
Remote Batch Invocation for SQL Databases

William R. Cook
Department of Computer Science

University of Texas at Austin

wcook@cs.utexas.edu

Ben Wiedermann
Department of Computer Science

Harvey Mudd College

benw@cs.hmc.edu

ABSTRACT
Batch services are a new approach to distributed computation in
which clients sendbatchesof operations for execution on a server
and receive hierarchical results sets in response. In this paper we
show how batch services provide a simple and powerful interface
to relational databases, with support for arbitrary nestedqueries
and bulk updates. One important property of the system is that a
single batch statement always generates a constant number of SQL
queries, no matter how many nested loops are used.

1. INTRODUCTION
Batches are a new programming model for efficient access to

distributed services [15, 16]. The key architectural difference from
previous approaches is that batches require clients to sendcollec-
tions of operationsto servers rather than individual messages/method
invocations. The collection of operations sent by a client are rep-
resented asscriptswritten in a domain-specific language designed
specifically to represent batches of related operations. With batches,
conventional wisdom is inverted: fine-grained interfaces are en-
couraged, proxies are avoided, serialization is not needed. The key
innovation that makes batches work is a new client-side invocation
model, thebatch statement.

A batch statement specifies aremote rootand a block of state-
ments that can intermingle operations on the remote root andordi-
nary local objects. The examples in this paper are written inJaba,
a version of Java extended with abatch statement. The following
code fragment prints information about files located on a remote
server:

1 batch (File root : new TCPClient<File>("74.1.9.14", 1025))

2 for (File f : root.listFiles())

3 if (f.length() > 500)

4 System.out.println(f.getName() + ": " + f.lastModified());

The batch statement definesroot as aFile handle on a remote
server with a given IP address and port number. The body of the

1This material is based upon work supported by the National Sci-
ence Foundation under Grants #0448128 and #0724979.
2The Jaba compiler allows thefor keyword to be used in place of
batch, so that Jaba programs are compatible with Java syntax.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. This article was presented at:
DBPL ’11.
Copyright 2011.

batch statement in lines 2–4 iterates over each remote file and prints
its name and last-modified date if the file’s length exceeds a given
length. The block intermingles remote operations (e.g., getting a
remote file’s name) and local operations (e.g., printing thefile’s
name). Although this code follows normal syntax and typing con-
ventions, its execution model is radically different from ordinary
sequential execution:

• Remote and local operations are reordered relative to one another,
duplicating loops and conditionals where necessary, so that all
remote operations are performed in one round trip to the server.

• The order of local operations is preserved, but the semantics of
remote operations is defined by the server.

Step 1 only succeeds if there are no back and forth interdepen-
dencies between local and remote operations, otherwise a compiler
error is issued. The compiler then translates the batch statement
to send the remote operations to the server as abatch script. The
batch script for the example given above produces a table with two
columns, labeledA andB:

1 for (f : *.listFiles()) /* generated batch script code*/
2 if (f.length() > 500)

3 A: f.getName()

4 B: f.lastModified()

Details on batch scripts, updated to support database access, are
presented in Section 3. The resulting tree is a hierarchy of records
with tagged values, similar to JSON, XML, or hierarchical tables.
The remaining client code produced by the compiler, once there-
mote operations are removed, is the following:

1 for (r in resultSet) /* generated code*/
2 System.out.println(r.get("A") + ": " + r.get("B"));

Note that it does not contain any remote operations. The batch
execution model does not involve the use of proxies or objectseri-
alization. The batch script creates a dynamic Service Façade on the
server, and the result tree is a dynamically created Data Transfer
Object [10]. The end result is a natural fine-grained programming
model that provides easy access to remote services.

Batches generalize the communication model used for accessto
database servers, where a small imperative scripting language re-
places SQL, and results are hierarchical record sets, not flat tables.
Thus it is not surprising that batches can be used to encode access
to relational databases as a special case.

2. BATCHES FOR DATABASE ACCESS
Batches combine the two most important requirements for database

access: a natural programming model and optimized execution.
Batches are a natural programming model because they allow clients

1 @Entity(name="Products")

2 class Product {

3 @Id int ProductID;

4 String Name;

5 double UnitPrice;

6 long UnitsInStock;

7 @Column(name="CategoryID") Category Category;

8 @Inverse("Product") Many<Order_Details> Orders;

9 ... }

10 @Entity(name="Categories")

11 class Category {

12 @Id int CategoryID;

13 String Name;

14 String Description;

15 @Inverse("Category") Many<Product> Products;

16 ... }

17 abstract class Northwind {

18 Many<Product> Products;

19 Many<Category> Categories;

20 ... }

Figure 1: Entity-Relationship Model (public omitted)

to operate on database objects as if they were in-memory objects,
without any need for explicit queries. Database access withbatches
is optimized by lifting multiple database operations out ofthe pro-
gram as a batch script, which can be optimized for executed ona re-
lational database engine. Achieving these goals requires an appro-
priate implementation of a database-specific batch serviceconnec-
tion. We call this implementation Batch2SQL and illustratehow a
developer uses Batch2SQL to model relational data and to describe
database queries and modifications. Using batches to accessSQL
is a general programming concept that can be added to any pro-
gramming language. The examples given in this paper have been
written using Jaba, a full implementation of batches for Java with
support for SQL, available at
www.cs.utexas.edu/~wcook/projects/batches .

2.1 Data Model
Batch2SQL uses the conventional approach to object-relational

(OR) mapping, where a relational database is described by a pack-
age of Java classes with annotations to specify tables, attributes,
and relationships. Batch2SQL mapping is a simplified version of
the mappings used in the Java Persistence Architecture (JPA) [18].
Figure 1 gives the classes that describe a subset of the Northwind
database [24]. Although it is conventional for tables to be named
using singular nouns, the Northwind database uses plural names.
The class model corrects this problem by using singular class names,
with the table names specified inEntity annotations. TheEntity,
Id, andColumn attributes are standard as defined in JPA. Column
attributes are omitted if the column name is the same as the Java
field name. This presentation uses fields rather thangetter/setter
methods, although Batch2SQL supports both conventions.

As is typical of OR mapping, object references represent foreign
key relationships. A one-to-many relationship has two sides, which
are declared as fields in the two classes involved in the relationship.
The single-valued side is an object reference, with a columnrepre-
senting a foreign key. For example, theCategory of a Product is
represented by theCategoryID foreign key column in the database
(line 7). TheProducts field in theCategory class is defined as the
inverseof theCategory field (line 15). TheProducts field has type
Many<Product> because it is a many-valued field. TheMany inter-
face is defined in Figure 2. The database is represented by a class
with one many-valued field for each entity, as illustrated bythe
Northwind class in Figure 1.

1 interface Many<T> extends Iterable<T> {

2 int count();

3 int count(Fun<T, Boolean> f);

4 double sum(Fun<T, Double> f);

5 double average(Fun<T, Double> f);

6 double min(Fun<T, Double> f);

7 double max(Fun<T, Double> f);

8 boolean exists();

9 boolean exists(Fun<T, Boolean> f);

10 boolean all(Fun<T, Boolean> f);

11 <P extends Comparable<P>>

12 Many<T> orderBy(Fun<T, P> f, boolean asc);

13 Many<T> distinct();

14 Many<T> first(int n);

15 <I> Many<I> project(Fun<T,I> f);

16 <I> Many<Group<I, T>> groupBy(Fun<T, I> f);

17 T id(Object id);

18 void insert(@NamedArguments T item);

19 }

20 interface Fun<S, T> { T apply(S x); }

21 interface Group<S, T> { S Key; Many<T> Items; }

Figure 2: Interface for tables and many-valued relationships

2.2 Database Queries
A client queries the database by traversing the interface classes

defined in the previous section. Behind the scenes, Batch2SQL
converts the database traversals into queries. Some of the examples
in this section are based on a collection of LINQ [5] queries that
exhibit—among other capabilities—selection, filtering, projection,
joining, and aggregation [23].

Each batch block binds its remote root to a Batch2SQL service
connection, which plugs into the underlying batch architecture to
connect batches to a SQL database. The connection is createdas
follows:

1 String connectionStr = "jdbc:mysql://localhost/Northwind";

2 SQLBatch<Northwind> connection =

3 new SQLBatch<Northwind>(Northwind.class, connectionStr);

The classSQLBatch<Northwind> is the connection object that in-
terprets batch scripts as SQL, specialized to operate over the North-
wind database. The generic parameter is used for type checking,
while theclass provides reflective access to the class attributes.

Figure 3 compares the LINQ and Batch2SQL versions of a sim-
ple query that selects data, traverses relationships, filters results,
and aggregates a collection by counting. The LINQ version inFig-
ure 3a accesses a (virtual) collection of all products in thedatabase
(line 1). A query on this collection (line 2) filters the items(line
4) and then creates an anonymous record of results, containing the
product name, category name, count of orders, and unit price(lines
5–8). The second half of the example iterates over the results of
the query to print out results (line 10–13). The programmer is re-
quired to create the anonymous record structure to convey the re-
sults from the query to the code that uses the results. The artificial
namesProductName and CategoryName were created to avoid the
name clash that would arise if two fields namedName are included
in the result. Such name clashes reduce the modularity of thecode,
because operations on product and categories cannot be applied to
the anonymous record.

By contrast, the Batch2SQL version in Figure 3b contains a batch
block that intermingles data retrieval (e.g., of the products in line
2) with data use (e.g., printing the results in lines 4–7). The batch
block’s body appears to iterate over the products and print aresult
for each iteration. However, the Batch Java compiler enforces an
alternate semantics: It disentangles the query from the local code

1 List<Product> products = GetProductList();

2 var infos =

3 from p in products

4 where p.UnitsInStock == 0

5 select new { ProductName = p.Name,

6 CategoryName = p.Category.Name,

7 OrderCount = p.Orders.Count(),

8 p.UnitPrice };

9 foreach (var info in infos)

10 print("{0} in category {1} sold {2} times {3}/unit",

11 info.ProductName, info.CategoryName,

12 info.OrderCount,

13 info.UnitPrice);

(a) LINQ

1 batch (Northwind db : connection)

2 for (Product product : db.Products)

3 if (product.UnitsInStock == 0)

4 print("{0} in category {1} sold {2} times {3}/unit",

5 product.Name, product.Category.Name,

6 product.Orders.count(),

7 product.UnitPrice);

SELECT T1.Name AS g1, T2.Name AS g2,

(SELECT COUNT(*) FROM Order_Detail T3

WHERE (T3.ProdutID=T1.ProdutID)) AS g4,

T1.UnitPrice AS g3

FROM Products T1 INNER JOIN Categories T2

ON T2.CategoryID=T1.CategoryID

WHERE T1.UnitsInStock=0

(b) Batch2SQL, with generated SQL
Figure 3: Simple selection, joining, filtering, and aggregation.

and arranges for the program to consume the query results allat
once, at runtime, by transforming the program to execute a SQL
query. The SQL generated by Batch2SQL is given below the batch
code in Figure 3b. For convenience, both the LINQ and Java ver-
sions are written using a genericprint function modeled on the
standard C#Console.WriteLine function.

Figure 4 illustrates the commonmaster/detailpattern. In the
LINQ version (Figure 4a), the main query selects customers in
Washington state, then constructs an anonymous record containing
the company name and a nested collection, calledOrderInfo, with
information on the company’s orders. The results of this query are
processed in lines 10–14. Two nested iterations, which are anal-
ogous to the nested collections in the query, print out the results.
In LINQ, many small changes to a program require coordinated
changes to two different places in the code. For example, to print
additional data, it must be included both in the query and in the
code that consumes the query results.

In contrast, the Batch2SQL version in Figure 4b iterates directly
over the customers and orders, printing out results as needed. Any
field that is printed or otherwise used in the body of the loop is
automaticallyadded to the generated query. The necessary inter-
mediate data structure to transmit the results is also created au-
tomatically, while it was defined manually in the LINQ version.
Batch2SQL uses two SQL select statements to load the data for
the two loops. The first loads all customers in Washington. The
second loads all orders in the date range for customers in Washing-
ton. The Batch2SQL runtime automatically reorganizes the results
of these two queries into a hierarchical record set that groups or-
ders under each customer. This example illustrates a critical prop-
erty of Batch2SQL: a batch always generates exactly one select

1 List<Customer> customers = GetCustomerList();

2 DateTime cutoffDate = new DateTime(1997, 1, 1);

3 var custInfo =

4 from c in customers

5 where c.Region == "WA"

6 select new { c.CompanyName,

7 OrderInfo = from o in c.Orders

8 where o.OrderDate >= cutoffDate

9 select { o.OrderDate }}

10 foreach (var c in custInfo) {

11 print("Customer {0}:", c.CompanyName)

12 foreach (var o in c.OrderInfo)

13 print(" {0}", o.OrderDate);

14 }

(a) LINQ

1 Date cutoffDate = Date.valueOf("1997-01-01");

2 batch (Northwind db : connection)

3 for (Customer c : db.Customers)

4 if (c.Region == "WA") {

5 print("Customer {0}:", c.CompanyName);

6 for (Order o : c.Orders)

7 if (o.OrderDate.after(cutoffDate))

8 print(" {0}", o.OrderDate);

9 }

SELECT T1.CompanyName AS g43, T1.CustomerID AS id

FROM Customers T1

WHERE T1.Region="WA"

ORDER BY id ASC

SELECT T3.CustomerID AS parent, T3.OrderDate AS g45

FROM Orders T3 INNER JOIN Customers T4

ON (T4.CustomerID=T3.CustomerID)

WHERE T3.OrderDate>? AND T4.Region="WA"

ORDER BY parent ASC

(b) Batch2SQL, with generated SQL
Figure 4: Master-detail queries

query for each static (syntactic)for loop in the batch, no matter
how many nested iterations are executed at runtime. This property
is not shared by LINQ, although it is guaranteed by Ferry [11].

Figure 5 illustrates the use ofdynamicqueries in LINQ and
Batch2SQL. A query is dynamic if the structure of the query (for
example, the conditions in the where clause) vary at runtime, rather
than being static. The example corresponds to the common case of
generic search criteria on a web page. If the price/name is speci-
fied, then a filter is defined, otherwise the entire test is omitted. In
LINQ, dynamic queries are created by incremental construction of
a query object, as shown in Figure 5a. In Batch2SQL, the system
identifies that the tests onPrice andName do not depend upon the
database, so these conditions are evaluated at query construction
time, and short circuit evaluation of the|| operator either omits or
includes the condition on the right side of the|| expression.

2.3 Database Modification
Programmers can also use Batch2SQL to express database mod-

ifications. Figure 6 shows batch blocks for insertion, bulk update,
and deletion, as well as their generated SQL statements. We omit
the corresponding LINQ versions, since those versions are similar
to Batch2SQL.

Line 3 in Figure 6a creates a newProduct. The programmer
defines the record’s attributes by assigning values to fieldsof the

1 batch (Northwind db : connection) {

2 Product p = new Product();

3 p.Name = "New Widget";

4 p.UnitPrice = 23.23;

5 print(db.Products.insert(p));

6 }

INSERT INTO Products(UnitPrice, Name)

SELECT 23.23 AS UnitPrice,

"New Widget" AS Name

(a) insert

1 batch (Northwind db : connection)

2 for (Product p : db.Products)

3 if (p.Category.Name == "Produce")

4 p.UnitPrice *= .9;

UPDATE Products T1

INNER JOIN Categories T2

ON (T2.CategoryID=T1.CategoryID)

SET T1.UnitPrice=T1.UnitPrice * 0.9

WHERE (T2.Name="Produce")

(b) bulk update

1 void deleteProduct(String name) {

2 batch (Northwind db : connection)

3 for (Product p : db.Products)

4 if (p.ProductName == name)

5 p.delete();

6 }

DELETE T1

FROM Products T1

WHERE (T1.Name=?)

(c) delete
Figure 6: Database modifications

1 void FindProducts(float price, String name) {

2 List<Product> products = GetProductList();

3 if (Price != 0)

4 products = products.Where(p => p.UnitPrice > Price);

5 if (Name.Length > 0)

6 products = products.Where(p => p.Name.contains(Name));

7 products = products.Select(p => p.Name);

8 foreach (String name : products.ToList())

9 print(name);

10 }

(a) LINQ

1 void findProducts(float price, String name) {

2 batch (Northwind db : connection)

3 for (Product product : db.Products)

4 if ((price == 0 || product.UnitPrice > price)

5 && (name.length() == 0 || product.Name.contains(name)))

6 print(product.Name);

7 }

(b) Batch2SQL
Figure 5: Dynamic queries

newly created record (lines 3–4). A call to the remote database’s
Products.insert method in line 5 completes the record creation.
The primary key of the newly inserted row is returned. This works
equally well if the insert is performed inside a loop.

Batch2SQL programs can perform bulk database updates. Fig-
ure 6b applies a bulk discount to all the products in a particular
category, for which Batch2SQL generates a single SQL statement.

Figure 6c illustrates deleting a record from a table. Thedelete

method call is translated to a SQLDELETE statement. This exam-
ple also demonstrate’s Jaba’s ability to pass query parameters. The
name of the product to delete is a SQL query parameter, repre-
sented by?. The actual value is passed as an argument to the query.
Systematic use of query parameters completely prevents thepossi-
bility of SQL query injection attacks. Note that a single batch may
contain multiple operations, including inserts, deletes,queries, and
updates.

3. BATCH SCRIPT TO SQL TRANSLATION
The abstract syntax of the batch script language is given in Fig-

ure 7. The language supports primitive data (strings, integers, float-
ing point numbers, booleans, dates, durations) and basic operations
on these types, field access and update, method calls, mutable lo-
cal variables, iteration/comprehension, functions, and result output.
The sequence operator (;) is used to create sequences (blocks) of

e = c literal constant
| ⋆(e) primitive operation
| x variable, where * is the service root
| x := e variable assignment
| e.f field access
| e.f := e field assignment
| e.m(e) method call
| e.m(x = e) named argument method call
| if e then e else e conditional
| let x = e in e local variable definition
| for ◦ (x : e) e for/comprehension aggregate by◦
| λx.e first-class function
| l : e output result namedl

◦ = ; | + | × | ∧ | ∨ | average| min | max
⋆ = ◦ | − | ÷ | ¬ |= | 6= |< | ≤ |> | ≥

| substring| contains| startswith| endswith
x, f,m are variable, field, and method names, respectively

Figure 7: Batch script syntax.

expressions. Thefor expression includes a binary operator that is
used to aggregate results, and the sequence operator (;) creates a list
of the results. Binary operators (other than min, max, and average)
return an appropriateunit for iteration over an empty collection.

We do not give a semantics for the language, because the seman-
tics is defined by the server that implements a batch service.What
this means is that the semantics of batch scripts must be specified
by a service as part of its interface contract. Different services can
choose to interpret batch scripts in different ways. While this de-
sign decision may seem unconventional, including deliberate am-
biguity is a common practice in language design (e.g. order of ar-
gument evaluation is deliberately undefined in C). However,batch
scripts do take this practice to an extreme. Most services will define
the semantics of batch scripts according to the standard operational
semantics of imperative languages.

Not every batch script is legal. In particular, a standard type
system (omitted) identifies type-safe batch scripts, relative to a par-
ticular service interface. For clients written in statically typed lan-
guages, the type system of the client language ensures that all batch
scripts created by a batch block are well typed. Servers may place
additional restrictions in batch scripts. For example, they may not
support imperative update of local batch variables. Most clients
will prohibit recursive calls in local batch functions (λ-expressions).
Given these two restrictions, all local batch variables (let expres-
sions) can be eliminated from batch scripts by variable substitution.

For database services, the semantics of batch scripts is given by

translation to SQL. Defining the full translation is beyond the scope
of this paper, but we will provide an overview of the key steps.
Details can be found in the implementation.

1. Removelet expressions, as mentioned above.

2. Convert aggregate methods withλ arguments to correspond-
ing for expressions. For example,

db.Products.sum(fun(p) p.inventory)

becomes

for + (p : db.Products) p.inventory

3. Partition the script into query, delete, update, insert opera-
tions. Field assignments are interpreted as SQL UPDATE
expressions.

4. Convert field traversals to joins. This requires keeping track
of a tree of joins. Consider an expression of the forme.r
wheree is an expression representing rows of tablet andr is
a single-valued relationship to a tablet′. The expressione.r
is converted tot′ and the join fromt to t′ onr is added to the
join tree.

5. Nestedfor loops that produce result sets (rather than aggre-
gations) are lifted to be independent of the containingfor

loop. If the outer loop is over data itemsa1, ..., an and each
iterationai has a corresponding list of itemsbi1, ..., bimi

in
the nested loop, then after lifting the inner loop generatesall
the nested iterations at once, in the formb11, ..., b1m1

, b21, ...,

b2m2
, ..., bn1, ..., bnmn

. A parent field representingai is
created in the nested/lifted loop to connect each row of the
nested loop with a specific iteration in the outer loop. Proper
association of outer and nested loops requires that the filters
and sorting of the outer loop are added to the nested loop
during lifting.

Consider a nested iteration of the formfor (y : x.ry.my) e

wherey is an enclosingfor variable,r is a sequence of field
traversals resulting in an object of typeT, andm(e) are mod-
ifiers (defined in step 6 below). This query is rewritten as an
iteration overT, where the parent objectx is defined as the
inverseof r, and the conditions and modifiers ofx are copied
to the new query. This copying explains the inclusion of the
testc.Region == "WA" in the subquery in Figure 4b.

6. Convertfor expressions to SQL SELECT expressions. Out-
put expressions in the body of thefor become output columns
in the resulting SELECT. If the body is anif expression
with only one branch, it is converted to a WHERE clause.
Otherif expressions are ignored. If the collection contains
orderBy, distinct, first, or groupBy operations, these are
added to the SELECT query.

The number of queries executed is equivalent to the number of
for expressions in the batch script. After the queries are executed,
the SQL result sets are merged into a tree of results, using the
parent fields to associate nested rows to their containing iteration.

For batches that contains multiple insert, delete, update opera-
tions, possibly with a query as well, the operations are executed
in the following order: select, delete, update, insert. Care must be
taken in this case to ensure that the operations do not interfere with
each other in unintended ways. If a more strict semantics is desired,
an error can be signaled in situations where there may be conflicts.

4. RELATED WORK
Researchers have contributed many approaches that integrate data-

bases and general-purpose programming languages. These tech-
niques differ in how they (a) partition code into database and client-
side computation, (b) translate from a general-purpose query to a
database query, and (c) define the semantics of the interaction be-
tween database and client-side computations.

The use of first-class queries in a programming language is one
common approach to database integration. Some languages use
comprehension syntax [29, 6] (e.g., Staple [22], Haskell/DB [19],
Kleisli [31], Links [9], and Hop [27]) while others use SQL-like
syntax (e.g., SQLJ [1] and LINQ [3, 5]). As in Batch2SQL, some
expressions in the host programming language can be used as parts
of high-level queries, which are translated to a database query lan-
guage like SQL. However, the key difference is that Batch2SQL
allows local and remote operations to be intermixed, while auto-
matically partitioning them to create queries and manage the struc-
ture of data that result from the query. Links [9] uses a type-and-
effect system to determine whether queries can be performedin the
database and rejects programs that incorrectly mix query and non-
query operations, while Batch2SQL uses a simple dataflow analysis
to lift database operations from the program and rejects programs
that require more than one round trip to the database server.In
addition, Links supports full higher-order functional programming
in the client, while Batch2SQL supports first-order procedures that
can be inlined into a batch. The question of whether it is better
to require programmers to write queries explicitly, or allow im-
plicit query operations mixed with other imperative operations as
in BatchDB, is still open.

Translating high-level queries to SQL is an important topicof
research in its own right. Cooper [8] proves that high-levelqueries
without nested many-valued fields can be encoded into a single
SQL statement. Batch2SQL improves this result by encoding ar-
bitrary nested queries in a finite number of SQL statements, but we
do not provide a formal proof of this property. Ferry [11] also com-
piles high-level queries, with nested multi-valued sub-queries, into
a constant number of SQL queries. The main difference between
Ferry and Batch2SQL translation schemes is that Ferry uses apow-
erful algebraic query transformation approach, while Batch2SQL
uses local syntactic query transformation. In practice Ferry can
produce better queries, but Batch2SQL generates SQL that ismore
closely related to the source query. The Ferry translation engine
could be plugged in as another handler for batch scripts created by
the Jababatch statement.

First-class queries place the burden of program partitioning on
the programmer. In contrast, some systems providetransparentac-
cess to persistent data [25, 2]. In transparent systems, queries are
implicit, data queries are intermingled with data use, and the pro-
grammer need not partition code into queries and clients. Many
such systems, including modern object-relational mappers, achieve
transparency viaobject faulting—a runtime mechanism that loads
values from the database on demand [13]. Thisrecord-at-a-time
retrieval behavior limits performance because it inhibitsquery op-
timization [21]. Although transparency promotes good software
engineering by seamlessly blending the semantics of in-memory
and persistent operations, it thwarts efficient database access. For
this reason, modern object-relational mappers [12, 18] offer either
object faulting or an explicit query language, which allowsthe pro-
grammer to trade transparency for efficiency.

Some systems, including Batch2SQL, seek to provide both trans-
parency and efficiency. In our previous work, we developed a pro-
gram analysis that inferred and generated SQL queries from Java
programs [30]. This technique—calledquery extraction—suffered

from a few drawbacks. Specifically, the compiler was required to
infer the scope of a query, and it could not handle data aggregation
or modification. Based on insights from this work, we developed
the generalbatchstatement, which explicitly delimits the scope of
intermingled local and remote computation [15, 16]. Batch2SQL
comes full circle on this line of research to demonstrate that batches
can provide a more comprehensive integration of programming lan-
guages and databases.

MIDAS transforms a Cobol program that uses the network model
to access database values into one that uses declarative, relational
queries [7]. Like Batch2SQL, MIDAS abstracts a program’s im-
plicit data traversals then transforms the program to execute explicit
queries. MIDAS detects implicit aggregations; whereas Batch2SQL
requires aggregations to be explicit. MIDAS is a completelystatic
approach; whereas Batch2SQL combines static and dynamic tech-
niques to leverage the genericity of batches.

Queryll uses bytecode rewriting to translate Java code to SQL [17].
Queryll’s design goals differ from ours in that we aim to provide
maximal transparency. Queryll, on the other hand, trades some
transparency for ease of query translation.

Thor is an object-oriented database system whose implemen-
tation includes batching optimizations to reduce the system’s la-
tency overhead [20]. Thor’sbatched futureis a runtime mechanism
that delays a program’s retrieval of remote objects until the pro-
gram requires their values [4].Batched control structuresextend
this descriptive capability to include loops and conditions, but not
method invocations [33].Basic value promisesare analogous to
Batch2SQL’s primitive types, and they permit Thor to delay their
retrieval until the local program needs their values [33]. Thor’s
runtime optimizations do not partition intermingled code.Yeung
and Kelly describe a runtime mechanism similar to Thor’s, but
which permits more intermingling of client and server computa-
tions via Remote Method Invocation (RMI) [32]. Their mechanism
preserves the global order of operations, so there is less scope for
combining multiple remote calls than in Batch2SQL, which uses
information about dependences to reorder local and remote compu-
tation while preserving the overall program semantics. Other sys-
tems have also been developed that distribute non-database, client-
server programs while preserving global semantics [28, 14,26].

5. CONCLUSION
Batch2SQL is a new approach to database integration in which

databases are viewed as instances of a general-purpose batch ser-
vice model. The database structure is reified as a service interface
that specifies the properties of the data and appropriate operations
(insert, delete, update). Clients access the service usinga new con-
trol structure, abatch block, that intermixes local remote compu-
tations. The batch block is partitioned at compile time intoa batch
script describing the remote operations, and residual client code
that uses the results from the server. The batch script is translated
into SQL, with the guarantee that a constant number of SQL state-
ments is executed no matter how many nested iterations used in the
block. The result is an effective approach to database integration.

AcknowledgmentsWe thank our collaborators, Eli Tilevich and
Ali Ibrahim, for their help in making Batch2SQL possible.

6. REFERENCES
[1] ANSI/INCITS. Database Languages - SQLJ - Part 1: SQL

Routines using the Java Programming Language. Technical
Report 331.1-1999, ANSI/INCITS, 1999.

[2] M. P. Atkinson and R. Morrison. Orthogonally Persistent
Object Systems.The VLDB Journal, 4(3), 1995.

[3] Gavin M. Bierman, Erik Meijer, and Wolfram Schulte. The
Essence of Data Access in Cω. In The European Conference
on Object-Oriented Programming, 2005.

[4] Phillip Bogle and Barbara Liskov. Reducing cross domain
call overhead using batched futures.ACM SIGPLAN Notices,
29(10), 1994.

[5] Don Box and Anders Hejlsberg. LINQ: .NET
Language-Integrated Query.
msdn.microsoft.com/en-us/library/bb308959, 2007.

[6] Peter Buneman, Leonid Libkin, Dan Suciu, Val Tannen, and
Limsoon Wong. Comprehension syntax.SIGMOD Record,
23(1), 1994.

[7] Yossi Cohen and Yishai A. Feldman. Automatic high-quality
reengineering of database programs by abstraction,
transformation and reimplementation.ACM Transactions on
Software Engineering and Methodology, 12(3), 2003.

[8] Ezra Cooper. The script-writer’s dream: How to write great
SQL in your own language, and be sure it will succeed. In
The ACM SIGMOD Workshop on Database Programming
Languages, pages 36–51, 2009.

[9] Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy
Yallop. Links: Web Programming Without Tiers. InThe
International Symposium on Formal Methods for
Components and Objects, 2006.

[10] Martin Fowler.Patterns of Enterprise Application
Architecture. Adison Wesley, 2003.

[11] Torsten Grust, Manuel Mayr, Jan Rittinger, and Tom
Schreiber. Ferry: database-supported program execution.In
International Conference on Management of Data, pages
1063–1066, 2009.

[12] Hibernate reference documentation.www.hibernate.org.
[13] Antony L. Hosking and J. Eliot B. Moss. Towards

Compile-Time Optimisations for Persistence. InThe
International Workshop on Persistent Object Systems,
September 1990.

[14] Galen C. Hunt and Michael L. Scott. The Coign automatic
distributed partitioning system. InThe USENIX Symposium
on Operating Systems Design and Implementation, 1999.

[15] Ali Ibrahim, Yang Jiao, William R. Cook, and Eli Tilevich.
Remote batch invocation for compositional object services.
In The European Conference on Object-Oriented
Programming, 2009.

[16] Ali Ibrahim, Yang Jiao, Marc Fisher II, William R. Cook,
and Eli Tilevich. Remote batch invocation for web services:
Document-oriented web services with object-oriented
interfaces. InThe European Conference on Web Services,
2009.

[17] Ming-Yee Iu and Willy Zwaenepoel. Queryll: Java database
queries through bytecode rewriting. InThe
ACM/IFIP/USENIX Middleware Conference, 2006.

[18] Eric Jendrock, Jennifer Ball, Debbie Carson, Ian Evans,
Scott Fordin, and Kim Haase. The Java EE 5 Tutorial. Sun
Microsystems, 2007.

[19] Daan Leijen and Erik Meijer. Domain specific embedded
compilers. InThe USENIX Conference on Domain Specific
Languages, 1999.

[20] B. Liskov, A. Adya, M. Castro, S. Ghemawat, R. Gruber,
U. Maheshwari, A. C. Myers, M. Day, and L. Shrira. Safe
and efficient sharing of persistent objects in Thor. InThe
ACM SIGMOD International Conference on Management of
Data, 1996.

[21] David Maier. Representing database programs as objects. In
The ACM SIGMOD Workshop on Database Programming
Languages, 1987.

[22] David J. McNally.Models for Persistence in Lazy Functional
Programming Systems. PhD thesis, University of St.
Andrews, October 1986.

[23] Microsoft. 101 LINQ samples.
msdn.microsoft.com/en-us/vcsharp/aa336746.

[24] Microsoft. Northwind sample database.
msdn.microsoft.com/en-us/library/aa276825.

[25] J. Eliot B. Moss and T. Hosking. Approaches to Adding
Persistence to Java. InThe International Workshop on
Persistence and Java, 1996.

[26] Matthias Neubauer and Peter Thiemann. Placement
inference for a client-server calculus. InInternational
Colloquium on Automata, Languages and Programming
(ICALP), pages 75–86, 2008.

[27] Manuel Serrano, Erick Gallesio, and Florian Loitsch. Hop: a
language for programming the web 2.0. InThe ACM
Conference on Object-Oriented Programming Systems,

Languages, and Applications, 2006.
[28] Eli Tilevich and Yannis Smaragdakis. J-Orchestra:

Enhancing Java programs with distribution capabilities.ACM
Transactions on Software Engineering and Methodology,
19(1), 2009.

[29] Phil Trinder. Comprehensions, a query notation for DBPLs.
In The ACM SIGMOD Workshop on Database Programming
Languages, 1992.

[30] Ben Wiedermann, Ali Ibrahim, and William R. Cook.
Interprocedural query extraction for transparent persistence.
In The ACM Conference on Object-Oriented Programming
Systems, Languages, and Applications, 2008.

[31] Limsoon Wong. Kleisli, a functional query system.Journal
of Functional Programming, 10(1), 2000.

[32] Kwok Cheung Yeung and Paul H. J. Kelly. Optimising Java
RMI Programs by Communication Restructuring. InThe
ACM/IFIP/USENIX Middleware Conference, 2003.

[33] Q. Y. Zondervan. Increasing Cross-Domain Call Batching
Using Promises and Batched Control Structures. Technical
Report LCS-TR-658, MIT, 1995.

