Remote Batch Invocation for SQL Databases

William R. Cook
Department of Computer Science
University of Texas at Austin

wcook@cs.utexas.edu

ABSTRACT

Batch services are a new approach to distributed compuntatio
which clients sendbatchesof operations for execution on a server
and receive hierarchical results sets in response. In gpsmpwe
show how batch services provide a simple and powerful iaterf
to relational databases, with support for arbitrary nesfeeries
and bulk updates. One important property of the system isaha
single batch statement always generates a constant nuf®éio
queries, no matter how many nested loops are used.

1. INTRODUCTION

Batches are a new programming model for efficient access to

distributed services [15, 16]. The key architectural défece from
previous approaches is that batches require clients to callet-

Ben Wiedermann
Department of Computer Science
Harvey Mudd College

benw@cs.hmc.edu

batch statement in lines 2—4 iterates over each remote filpramnts
its name and last-modified date if the file's length exceedseng
length. The block intermingles remote operations (e.gtirgea
remote file’'s name) and local operations (e.g., printing fleés

name). Although this code follows normal syntax and typing-c
ventions, its execution model is radically different fromdimary
sequential execution:

e Remote and local operations are reordered relative to asteamn
duplicating loops and conditionals where necessary, soatha
remote operations are performed in one round trip to theeserv

e The order of local operations is preserved, but the sengafic
remote operations is defined by the server.

Step 1 only succeeds if there are no back and forth interdepen

tions of operationso servers rather than individual messages/methodgencies between local and remote operations, otherwisenpiles

invocations. The collection of operations sent by a cligetrap-
resented ascriptswritten in a domain-specific language designed
specifically to represent batches of related operationth béitches,
conventional wisdom is inverted: fine-grained interfaces en-
couraged, proxies are avoided, serialization is not neetieel key
innovation that makes batches work is a new client-sidedation
model, thebatch statement.

A batch statement specifiesramote rootand a block of state-
ments that can intermingle operations on the remote roobedid
nary local objects. The examples in this paper are writtelabg
a version of Java extended withbatch statement. The following
code fragment prints information about files located on aatem
server:

new TCPClient<File>("74.1.9.14", 1025))

1 batch (File root :
> for (File f : root.listFiles())
3 if (f.length() > 500)
4

System.out.println(f.getName() + ": " + f.lastModified());

The batch statement definesot as arile handle on a remote

error is issued. The compiler then translates the batckretait
to send the remote operations to the server bateh script The
batch script for the example given above produces a tabletwi
columns, labeled ands:

1 for (f : x.listFiles()) /+ generated batch script code
> if (f.length() > 500)

3 A: f.getName()

4 B: f.lastModified()

Details on batch scripts, updated to support databasesa@res
presented in Section 3. The resulting tree is a hierarchgadrds
with tagged values, similar to JISON, XML, or hierarchicdilés.
The remaining client code produced by the compiler, oncedhe
mote operations are removed, is the following:

1 for (r in resultSet) /* generated code/

2 System.out.println(r.get("A") + ": " + r.get("B"));

Note that it does not contain any remote operations. Thehbatc
execution model does not involve the use of proxies or olgiext

server with a given IP address and port number. The body of the gjization. The batch script creates a dynamic Service Fagadhe
This material is based upon work supported by the National Sc S€rver, and the result tree is a dynamically created DatasTea

ence Foundation under Grants #0448128 and #0724979.

2The Jaba compiler allows ther keyword to be used in place of
batch, so that Jaba programs are compatible with Java syntax.

Permission to make digital or hard copies of all or part o twork for
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee. This article was presented at:

DBPL '11.

Copyright 2011.

Object [10]. The end result is a natural fine-grained prognamgy
model that provides easy access to remote services.

Batches generalize the communication model used for ateess
database servers, where a small imperative scripting &geue-
places SQL, and results are hierarchical record sets, noafikes.
Thus it is not surprising that batches can be used to encassic
to relational databases as a special case.

2. BATCHES FOR DATABASE ACCESS
Batches combine the two most important requirements fatdeste

access: a natural programming model and optimized executio

Batches are a natural programming model because they dikntsc

@Entity(name="Products")
class Product {
@Id int ProductID;
String Name;
double UnitPrice;
long UnitsInStock;
@Column(name="CategoryID") Category Category;
@Inverse("Product") Many<Order_Details> Orders;
..}
@Entity(name="Categories")
class Category {
@Id int CategoryID;
String Name;
String Description;
@Inverse("Category") Many<Product> Products;
e}
abstract class Northwind {
Many<Product> Products;
Many<Category> Categories;

Figure 1: Entity-Relationship Modepgblic omitted)

to operate on database objects as if they were in-memorgtsbje
without any need for explicit queries. Database accesshaitthes
is optimized by lifting multiple database operations outtaf pro-
gram as a batch script, which can be optimized for executedren
lational database engine. Achieving these goals requirepgro-
priate implementation of a database-specific batch secdnaec-
tion. We call this implementation Batch2SQL and illustratev a
developer uses Batch2SQL to model relational data and tyites
database queries and modifications. Using batches to aS€iss

interface Many<T> extends Iterable<T> {
int count();
int count (Fun<T, Boolean> f);
double sum(Fun<T, Double> f);
double average(Fun<T, Double> f);
double min(Fun<T, Double> f);
double max(Fun<T, Double> f);
boolean exists();
boolean exists(Fun<T, Boolean> f);
boolean all(Fun<T, Boolean> f);
<P extends Comparable<P>>
Many<T> orderBy(Fun<T, P> f, boolean asc);
Many<T> distinct();
Many<T> first(int n);
<I> Many<I> project(Fun<T,I> f);
<I> Many<Group<I, T>> groupBy(Fun<T, I> f);
T id(Object id);
void insert(@NamedArguments T item);
}
interface Fun<S, T> { T apply(S x); }
interface Group<S, T> { S Key; Many<T> Items; }

Figure 2: Interface for tables and many-valued relatiqushi

2.2 Database Queries

A client queries the database by traversing the interfaassels
defined in the previous section. Behind the scenes, Batch2SQ
converts the database traversals into queries. Some afdinepées
in this section are based on a collection of LINQ [5] queriest t
exhibit—among other capabilities—selection, filteringpjpction,
joining, and aggregation [23].

Each batch block binds its remote root to a Batch2SQL service

is a general programming concept that can be added to any pro-connection, which plugs into the underlying batch archites to
gramming language. The examples given in this paper have bee connect batches to a SQL database. The connection is crasted

written using Jaba, a full implementation of batches forJaith
support for SQL, available at
www.Cs.utexas.edu/~wcook/projects/batches .

2.1 Data Model

Batch2SQL uses the conventional approach to object-oelaiti
(OR) mapping, where a relational database is described bglka p
age of Java classes with annotations to specify tableshuts,
and relationships. Batch2SQL mapping is a simplified versib
the mappings used in the Java Persistence Architecture [18A
Figure 1 gives the classes that describe a subset of thewndh
database [24]. Although it is conventional for tables to benad
using singular nouns, the Northwind database uses pluraésa
The class model corrects this problem by using singulasciames,
with the table names specified Eatity annotations. Thentity,

Id, andColumn attributes are standard as defined in JPA. Column
attributes are omitted if the column name is the same as e Ja
field name. This presentation uses fields rather tettersetter
methods, although Batch2SQL supports both conventions.

As is typical of OR mapping, object references represeidor
key relationships. A one-to-many relationship has twositéich
are declared as fields in the two classes involved in theoakttip.
The single-valued side is an object reference, with a coltepre-
senting a foreign key. For example, tbetegory of a Product is
represented by theategoryID foreign key column in the database
(line 7). ThepProducts field in thecategory class is defined as the
inverseof the category field (line 15). TheProducts field has type
Many<Product> because it is a many-valued field. Tieny inter-
face is defined in Figure 2. The database is represented lasa cl
with one many-valued field for each entity, as illustratedtbg
Northwind class in Figure 1.

follows:

1 String connectionStr = "jdbc:mysql://localhost/Northwind";
> SQLBatch<Northwind> connection

new SQLBatch<Northwind>(Northwind.class,

3 connectionStr);

The classsqLBatch<Northwind> is the connection object that in-
terprets batch scripts as SQL, specialized to operate logédrth-
wind database. The generic parameter is used for type clgcki
while theclass provides reflective access to the class attributes.

Figure 3 compares the LINQ and Batch2SQL versions of a sim-
ple query that selects data, traverses relationshipstsfitesults,
and aggregates a collection by counting. The LINQ versidfiga
ure 3a accesses a (virtual) collection of all products irddtabase
(line 1). A query on this collection (line 2) filters the iter{l;e
4) and then creates an anonymous record of results, camjetime
product name, category name, count of orders, and unit (e
5-8). The second half of the example iterates over the mesfilt
the query to print out results (line 10-13). The programreaet
quired to create the anonymous record structure to coneyeth
sults from the query to the code that uses the results. THiiatt
namesProductName and CategoryName were created to avoid the
name clash that would arise if two fields nameeéle are included
in the result. Such name clashes reduce the modularity afdtie,
because operations on product and categories cannot hedapl
the anonymous record.

By contrast, the Batch2SQL version in Figure 3b containdetba
block that intermingles data retrieval (e.g., of the prddun line
2) with data use (e.qg., printing the results in lines 4—7)e batch
block’s body appears to iterate over the products and priasalt
for each iteration. However, the Batch Java compiler eef®i@n
alternate semantics: It disentangles the query from thel loade

1| List<Product> products = GetProductList();
2| var infos =

3| from p in products

4| where p.UnitsInStock ==

s| select new { ProductName p.Name,

6

7

8

9

CategoryName p.Category.Name,
OrderCount = p.Orders.Count(),
p.UnitPrice };
foreach (var info in infos)
print("{0} in category {1} sold {2} times {3}/unit",

info.0OrderCount,
info.UnitPrice);

() LINQ

batch (Northwind db : connection)
for (Product product : db.Products)
if (product.UnitsInStock == 0)
print("{0} in category {1} sold {2} times {3}/unit",
product.Name, product.Category.Name,
product.Orders.count(),
product.UnitPrice);

N o U A WN e

SELECT T1.Name AS gl, T2.Name AS g2,
(SELECT COUNT(*) FROM Order_Detail T3
WHERE (T3.ProdutID=T1.ProdutID)) AS g4,
T1l.UnitPrice AS g3

FROM Products T1 INNER JOIN Categories T2
ON T2.CategoryID=T1l.CategoryID

WHERE T1.UnitsInStock=0

(b) Batch2SQL, with generated SQL
Figure 3: Simple selection, joining, filtering, and aggrtéya

and arranges for the program to consume the query resulét all
once, at runtime, by transforming the program to execute B SQ
query. The SQL generated by Batch2SQL is given below thehbatc
code in Figure 3b. For convenience, both the LINQ and Java ver
sions are written using a genefeint function modeled on the
standard C#onsole.WriteLine function.

Figure 4 illustrates the commomaster/detailpattern. In the
LINQ version (Figure 4a), the main query selects customers i
Washington state, then constructs an anonymous recordinog
the company name and a nested collection, call@drinfo, with
information on the company’s orders. The results of thigyaee
processed in lines 10-14. Two nested iterations, which @maé a
ogous to the nested collections in the query, print out tiselte.

In LINQ, many small changes to a program require coordinated
changes to two different places in the code. For exampletitd p
additional data, it must be included both in the query anchin t
code that consumes the query results.

In contrast, the Batch2SQL version in Figure 4b iteratesatly
over the customers and orders, printing out results as deddg/
field that is printed or otherwise used in the body of the lo®p i
automaticallyadded to the generated query. The necessary inter-
mediate data structure to transmit the results is also exleat-
tomatically, while it was defined manually in the LINQ vensio

© ® N o U A W N e

info.ProductName, info.CategoryName, 1

=

12
13
14

© ® N o U A W N e

List<Customer> customers = GetCustomerList();
DateTime cutoffDate = new DateTime(1997, 1, 1);
var custInfo =

from ¢ in customers

where c.Region == "WA"

select new { c.CompanyName,

OrderInfo = from o in c.Orders
where o.0rderDate >= cutoffDate
select { o.0rderDate }}

foreach (var c in custInfo) {
print("Customer {0}:", c.CompanyName)
foreach (var o in c.OrderInfo)
print(" {0}", o.0OrderDate);
}

(a) LINQ

Date cutoffDate = Date.valueOf("1997-01-01");
batch (Northwind db : connection)
for (Customer c : db.Customers)
if (c.Region == "WA") {
print("Customer {0}:", c.CompanyName);
for (Order o : c.Orders)
if (o.OrderDate.after(cutoffDate))
print(" {0}", o.OrderDate);

SELECT T1.CompanyName AS g43, T1.CustomerID AS id
FROM Customers T1

WHERE T1.Region="WA"

ORDER BY id ASC

SELECT T3.CustomerID AS parent, T3.0rderDate AS g45
FROM Orders T3 INNER JOIN Customers T4
ON (T4.CustomerID=T3.CustomerID)
WHERE T3.0rderDate>? AND T4.Region="WA"
ORDER BY parent ASC

(b) Batch2SQL, with generated SQL
Figure 4. Master-detail queries

query for each static (syntacti€pr loop in the batch, no matter
how many nested iterations are executed at runtime. Thjzepty
is not shared by LINQ, although it is guaranteed by Ferry.[11]
Figure 5 illustrates the use alynamicqueries in LINQ and
Batch2SQL. A query is dynamic if the structure of the quenr (f
example, the conditions in the where clause) vary at runtiateer
than being static. The example corresponds to the commanofas
generic search criteria on a web page. If the price/namedsisp
fied, then a filter is defined, otherwise the entire test is t@mhitin
LINQ, dynamic queries are created by incremental constnuaif
a query object, as shown in Figure 5a. In Batch2SQL, the syste
identifies that the tests airice andName do not depend upon the
database, so these conditions are evaluated at query waitstr
time, and short circuit evaluation of the operator either omits or
includes the condition on the right side of theexpression.

2.3 Database Modification
Programmers can also use Batch2SQL to express database mod-

Batch2SQL uses two SQL select statements to load the data forifications. Figure 6 shows batch blocks for insertion, bybklate,

the two loops. The first loads all customers in Washingtone Th
second loads all orders in the date range for customers ihifigs
ton. The Batch2SQL runtime automatically reorganizes ¢sellts
of these two queries into a hierarchical record set thatpgar-
ders under each customer. This example illustrates aarfrop-
erty of Batch2SQL: a batch always generates exactly onetsele

and deletion, as well as their generated SQL statements.niite o
the corresponding LINQ versions, since those versionsianiéas
to Batch2SQL.

Line 3 in Figure 6a creates a nervoduct. The programmer
defines the record’s attributes by assigning values to fieldee

1| batch (Northwind db : connection) { 1| batch (Northwind db : connection) 1| void deleteProduct(String name) {
2| Product p = new Product(); 2| for (Product p : db.Products) 2| batch (Northwind db : connection)
3| p.Name = "New Widget"; 3 if (p.Category.Name == "Produce") 3 for (Product p : db.Products)
4| p.UnitPrice = 23.23; 4 p.UnitPrice *= .9; 4 if (p.ProductName == name)
s| print(db.Products.insert(p)); 5 p.delete();
6| } 6}
UPDATE Products T1
INNER JOIN Categories T2
INSERT INTO Products(UnitPrice, Name) ON (T2.CategoryID=T1l.CategoryID) DELETE T1
SELECT 23.23 AS UnitPrice, SET T1.UnitPrice=T1.UnitPrice * 0.9 FROM Products T1
"New Widget" AS Name WHERE (T2.Name="Produce") WHERE (T1.Name=?)
(a) insert (b) bulk update (c) delete
Figure 6: Database modifications
1 vo?d FindProducts(float price, String.name) { e = ¢ literal constant
2| List<Product> products = GetProductList(); | *(E) prhniﬁve operaﬁon
3| if (Price != 0) X . .
4 products = products.Where(p => p.UnitPrice > Price); |z Var!able' Wh.ere is the service root
s| if (Name.Length > 0) | z:=¢e variable assignment
6| products = products.Where(p => p.Name.contains(Name)); | e.f field access
7| products = products.Select(p => p.Name); | ef:=¢e field assignment
8 foregiz (Stz{ng name : products.TolList()) | e.nz(E) method call
N , printiname); | em(@>=¢e) named argument method call
| if ethenecelsee conditional
() LINQ | letz=cine local variable definition
| foro(z:e)e for/comprehension aggregate by
1| void findProducts(float price, String name) { | AT.e first-class function
2| batch (Northwind db : connection) | l:e output result named
3| for (Product product : db.Products) o = ;|+1|x|A|V]|averagg min | max
4 if ((price == 0 || product.UnitPrice > price) _ . _
: = o —|+[~|=[#I<I<[>]2
5 && (name.length() == 0 || product.Name.contains(name))| |substﬂng|contah1s|staHSVWIh|endSVWIh
6 print(product.Name); i) X
A3 x, f,m are variable, field, and method names, respectively

(b) Batch2SQL Figure 7: Batch script syntax.
atc

Figure 5: Dynamic queries

expressions. Theor expression includes a binary operator that is

newly created record (lines 3-4). A call to the remote datalsa ~ USed to aggregate results, and the sequence operatora{gsedist
Products.insert method in line 5 completes the record creation. Of the results. Binary operators (other than min, max, ardage)
The primary key of the newly inserted row is returned. Thiskgo ~ réturn an appropriatenit for iteration over an empty collection.
equally well if the insert is performed inside a loop. ~ We do not give a semantics for the language, because the seman

Batch2SQL programs can perform bulk database updates. Fig-tics is defined by the server that implements a batch ser\itret
ure 6b applies a bulk discount to all the products in a pdeicu this means is that the semantics of batch scripts must béfispec
category, for which Batch2SQL generates a single SQL statem DY a service as part of its interface contract. Differenvises can

Figure 6c illustrates deleting a record from a table. Téete choose to interpret batch scripts in different ways. WHiie tle-
method call is translated to a SQELETE statement. This exam- Sign decision may seem unconventional, including deliiecaan-
ple also demonstrate’s Jaba’s ability to pass query paemethe biguity is @ common practice in language design (e.g. ortlar-o
name of the product to delete is a SQL query parameter, repre-gument evaluation is deliberately undefined in C). Howebatch
sented by. The actual value is passed as an argument to the query. SCripts do take this practice to an extreme. Most servicslefine

Systematic use of query parameters completely prevengsogm- the semantics of batch scripts according to the standarbpeal
bility of SQL query injection attacks. Note that a singlediamay semantics of imperative languages. _

contain multiple operations, including inserts, deletegries, and Not every batch script is legal. In particular, a standargety
updates. system (omitted) identifies type-safe batch scripts, ikeldb a par-

ticular service interface. For clients written in statigayped lan-
guages, the type system of the client language ensuredlthatch

3. BATCHSCRIPTTO SQL TRANSLATION scripts created by a batch block are well typed. Servers rfemep

The abstract syntax of the batch script language is giverign F additional restrictions in batch scripts. For exampley tihray not

ure 7. The language supports primitive data (strings, eredloat- support imperative update of local batch variables. Moisnts
ing point numbers, booleans, dates, durations) and basiatpns will prohibit recursive calls in local batch functions-expressions).
on these types, field access and update, method calls, mutabl Given these two restrictions, all local batch variabhes: expres-
cal variables, iteration/comprehension, functions, asdlt output. sions) can be eliminated from batch scripts by variabletiulisn.

The sequence operator (;) is used to create sequencesgplufck For database services, the semantics of batch scriptses biy

translation to SQL. Defining the full translation is beyohd scope
of this paper, but we will provide an overview of the key steps
Details can be found in the implementation.

1. Removelet expressions, as mentioned above.

2. Convert aggregate methods witlarguments to correspond-
ing for expressions. For example,

db.Products.sum(fun(p) p.inventory)
becomes

for + (p : db.Products) p.inventory

3. Partition the script into query, delete, update, inspdra-
tions. Field assignments are interpreted as SQL UPDATE
expressions.

. Convert field traversals to joins. This requires keepragk
of a tree of joins. Consider an expression of the farm
wheree is an expression representing rows of taléedr is
a single-valued relationship to a taltle The expressioa.r
is converted ta’ and the join fromt to ¢’ onr is added to the
join tree.

5. Nestedfor loops that produce result sets (rather than aggre-
gations) are lifted to be independent of the containfag
loop. If the outer loop is over data items, ..., a,, and each
iterationa; has a corresponding list of itemsi, ..., bim, in
the nested loop, then after lifting the inner loop generates
the nested iterations at once, in the fdrm, ..., bim, , ba1, ...,
b2may s ooy D1y oooy bum, . A parent field representingu; is
created in the nested/lifted loop to connect each row of the
nested loop with a specific iteration in the outer loop. Prope
association of outer and nested loops requires that thesfilte

4. RELATED WORK

Researchers have contributed many approaches that iteteigita-
bases and general-purpose programming languages. Tiuse te
niques differ in how they (a) partition code into database@ient-
side computation, (b) translate from a general-purposeyctoea
database query, and (c) define the semantics of the intemaos-
tween database and client-side computations.

The use of first-class queries in a programming languageds on
common approach to database integration. Some languages us
comprehension syntax [29, 6] (e.g., Staple [22], Hask&I[D9],
Kleisli [31], Links [9], and Hop [27]) while others use SQlké
syntax (e.g., SQLJ [1] and LINQ [3, 5]). As in Batch2SQL, some
expressions in the host programming language can be useditas p
of high-level queries, which are translated to a databaseydan-
guage like SQL. However, the key difference is that Batch2SQ
allows local and remote operations to be intermixed, whil®a
matically partitioning them to create queries and managesttuc-
ture of data that result from the query. Links [9] uses a tgipd-
effect system to determine whether queries can be perfoimtae
database and rejects programs that incorrectly mix quetynan-
query operations, while Batch2SQL uses a simple dataflolysisa
to lift database operations from the program and rejectgrpros
that require more than one round trip to the database setwer.
addition, Links supports full higher-order functional gramming
in the client, while Batch2SQL supports first-order proaedithat
can be inlined into a batch. The question of whether it isdbett
to require programmers to write queries explicitly, or allon-
plicit query operations mixed with other imperative opinas as
in BatchDB, is still open.

Translating high-level queries to SQL is an important topiic
research in its own right. Cooper [8] proves that high-leyeries
without nested many-valued fields can be encoded into aesingl
SQL statement. Batch2SQL improves this result by encoding a
bitrary nested queries in a finite number of SQL statementsyb

and sorting of the outer loop are added to the nested 100p do not provide a formal proof of this property. Ferry [11]atom-

during lifting.

Consider a nested iteration of the fofar (y : T.ry.my) e
wherey is an enclosingor variable,7 is a sequence of field
traversals resulting in an object of typeandm(e) are mod-
ifiers (defined in step 6 below). This query is rewritten as an
iteration overt, where the parent objeatis defined as the
inverseof 7, and the conditions and modifiers:ofire copied

to the new query. This copying explains the inclusion of the
testc.Region "wA" in the subquery in Figure 4b.

6. Convertfor expressions to SQL SELECT expressions. Out-
put expressions in the body of ther become output columns
in the resulting SELECT. If the body is atf expression
with only one branch, it is converted to a WHERE clause.
Otherif expressions are ignored. If the collection contains
orderBy, distinct, first, OF groupBy operations, these are
added to the SELECT query.

piles high-level queries, with nested multi-valued sulesigs, into

a constant number of SQL queries. The main difference betwee
Ferry and Batch2SQL translation schemes is that Ferry usewa
erful algebraic query transformation approach, while Ba&QL
uses local syntactic query transformation. In practiceyFean
produce better queries, but Batch2SQL generates SQL thairs
closely related to the source query. The Ferry translatiagine
could be plugged in as another handler for batch scriptsentday

the Jabaatch statement.

First-class queries place the burden of program partitigpmin
the programmer. In contrast, some systems provafesparentac-
cess to persistent data [25, 2]. In transparent systemsiequae
implicit, data queries are intermingled with data use, ddpro-
grammer need not partition code into queries and clientsnyMa
such systems, including modern object-relational mappetseve
transparency viabject faulting—a runtime mechanism that loads
values from the database on demand [13]. Thord-at-a-time
retrieval behavior limits performance because it inhibitery op-

The number of queries executed is equivalent to the number of timization [21]. Although transparency promotes good \wafe

for expressions in the batch script. After the queries are égdcu

the SQL result sets are merged into a tree of results, usiag th

parent fields to associate nested rows to their containing itematio
For batches that contains multiple insert, delete, updpézee

tions, possibly with a query as well, the operations are @eet

in the following order: select, delete, update, insert.eQaust be

taken in this case to ensure that the operations do noténéevfith

each other in unintended ways. If a more strict semantiosssed,

an error can be signaled in situations where there may beiasnfl

engineering by seamlessly blending the semantics of in-ongm
and persistent operations, it thwarts efficient databasesac For
this reason, modern object-relational mappers [12, 1&radither
object faulting or an explicit query language, which allaWs pro-
grammer to trade transparency for efficiency.

Some systems, including Batch2SQL, seek to provide batisira
parency and efficiency. In our previous work, we developedba p
gram analysis that inferred and generated SQL queries feva J
programs [30]. This technique—callegiery extractior—suffered

from a few drawbacks. Specifically, the compiler was regliie [3] Gavin M. Bierman, Erik Meijer, and Wolfram Schulte. The

infer the scope of a query, and it could not handle data agtjeey Essence of Data Access inuCln The European Conference
or modification. Based on insights from this work, we develbp on Object-Oriented Programming@005.
the generabatchstatement, which explicitly delimits the scope of [4] Phillip Bogle and Barbara Liskov. Reducing cross domain
intermingled local and remote computation [15, 16]. Ba®QR call overhead using batched futuré<M SIGPLAN Notices
comes full circle on this line of research to demonstratelibtches 29(10), 1994.
can provide a more comprehensive integration of programgain- [5] Don Box and Anders Hejlsberg. LINQ: .NET
guages and databases. Language-Integrated Query.

MIDAS transforms a Cobol program that uses the network model msdn.microsoft.com/en-us/library/bb308959, 2007.
to access database values into one that uses declaratatégnal [6] Peter Buneman, Leonid Libkin, Dan Suciu, Val Tannen, and
queries [7]. Like Batch2SQL, MIDAS abstracts a program’s im Limsoon Wong. Comprehension synt&{GMOD Recorgd
plicit data traversals then transforms the program to ebesexplicit 23(1), 1994.

queries. MIDAS detects implicit aggregations; whereasB2a5QL
requires aggregations to be explicit. MIDAS is a complesttic
approach; whereas Batch2SQL combines static and dynaatie te
niques to leverage the genericity of batches.

Queryll uses bytecode rewriting to translate Java code 10[$Q.
Queryll's design goals differ from ours in that we aim to pos/
maximal transparency. Queryll, on the other hand, tradeseso
transparency for ease of query translation.

Thor is an object-oriented database system whose implemen-
tation includes batching optimizations to reduce the systda- (9]
tency overhead [20]. Thorlsatched futurés a runtime mechanism
that delays a program’s retrieval of remote objects ung! pino-
gram requires their values [4Batched control structuresxtend

[7] Yossi Cohen and Yishai A. Feldman. Automatic high-quyali
reengineering of database programs by abstraction,
transformation and reimplementatiokCM Transactions on
Software Engineering and Methodolody2(3), 2003.

[8] Ezra Cooper. The script-writer's dream: How to write @re

SQL in your own language, and be sure it will succeed. In

The ACM SIGMOD Workshop on Database Programming

Languagespages 36-51, 2009.

Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy

Yallop. Links: Web Programming Without Tiers. Trhe

International Symposium on Formal Methods for

Components and Object®006.

this descriptive capability to include loops and conditiphut not [10] Martin Fowler.Patterns of Enterprise Application

method invocations [33].Basic value promiseare analogous to Architecture Adison Wesley, 2003.

Batch2SQL's primitive types, and they permit Thor to delagit [11] Torsten Grust, Manuel Mayr, Jan Rittinger, and Tom
retrieval until the local program needs their values [33hoffs Schreiber. Ferry: database-supported program execiion.
runtime optimizations do not partition intermingled codéeung International Conference on Management of Datages
and Kelly describe a runtime mechanism similar to Thor'st bu 1063-1066, 2009.

which permits more intermingling of client and server cotapu [12] Hibernate reference documentatie@w.hibernate.org.
tions via Remote Method Invocation (RMI) [32]. Their meclsan [13] Antony L. Hosking and J. Eliot B. Moss. Towards

preserves the global order of operations, so there is |legedor Compile-Time Optimisations for Persistence Tine
combining multiple remote calls than in Batch2SQL, whicless International Workshop on Persistent Object Systems
information about dependences to reorder local and rencotgc- September 1990.
tation while preserving the overall program semantics.eD#ys- [14] Galen C. Hunt and Michael L. Scott. The Coign automatic
tems have also been developed that distribute non-datatigse- distributed partitioning system. lfhe USENIX Symposium
server programs while preserving global semantics [2826}, on Operating Systems Design and Implementatl®99.

[15] Ali Ibrahim, Yang Jiao, William R. Cook, and Eli Tilevic
5. CONCLUSION Remote batch invocation for compositional object services

In The European Conference on Object-Oriented

Batch2SQL is a new approach to database integration in which
databases are viewed as instances of a general-purpo$eskatc
vice model. The database structure is reified as a serviedane
that specifies the properties of the data and appropriatatpes
(insert, delete, update). Clients access the service asiregv con- . X
trol structure, aatch block, that intermixes local remote compu- interfaces. IiThe European Conference on Web Services
tations. The batch block is partitioned at compile time iatoatch 2909')
script describing the remote operations, and residuahtciede [17] Ming-Yee lu and Willy Zwaenepoel. Queryll: Java datsba

Programming 2009.

[16] Ali Ibrahim, Yang Jiao, Marc Fisher I, William R. Cook,
and Eli Tilevich. Remote batch invocation for web services:
Document-oriented web services with object-oriented

that uses the results from the server. The batch scriptrislaged queries through bytecode rewriting. Tine

into SQL, with the guarantee that a constant number of SQe-sta ACM/IFIP/USENIX Middleware Conferenc2006.

ments is executed no matter how many nested iterationsnsed i~ [18] Eric Jendrock, Jennifer Ball, Debbie Carson, lan Eyans

block. The result is an effective approach to databaseriatieg. Scott Fordin, and Kim Haase. The Java EE 5 Tutorial. Sun

AcknowledgmentsWe thank our collaborators, Eli Tilevich and Microsystems, 2007.

Ali Ibrahim, for their help in making Batch2SQL possible. [19] Daan Leijen and Erik Meijer. Domain specific embedded
compilers. InThe USENIX Conference on Domain Specific
Languages1999.

6. REFERENCES [20] B. Liskov, A. Adya, M. Castro, S. Ghemawat, R. Gruber,
[1] ANSI/INCITS. Database Languages - SQLJ - Part 1. SQL U. Maheshwari, A. C. Myers, M. Day, and L. Shrira. Safe
Routines using the Java Programming Language. Technical and efficient sharing of persistent objects in ThorThe

Report 331.1-1999, ANSI/INCITS, 1999. ACM SIGMOD International Conference on Management of
[2] M. P. Atkinson and R. Morrison. Orthogonally Persistent Data, 1996.

Object SystemsThe VLDB Journagl4(3), 1995.

[21] David Maier. Representing database programs as ahject Languages, and Application2006.
The ACM SIGMOD Workshop on Database Programming [28] Eli Tilevich and Yannis Smaragdakis. J-Orchestra:
Languages1987. Enhancing Java programs with distribution capabilithSM
[22] David J. McNally.Models for Persistence in Lazy Functional Transactions on Software Engineering and Methodalogy

Programming SystemPBhD thesis, University of St. 19(1), 2009.

Andrews, October 1986. [29] Phil Trinder. Comprehensions, a query notation for RBP
[23] Microsoft. 101 LINQ samples. In The ACM SIGMOD Workshop on Database Programming

msdn.microsoft.com/en-us/vcsharp/aa336746. Languages1992

[24] Microsoft. Northwind sample database.
msdn.microsoft.com/en-us/library/aa276825

[25] J. Eliot B. Moss and T. Hosking. Approaches to Adding
Persistence to Java. Trhe International Workshop on
Persistence and Jayd996.

[26] Matthias Neubauer and Peter Thiemann. Placement
inference for a client-server calculus.lhiternational
Colloquium on Automata, Languages and Programming
(ICALP), pages 75-86, 2008.

[27] Manuel Serrano, Erick Gallesio, and Florian Loitsclep-Ha
language for programming the web 2.0.Tlhe ACM
Conference on Object-Oriented Programming Systems,

[30]

[31]

[32]

[33]

Ben Wiedermann, Ali Ibrahim, and William R. Cook.
Interprocedural query extraction for transparent pezaise.

In The ACM Conference on Object-Oriented Programming
Systems, Languages, and Applicatia2308.

Limsoon Wong. Kleisli, a functional query systedournal

of Functional Programming10(1), 2000.

Kwok Cheung Yeung and Paul H. J. Kelly. Optimising Java
RMI Programs by Communication Restructuring Tine
ACM/IFIP/USENIX Middleware Conferenc2003.

Q. Y. Zondervan. Increasing Cross-Domain Call Batghin
Using Promises and Batched Control Structures. Technical
Report LCS-TR-658, MIT, 1995.

