιe.manager.name[k], employees.ιe[k]↓,
employees.ιe.name[k]↓, employees.ιe.manager[k]↓,
employees.ιe.manager.name[k]↓ }

wherek is {employees.ιe.salary} > 65000.
At this stage of the analysis, the conditions apply to the final

attributes loaded by a path. In Section 5 we further analyze the
conditions and paths to avoid loading entire records.

4.5 Soundness

Proceeding as before, we define the load operation for conditional
paths and define the relations between concrete and abstract do-
mains. We then prove that evaluation preserves these relations. This
proof relies on the previous soundness proof (Section 3.3).

The load operation for conditional paths is defined in Fig. 10.
FunctionCLoad i loads all records reachable by a pathp, provided
the path’s conditionk may betrue. A mappingφ binds an iterator
field name to a specific record identifier, to be referenced in the
evaluation of the path’s condition.CLoad1 creates iterator field
name bindings, andCLoad2 uses the bindings.

Functioneval defines condition evaluation. Operator evaluation
callseval on the operands and appliesf ′opn

to the results, where

f ′opn
(v̂1, . . . , v̂n) =

(
> > ∈ {v̂1, . . . , v̂n}
fopn

(v̂1, . . . , v̂n) otherwise

Note that because the underlying operators are monotonic, all func-
tionsf ′ are also monotonic.

Path evaluation callsCLoad2 on the path, passing bindingsφ
for any iterator field names that appear in the path. Note that, be-
cause the evaluated path can appear only in an operation expres-
sion, the result of path evaluation must be a set that contains a sin-
gle basic value. The least upper bound operation (

F
) retrieves this

value from the set. Evaluating a set of abstract values yields the
least upper bound of evaluating each value in the set.

A setπ of conditional paths safely approximates the persistent
values a program loads if it describes a superset of those values.
We modify the definitions ofR to relate concrete values and
conditional paths:

CLoad i(r, ε[k], φ) =

(
{r} true v eval(k, φ)

∅ otherwise

CLoad i(r, f.p[k], φ) =
[

r′∈Load(r,f)

CLoad i(r
′, p[k], φ)

CLoad1(r, ι
l.p[k], φ) = CLoad1(r, p[k], [ιl 7→ r]φ)

CLoad2(r, ι
l.p[k], φ) = CLoad2(φ(ιl), p[k], φ)

eval(p[k], φ) =
G

CLoad2(r0, p[k], φ)

eval(opn(v̂1 . . . v̂n), φ) = f ′opn
(eval(v̂i, φ), . . . , eval(v̂n, φ))

eval(S, φ) =
G

v̂∈S

eval(v̂, φ)

Figure 10. Conditional record loading.

ρR π ⇔ ρ ⊆
[

p[k]∈π

CLoad1(r0, p[k], ∅)

(v, σ)R v̂ ⇔

8
>>><
>>>:

{v} R v̂ v = r, v̂ = π

v R v̂ v = {r1, ..., rn}, v̂ = π

v v eval(v̂, φσ) v ∈ Basic, v̂ = k

v̂ = > otherwise

σ R σ̂ ⇔ ∀x ∈ Dom(σ) ∩Dom(σ̂).(σ[x], σ)R σ̂[x]

The relation between concrete and abstract values is defined
only in the context of a store, because the store provides a binding
for any iterator field names that may appear in paths and conditions.
Whenv̂ is an abstract operation, evaluatingv̂ must approximatev.
If L is the set of loop variables that appear in the entire program,
φσ =

S
l∈L[ιl 7→ σ[l]], whereσ[l] = > if σ[l] is undefined.

To prove soundness, we first show that expression evaluation
gives the same results as the analysis in Section 3.3,assuming that
evaluating every path condition may give the value true. We then
show that the analysis only constructs conditions that satisfy this
assumption. Proof of soundness for command evaluation follows
trivially.

Lemma 1 (Subcomputation compatibility). If (ρ1 R π1) and
(ρ2 R π2), then(ρ1 ∪ ρ2)R (π1 t π2).

Proof. If π1 t π2 = >, then the relation trivially holds. Otherwise,
by the definition ofR , ρ1 ⊆

S
p[k]∈π1

CLoad1(r0, p[k], ∅) and
ρ2 ⊆ S

p[k]∈π2
CLoad1(r0, p[k], ∅). Assuming all conditionsk

may be true,ρ1 ∪ ρ2 ⊆
S

p[k]∈π1∪π2
CLoad1(r0, p[k], ∅), so the

relation holds.

Theorem 3 (Soundness of expression evaluation).For all e, σ, σ̂, k:

〈e, σ〉 → 〈v, ρ〉 k, I ` 〈e, σ̂〉→̂〈v̂, π〉
σ R σ̂ true v eval(k, φσ)

((v, σ), ρ)R (v̂, π)

Proof. By induction on the structure ofe.

Base casee ≡ [[l]] In this case,(v, ρ) = (σ[l], ∅) and (v̂, π) =
(σ̂[l], ∅) The premiseσ R σ̂ gives the desired result.

The induction hypothesis asserts that evaluating subexpressions
under conditionk produces sound results. It remains to show that

evaluating operators and traversals under conditionk produces
sound results.

Casee ≡ [[opt
n(e1 . . . en)]] If the abstract semantics givesv̂ = >

for e, then this case is trivially proved. Otherwise, it must be
shown that if, for eachei, the concrete semantics gives(vi, ρi)
and the abstract semantics gives(v̂i, πi), then:

fopn
(v1, . . . , vn) = f ′opn

(v1, . . . , vn)
v

eval(opn(v̂1, . . . , v̂n), φσ) = f ′opn
(eval(v̂i, φσ), . . . , eval(v̂n, φσ))

Becausef ′ is monotonic, it suffices to show that if(vi, σ)R v̂i,
thenvi v eval(v̂i, φσ). If vi is a basic value, then the definition
of R suffices. It remains to be shown that ifvi is a record
identifier,

vi v
G

p[k]∈v̂i

nG
CLoad2(r0, p[k], φσ)

o

Becausevi R v̂i, there exists some pathsπ′ ⊆ v̂i such that
vi ∈ CLoad1(r0, p

′, ∅), where p′ ∈ π′. Calling CLoad1

on these paths generates of set of iterator field bindingsΦ
that includesφσ; thereforer ∈ S

p[k]∈v̂ CLoad2(r0, p[k], φσ).
Hence, the desired result that evaluating all paths inv̂i with
bindingsφσ approximatesr. Lemma 1 gives

S
ρi R

F
πi.

Casee ≡ [[e.f t]] RulesU-TRAVERSE and K-TRAVERSE and the
induction hypothesis give(r, ρe)R (πe, π) for the subex-
pressione. For the entire expression, the rules giveρf =
Load(r, f), πf = {p.f t[k] | p ∈ πe}. If true v eval(k, φσ),
thenπf = {p.f t | p ∈ πe}. Section 3.3 proved soundness for
this case. Lemma 1 gives(ρe ∪ ρf)R (π t πf).

Theorem 4 (Condition evaluation approximatestrue). For all
σ, σ̂, conditionsk produced by the analysis:

σ R σ̂

true v eval(k, φσ)

Proof. By induction on the structure ofk.

Base casek = true Trivial, becauseeval(true,) = true.

The induction hypothesis asserts that evaluating subconditions
approximatestrue. It remains to prove the theorem for any condi-
tion k′ the analysis creates.

Casek′ ≡ [[k ∧ v̂]], v̂ is a query condition In this case, the analy-
sis attachesk′ to all paths generated by the true-branch of anif.
So, it must be shown:

〈e, σ〉 → 〈true, ρ〉 k, I ` 〈e, σ̂〉→̂〈v̂, π〉 σ R σ̂

true v eval(k ∧ v̂, φσ)

The induction hypothesis statestrue v eval(k, φσ), so it re-
mains to showtrue v eval(v̂, φσ). The induction hypoth-
esis also enables the invocation of Theorem 3, which gives
(true, σ)R v̂ which is defined to meantrue v eval(v̂, φσ).

Casek′ ≡ [[k ∧ ¬v̂]], v̂ is a query condition In this case, the anal-
ysis attachesk′ to all paths generated by the false-branch of an
if. So, it must be shown:

〈e, σ〉 → 〈false, ρ〉 k, I ` 〈e, σ̂〉→̂〈v̂, π〉 σ R σ̂

true v eval(k ∧ ¬v̂, φσ)

employees

salary

ι
e[k]↓

k ={employees.ιe.salary} > 65000

manager↓

name↓

name↓

Figure 11. Example query tree, with promoted conditions.

Proceeding as above, Theorem 3 givesfalse v eval(v̂, φσ).
Sincef ′¬ is monotonic,true v ¬eval(v̂, φσ). A simple analy-
sis on the domain off ′¬ gives¬eval(v̂, φ) = eval(¬v̂, φ), and
the desired conclusion is reached.

Theorem 5 (Soundness of command evaluation).For all σ, σ̂, c:

〈c, σ〉 → 〈σ′, ρ〉 k, I ` 〈c, σ̂〉→̂〈σ̂′, π〉 σ R σ̂

(σ′, ρ)R (σ̂′, π)

Proof. Note that the transfer functions of this extended semantics
are also monotonic. Thus the proof of soundness for commands
is similar to that of Theorem 2, with appropriate applications of
Theorems 3 and 4.

5. Query Creation and Program Simplification
The results of static analysis can now be employed to partition the
original program into a query and its client. The query retrieves
a subset of the database on which the client program executes.
In some cases, the client program may be simplified by removing
conditional tests that become redundant when executed on the data
subset.

5.1 Query Creation

Query creation proceeds as a depth-first traversal of a program’s
query tree—the result of combining all paths discovered by the
program’s query extraction analysis. If two paths differ only in their
conditions, the combined path contains the disjunction of the two
conditions; the disjunction representsall possible conditions under
which the program could traverse that path. If a data dependence
marks at least one of two otherwise identical paths, the combined
path preserves the data dependence. The preservation indicates that
someprogram traversal of this path induces a data dependence.

The concretization of a query tree corresponds to running a
query against a database. In its current form, the conditions are
associated with the use of individual attributes, yet conditionally
loading an attribute is not nearly as useful as conditionally load-
ing an entire record. To avoid loading records, the conditions on
individual attributes arepromotedto apply to iteration fields.

We provide an informal argument, rather than a formal proof,
for the validity of promotion. Condition promotion depends on
the connection between individual attributes and object loading:
An object does not need to be loaded if none of its attributes are
needed and if the object does not affect the final outcome of the
program. Thus the condition for loading an object is the union
(disjunction) of the conditions of all uses of its attributes. In this

way, the conditions on attributes are promoted to be conditions on
elements of a collection. If any of the paths has the conditiontrue,
then all elements of the collection will be loaded.

One important point is the difference between marked and un-
marked paths. A marked pathp[k]↓ is a data dependence of the
final state of the program store. An unmarked path—for example,
a path traversed by a condition—affects only the program’s control
flow. Conditions on marked paths are promoted. Conditions on un-
marked paths are ignored, because these paths do not directly affect
the final store.

Figure 11 contains the query tree for the running example,
after condition promotion. The conditionk was promoted from the
employee’sname, manager, andmanager.name fields to be afilter
on the elements of collectionemployees. The implicit condition
true on the employee’sname field was not promoted, because
traversing that field does not induce a data dependence.

An explicit query is expressed in a variant of the Object Query
Language (OQL) [8]. The syntax is:

q ::= struct (f1= q1 ,. . . ,fn= qn)

| select q from q as x where e

| x.f̄

wheref names a record field,̄f is a sequence of field names, and
x is a variable name. We restrict our use of OQL to queries that
return a structural subset of the original database. This mirrors
the capabilities of commercial products like Hibernate and EJB
[22, 28]. Consideration of other query translations is an area for
future research.

Figure 12 builds an explicit query from a set of paths. Function
Q combines paths, promotes conditions, and outputs an explicit
query. The function takes a pathp that represents a common prefix
for a set of suffix pathsπ; it returns a query for the elements
reachable by following each suffix from the given prefix.

In rule Q-PATH, the prefix pathis the query when the suffix
path is empty. Recall that query creation promotes conditions to
be filters on collections; thusQ-PATH ignores conditions. The rule
also ignores data dependence, because this information is used only
for query promotion.

RuleQ-FIELDS handles the case where the suffixes all start with
distinct field namesfi. The query result is astruct where each field
name is bound to a sub-query for that field. Each field name’s query
qi is constructed by appendingfi to the current prefix.

In rule Q-ITER, all suffixes start with an iterator field nameιl,
and the query result selects elements of the collection to whichιl

refers. If the suffixes begin with different iterator field names, each
field name represents a different iteration of the collection. In this
treatment we only consider queries that mirror the structure of the
database, so only one collection can be returned for a given multi-
valued field. Therefore the rule combines queries for multiple iter-
ations.Q-ITER promotes conditions by identifying all suffix paths
marked with a data dependence for whichιl is the last iterator field
name. The rule strips the conditions from these paths and disjoins
them to create theselect statement’swhere clause. Theselect
statement’s subquery is the result of callingQ on the combined set
of stripped paths and remaining pathsπ′.

FunctionT transforms any paths that may appear in a condition.
If a path contains an iterator field nameιl, T removes the prefix that
appears beforeιl. Because this field name must be the last to appear
in a path, it will be properly scoped by theas clause of theselect
query.

FunctionT also expands sets of paths that may appear in opera-
tions. ThereforeT disjoins the cross-product achieved by applying
the operation to each possible combination of operands.

Q(p[k]↓, {ε}) = Q(p[k], {ε}) = p (Q-PATH)

π\ε = f1.π1 ∪ · · · ∪ fn.πn fi distinct
qi = Q(p.fi, πi))

Q(p, π) = struct (f1 = q1, . . . , fn = qn)
(Q-FIELDS)

π = ι.π′ ∪ {ιl.f̄1[k1]
↓, . . . , ιl.f̄n[kn]↓} f̄ [k]↓ /∈ π′

q = Q(ιl, π′ ∪ {f̄1, . . . , f̄n})
c = T (k1) ∨ · · · ∨ T (kn)

Q(p, π) = select q from p as l where c
(Q-ITER)

T (π) = {ιl.f̄ | p.ιl.f̄ ∈ π}
T (opn(e1, . . . , en)) =

W{opn(e′1, . . . , e
′
n) | e′i ∈ T (ei)}

Figure 12. Transforming conditional path sets to queries

Given a set of conditional pathsπ extracted from a program, the
query forπ is Q(ε, π). For our running example the result is:

select struct (name = e.name, salary = e. salary ,
manager = struct (name = e.manager.name))

from Employee as e
where e. salary > 65000;

5.2 Client and Query Simplification

In the next step of the analysis, the data constraints ensured by the
query are used to simplify the program, and consequently the data
elements in the result of the query. If the program tests a property
of the data which is guaranteed by the query, the program test can
be removed. Any data that is only used in such tests can then be
removed from the query results.

The following two rules are used to simplify the client program:

Γ ` v̂(e)

Γ ` 〈e〉 → true

Γ ` ¬v̂(e)

Γ ` 〈e〉 → false

where the contextΓ is a set of constraints on the persistent data
a query returns. The constraints are obtained by taking the con-
junction of all the query’swhere clause conditions. The term̂v(e)
refers to the abstract value fore produced by the rules of Fig. 9. If a
contextentailsan expression’s abstract value—writtenΓ ` v̂(e)—
then the expression can be re-written astrue. Similarly if the con-
text entails the negation of an expression’s abstract value, the ex-
pression can be re-written asfalse. Entailment can be determined
by a SAT solver. The rules are applied repeatedly until no more re-
ductions are possible. Once the client has been simplified, a further
analysis can remove trivial tests and dead code [39].

The query subsequently can be simplified by applying the anal-
ysis of Fig. 9 to the new client and composing the results with the
original query. The composite query does not retrieve values that
appear only inwhere clauses. The partition for the example pro-
gram in Fig. 1 is:

// define an explicit query
String query =

”select struct (
name = e.name,
manager = struct (name = e.manager.name))

from Employee as e
where e. salary > 65000”;

// execute the query

List result = executeQuery(query);
for (Employee e : result . list ()) {

// no test required : all elements already satisfy
// the condition
print (e.name + ": " + e.manager.name);

}
The functionexecuteQuery queries the database and returns a new
structure that contains only the data retrieved by the query. The
query does not retrieve the employee’s salary, and the program does
not test for that value. Instead, the query retrieves only employees
whose salary is greater than $65,000.

6. Related Work
Our path-based approach is similar to research on approximating
the shape of pointer data structures [17, 19, 40]. However, we limit
ourselves to intraprocedural analysis and focus on the traversal of
read-only data structures, not mutation. Our current representation
of database paths cannot express sophisticated data traversals. For
example, our analysis conservatively represents as> a recursive
traversal of a field from a given root. We could use tree automata
to represent paths, similar to the storeless model of [14], where
the database is the store. In the future, we plan to evaluate these
more sophisticated path representations. A question open for future
study is how the analysis may benefit from a more expressive path
representation, given that few if any existing query languages can
match this expressivity.

Vitenberg et al. describe a path-based abstract interpretation for
predicting the persistent values a program may need [38]. Their ap-
proach supports runtime improvement of transaction lock schedul-
ing. Kvilekval and Singh use shape analysis to dynamically hoard
(prefetch) remote data for mobile clients [24]. Their work reduces
the effect of disconnections in mobile computing environments.
Ours is a fully static approach that supports program transforma-
tion to bulk-load persistent data. Our analysis also differs in that it
identifies traversal conditions.

Neubauer and Theimann partition a sequential program run at
one location into semantically equivalent, independent, distributed
processes [31]. Their approach provides software engineering ben-
efits similar to ours, except for multi-tier applications.

A common technique for integrating programming languages
and databases is to make queries first-class values of a program-
ming language. C# has been extended to incorporate relational
constructs and structured data in middle-tier applications [7]. Willis
et al. propose extensions to Java to support database-style optimiza-
tions for operations on collections of objects [41]. Safe queries de-
scribe queries with classes whose instances are translated into a
form that can be executed on a remote database [11]. Unlike our
proposal, each of these solutions reduce persistent transparency be-
cause they require explicit queries to be written in an extended pro-
gramming language syntax.

The DBPL language [36] and it successor Tycoon [29] explored
optimization of search and bulk operations within the framework
of orthogonal persistence. Tycoon proposed integrating compiler
optimization and database query optimization [18]. Queries that
cross modular boundaries were optimized at runtime by dynamic
compilation [35]. The languages included explicit syntax for writ-
ing queries or bulk operations on either persistent or non-persistent
data.

Several researchers have extended object persistence archi-
tectures to leveragetraversal context—access patterns, including
paths—to dynamically predict database loads and prefetch the pre-
dicted values [6, 21, 23]. Because our work generates queries which
could be used in object persistence architectures, the two tech-
niques could be combined to achieve further performance benefits.

7. Future Work
While the current analysis provides a unique technique for ex-
tracting implicit queries from imperative programs, it contains sev-
eral restrictions, which we hope to remove or diminish with future
work. The imperative language we studied contains no procedures.
We are currently extending the analysis to analyze whole programs
with behavioral methods and recursive procedures.

To transform complete programs, more work is needed to iden-
tify where the analysis should be applied. Currently a new query is
created each time the special variableroot is used. In some cases
it may be more efficient to break a query into parts, so that a result
of one query becomes the root of a nested query. Multiple queries
could also be used to transform programs in which an outer loop
introduces a loop-carried dependence. The expressive power of the
target query language also affects these decisions. Other strategies
for promoting conditions may also be considered.

The current work analyzes only data retrievals. Future work will
extend this analysis to include updates to persistent data. If up-
dates are performed immediately, the resulting aliasing may make
it impossible to define a useful transformation for updates. Alter-
natively, it may be possible to delay the updates until a transaction
boundary, at which point all database references must be released.

Employing standard static analyses (e.g., range analysis) can
improve the quality of the extracted queries. These analyses should
also allow us to identify and extract aggregation and “exists” sub-
queries.

Key differences between programming languages and database
semantics must be overcome to successfully integrate the two do-
mains. In this paper, we identified two artifacts of the database
domain—the three-valued logic ofnull values and the implicit or-
dering of database sets—that must have appropriate analogues in
the programming languages domain.

Finally, the technique must be applied to realistic programs to
measure the performance of the analysis and effectiveness of the
transformation.

8. Conclusion
We have formalized a new approach for optimizing transparent per-
sistence. This approach extracts a query from an imperative pro-
gram, then simplifies the program to operate over the bulk-load
query results. This technique promises to combine the software en-
gineering benefits of transparent persistence with the performance
benefits of query optimization. We expect the current work to serve
as a useful foundation for ongoing research into the long-standing
effort to integrate programming languages and databases.

Acknowledgments
We thank Jens Palsberg for advice on appropriate formalisms. We
thank Calvin Lin for helpful discussions. We thank David Schmidt,
Kathryn McKinley, Jayadev Misra, Mike Bond, Ben Hardekopf,
Ali Ibrahim, David Kitchin, and the anonymous ICALP 2006 and
POPL 2007 reviewers for helpful comments on the paper.

References
[1] J. R. Allen and K. Kennedy. Automatic loop interchange. InProc. of

the Symp. on Compiler Construction (CC), pages 233–246, 1984.

[2] M. P. Atkinson. Programming languages and databases. InProc. of
the Intl. Conf. on Very Large Data Bases (VLDB), pages 408–419.
IEEE Computer Society, 1978.

[3] M. P. Atkinson, L. Dayǹes, M. J. Jordan, T. Printezis, and S. Spence.
An orthogonally persistent Java.SIGMOD Rec., 25(4):68–75, 1996.

[4] M. P. Atkinson and R. Morrison. Orthogonally persistent object
systems.VLDB Journal, 4(3):319–401, 1995.

[5] C. Batini, S. Ceri, and S. B. Navathe.Conceptual Database Design -
An Entity-Relationship Approach. Benjamin Cummings, 1992.

[6] P. A. Bernstein, S. Pal, and D. Shutt. Context-based prefetch for
implementing objects on relations. InThe VLDB Journal, pages
327–338, 1999.

[7] G. M. Bierman, E. Meijer, and W. Schulte. The essence of data access
in cω. In Proc. of the European Conference on Object-Oriented
Programming (ECOOP), pages 287–311, 2005.

[8] R. G. G. Cattell, D. K. Barry, M. Berler, J. Eastman, D. Jordan,
C. Russell, O. Schadow, T. Stanienda, and F. Velez, editors.The
Object Data Standard ODMG 3.0. Morgan Kaufmann, January 2000.

[9] S. Chaudhuri. An overview of query optimization in relational
systems. InProc. of Symp. on Principles of Database System (PODS),
pages 34–43, 1998.

[10] P. P. Chen. The entity-relationship model - toward a unified view of
data. ACM Transactions on Database Systems (TODS), 1(1):9–36,
1976.

[11] W. R. Cook and S. Rai. Safe query objects: Statically typed objects
as remotely executable queries. InProc. of the Intl. Conf. on Software
Engineering (ICSE), pages 97–106, 2005.

[12] G. Copeland and D. Maier. Making smalltalk a database system. In
Proceedings of the 1984 ACM SIGMOD international conference on
Management of data, pages 316–325. ACM Press, 1984.

[13] P. Cousot and R. Cousot. Systematic design of program transforma-
tion frameworks by abstract interpretation. InProc. of the ACM Symp.
on Principles of Programming Languages (POPL), pages 178–190,
2002.

[14] A. Deutsch. A storeless model of aliasing and its abstractions using
finiterepresentations of right-regular equivalence relations.Computer
Languages, 1992., Proceedings of the 1992 International Conference
on, pages 2–13, 1992.

[15] O. Deux. The O2 system.Commun. ACM, 34(10):34–48, 1991.

[16] J.-A. Dub, R. Sapir, and P. Purich. Oracle Application Server TopLink
application developers guide, 10g (9.0.4). Oracle Corporation, 2003.

[17] M. Emami, R. Ghiya, and L. J. Hendren. Context-sensitive
interprocedural points-to analysis in the presence of function pointers.
In PLDI ’94: Proceedings of the ACM SIGPLAN 1994 conference on
Programming language design and implementation, pages 242–256,
New York, NY, USA, 1994. ACM Press.

[18] A. Gawecki and F. Matthes. Integrating query and program
optimization using persistent CPS representations. In M. P. Atkinson
and R. Welland, editors,Fully Integrated Data Environments, ESPRIT
Basic Research Series, pages 496–501. Springer Verlag, 2000.

[19] R. Ghiya and L. J. Hendren. Is it a tree, a DAG, or a cyclic graph? a
shape analysis for heap-directed pointers in C. InProc. of the ACM
Symp. on Principles of Programming Languages (POPL), pages
1–15, 1996.

[20] C. Gould, Z. Su, and P. Devanbu. Static checking of dynamically
generated queries in database applications. InProc. of the Intl. Conf.
on Software Engineering (ICSE), pages 645–654, 2004.

[21] W.-S. Han, Y.-S. Moon, and K.-Y. Whang. PrefetchGuide: capturing
navigational access patterns for prefetching in client/server object-
oriented/object-relational dbmss.Information Sciences, 152(1):47–
61, 2003.

[22] Hibernate reference documentation.http://www.hibernate.
org/hib_docs/v3/reference/en/html, May 2005.

[23] A. Ibrahim and W. Cook. Automatic prefetching by traversal
profiling in object persistence architectures. InProc. of the European
Conference on Object-Oriented Programming (ECOOP), 2006.

[24] K. Kvilekval and A. Singh. SPREE: Object prefetching for mobile
computers. InDistributed Objects and Applications (DOA), Oct 2004.

[25] B. Liskov, A. Adya, M. Castro, S. Ghemawat, R. Gruber, U. Mahesh-
wari, A. C. Myers, M. Day, and L. Shrira. Safe and efficient sharing

of persistent objects in Thor. InProceedings of the Intl. Conf. on
Management of Data (SIGMOD), pages 318–329, 1996.

[26] D. Maier. Representing database programs as objects. In F. Bancilhon
and P. Buneman, editors,Advances in Database Programming
Languages, pages 377–386. New York, NY, 1990.

[27] D. Maier, J. Stein, A. Otis, and A. Purdy. Developments of an
object-oriented DBMS. InProc. of ACM Conf. on Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA),
pages 472–482, 1986.

[28] V. Matena and M. Hapner. Enterprise Java Beans Specification 1.0.
Sun Microsystems, 1998.

[29] F. Matthes, G. Schroder, and J. Schmidt. Tycoon: A scalable and
interoperable persistent system environment. In M. Atkinson, editor,
Fully Integrated Data Environments. Springer-Verlag, 1995.

[30] R. Morrison, R. C. H. Connor, G. N. C. Kirby, D. S. Munro, M. P.
Atkinson, Q. I. Cutts, A. L. Brown, and A. Dearle. The Napier88
persistent programming language and environment. In M. P. Atkinson
and R. Welland, editors,Fully Integrated Data Environments, pages
98–154. Springer, 1999.

[31] M. Neubauer and P. Thiemann. From sequential programs to multi-
tier applications by program transformation. InProc. of the ACM
Symp. on Principles of Programming Languages (POPL), pages
221–232, 2005.

[32] B. C. Pierce.Types and Programming Languages. MIT Press, 2002.

[33] T. Rus and E. Van Wyk. A formal approach to parallelizing compilers.
In Proc. of the SIAM Conf. on Parallel Processing for Scientific
Computation, March 14 1997.

[34] C. Russell. Java Data Objects (JDO) Specification JSR-12. Sun
Microsystems, 2003.

[35] J. Schmidt, F. Matthes, and P. Valduriez. Building persistent applica-
tion systems in fully integrated data environments: Modularization,
abstraction and interoperability. InProceedings of Euro-Arch’93
Congress. Springer Verlag, Oct. 1993.

[36] J. W. Schmidt and F. Matthes. The DBPL project: advances in
modular database programming.Inf. Syst., 19(2):121–140, 1994.

[37] R. Software. Whitepaper on the UML and Data Modeling, 2000.

[38] R. Vitenberg, K. Kvilekval, and A. K. Singh. Increasing concurrency
in databases using program analysis. InProc. of the European
Conference on Object-Oriented Programming (ECOOP), pages 341–
363, 2004.

[39] M. N. Wegman and F. K. Zadeck. Constant propagation with
conditional branches.ACM Transactions on Programming Languages
and Systems (TOPLAS), 13(2):181–210, 1991.

[40] R. Wilhelm, S. Sagiv, and T. W. Reps. Shape analysis. In
Computational Complexity, pages 1–17, 2000.

[41] D. Willis, D. J. Pearce, and J. Noble. Efficient object querying
in Java. InProc. of the European Conference on Object-Oriented
Programming (ECOOP), Nantes, France, 2006.

