Extracting Queries by
Static Analysis of
Transparent Persistence

Ben Wiedermann and William R. Cook
The University of Texas at Austin

Databases

Programming Languages

Databases

»

J

Programming Languages

Databases

Print name and manager’s name

T

of every employee
whose salary > $65,000

Programming Languages

Database APIs (JDBC, etc)

Print name and manager’s name

of every employee v
whose salary > $65,000

Transparent Persistence

String query = |"from Employee e
left join fetch |e.manager
where e.salary > 65000
List result session.createQuery(queyy);
for (Employee e : result.list()) {

print (el name +|e.manager.name

}

Query string
Runtime type errors

Hard to paramaterize

vtle dependency

Programmer burden

Programmer burden

1[..
j._ THE UNIVERSITY OF TEXAS AT AUSTIN 6

String query = "from Employee e
left join fetch e.manager
where e.salary > 65000";
List result =gsession.createQuery(query);
for (Employe
print(e.nhame + e.manager.name);

Send to database

1 communication

Optimized search

Good performance

i
j THE UNIVERSITY OF TEXAS AT AUSTIN

Transparent persistence }—

Static typing

Paramaterization

No programmer burden

for (Employee e :|r56t|employees) {

if ge.salary > 65000p {

print (e.name + e.manager.name);
H}

i
j THE UNIVERSITY OF TEXAS AT AUSTIN

Linear search

“Record-at-a-time”

No DB optimzation

Poor performance

O
for (Employee e : root.employees) {

1if (e.salary > 65000) {
print (e.name + e.manager.name);

)

1[..
j._ THE UNIVERSITY OF TEXAS AT AUSTIN 9

Database APlIs

Transparent Persistence

Not true integration
Not type-safe
Burdens programmer

Good performance

Better integration
Type safe
Relieves programmer burden

Poor performance

1[..
j._ THE UNIVERSITY OF TEXAS AT AUSTIN

Query Extraction

® Good performance

&

® Better integration
® Type safe

® Relieves programmer burden

String query = "from Employee e
left join fetch e.manager
where e.salary > 65000";
List result = session.createQuery(query);
for (Employee e : result.list()) {
print(e.name + e.manager.name);

}

Query Extraction

for (Employee e : root.employees) {
1f (e.salary > 65000) {

print (e.name + e.manager.name);

)

i
j THE UNIVERSITY OF TEXAS AT AUSTIN

Approach

® |dentify subset of the database used by program
® Traversals from root define shape of query
® |dentify conditions under which data is used

® Current Assumptions

® | transaction per program

® Query result has same structure as database

i
j THE UNIVERSITY OF TEXAS AT AUSTIN

Object View of Database

employees

i | manager 9 manager
salary name salary name salary
50000| |Adam| {60000 | Bob | |70000

‘ manager

name

Cathy

Object View of Database

employees
manager
manager manager ‘
r r2
salary name salary name salary ™\ name

50000| | Adam | |60000| | Bob | [70000| | Cathy

Retrieve subgraph program requires

Simple Study Language

® Transparent persistence
® Access through variable root
® |mperative
® X =y + 2z,
® No database updates
® |teration over persistent collections
® for e 1n root.employees {...}

® No procedures

i
j THE UNIVERSITY OF TEXAS AT AUSTIN

Extracting Traversal
Paths

for (Employee|e ‘rootHemployees»
if de salary 0)

print (le.namef + e manager namej) ;

)

employees employees.l.name
employees.l employees.l.manager
employees.l.salary employees.l.manager.name

L]
j THE UNIVERSITY OF TEXAS AT AUSTIN 18

Abstract Interpretation

e Paths describe data

® Concretization = query execution

e Computes sound over-approximation
® Field traversal generates new path(s)
® Merge conditional branches

® Merge assignments

How Precise Are Paths?

(o)

employees
L

manager

manager

r2

salary salary name

50000 || Adam || |60000||| Bob

70000

manager

Name

Cathy

Need more precise approximation

Include Conditions

for (Employee e : root.employees) {

C=|if (e.salary > 65000)]| {

print (

e.nameq + g€ .manager. name') 7

)

i
j THE UNIVERSITY OF TEXAS AT AUSTIN

21

Query Condition Restrictions

Executable by database
Independent of collection order
Require no sub-select queries

Query results reflect database structure

22

Order Independence

for || inp
x = E[l] + x;
if C[li,x] then §S;

23

No Sub-select Queries

for liinp
if Ci[li] then
x := E[li];
for I2in p
if Cy[l2,x] then S;

Query Results Reflect Structure

for | in py

for |2 in p2
if C[l,]2] then §;

25

Abstract Interpretation

Domain: Path x Condition

Field traversal generates new path(s)
Merge conditional branches

Merge assighments

Attach query conditions to paths

26

Example

for (Employee e : root.employees) {
1if (e.salary > 65000) {
print (e.name + e.manager.name);

H}
employees employees.l.name [C]
employees.l employees.l.manager [C]

employees.l.salary employees.l.manager.name [C]

C = employees.l.salary > 65000

L]
j THE UNIVERSITY OF TEXAS AT AUSTIN 27

Query Creation

struct (employees = (
select struct (salary = e.salary,
name = e.name,
manager = struct(name
e.manager.name))
from employees as e
where e.salary > 65000)

employees employees.l.name [C]
employees.l employees.l.manager [C]

employees.l.salary employees.l.manager.name [C]

C = employees.l.salary > 65000

i
j THE UNIVERSITY OF TEXAS AT AUSTIN

28

Program Creation

gs = “ struct (employees = (
select struct (salary = e.salary,
name = e.name,
manager = struct(name =
e.manager.name))
from employees as e
where e.salary > 65000)";

result = session.executeQuery(gs);

for (Employee e : root.employees) {
if (e.salary > 65000) {

print (e.name + e.manager.name);

+}

L]
j THE UNIVERSITY OF TEXAS AT AUSTIN 29

Program Creation

gs = “ struct (employees = (
select struct (salary = e.salary,
name = e.name,
manager = struct(name =
e.manager.name))
from employees as e
where e.salary > 65000)";

result = session.executeQuery(gs);
for (Employee e : result.employees) {

if (e.salary > 65000) {
print (e.name + e.manager.name);

+}

i
j THE UNIVERSITY OF TEXAS AT AUSTIN 30

Condition Removal

gs = “ struct (employees = (
select struct (salary = e.salary,
name = e.name,
manager = struct(name =

e.Mmanager.name))
from employees as e

where e.salary > 65000)“;

result = session.executeQuery(gs);

for (Employee e : result.employees) {
if (e.salary > 65000)| {
print (e.name + e.manager.name);

+}

i
j THE UNIVERSITY OF TEXAS AT AUSTIN 31

Condition Removal

gs = “ struct (employees = (
select struct (salary = e.salary,
name = e.name,
manager = struct(name =

e.manager.name))
from employees as e

where e.salary > 65000)“;

result = session.executeQuery(gs);

for (Employee e : result.employees) {

print (e.name + e.manager.name);

i
j THE UNIVERSITY OF TEXAS AT AUSTIN 32

Query Simplification

gs = “ struct (employees = (
select struct (jsalary = e.salary,
name = e.name,
manager = struct(name =

e.manager.name))
from employees as e
1 o

where e.salary > 65000)";

result = session.executeQuery(gs);

for (Employee e : result.employees) {

print (e.name + e.manager.name);

i
j THE UNIVERSITY OF TEXAS AT AUSTIN

Query Simplification

gs = “ struct (employees = (
select struct (
name = e.name,
manager = struct(name =

e.Mmanager.name))
from employees as e
1 o

where e.salary > 65000)";

result = session.executeQuery(gs);

for (Employee e : result.employees) {

print (e.name + e.manager.name);

i
j THE UNIVERSITY OF TEXAS AT AUSTIN

Related Work

® Shape Analysis for Data Access
® Vitenberg, Kvilekval, and Singh [ECOOP04]
e Kvilekval and Singh [DOA04

® Queries as First-Class Program Values
® Bierman, Meijer, and Schulte [ECOOPO05]
® Cooper, Lindley,Wadler, and Yallop (Links)
® Cook and Rai [ICSEOS5]
® WWillis, Pearce, and Noble [ECOOP06]

35

i
j THE UNIVERSITY OF TEXAS AT AUS

Future Work

Inter-procedural analysis
Multiple queries
Implementation / evaluation
Persistent update

More expressive queries

TN

36

Databases

»

J

Programming Languages

.
j |, THE UNIVERSITY OF TEXAS AT AUSTIN 38

Query Extraction

