Coordinating Database and
Programming Language Research*

Ali Ibrahim Ben Wiedermann
University of Texas at Austin University of Texas at Austin
aibrahim@cs.utexas.edu ben@cs.utexas.edu

William R. Cook
University of Texas at Austin
wcook@cs.utexas.edu

So the solution’s easy enough; each of us stays put in his or her
corner and takes no notice of the others. You here, you here, and I
there. Like soldiers at our posts. Also, we mustn’t speak. Not one
word. That won’t be difficult; each of us has plenty of material for
self-communings.

— Huis Clos (No Exit) by Jean Paul Sartre

Abstract

In this essay we examine the gap between database and programming
language research and practice. Relational databases and object-oriented
programming have been great success stories over the last 40 years. While
the database community works hard to improve and extend database ca-
pabilities, it does not seem to pay much attention to how databases are
actually used. We still use query languages that were designed for ad-
hoc human queries via unique logins, while many queries are now auto-
matically generated by enterprise applications with sophisticated security
models. Many in the programming language community view relational
databases as a necessary evil that should be papered over, or completely
eliminated if possible. Object-oriented databases, orthogonal persistence,
or just the file system, all have proponents. Industry experiences a con-
stant churn of APIs and tools, with little guidance on what architectures
really work. What is needed is more coordination between database and
programming language researchers, to evaluate complete systems with re-
alistic metrics, not just for performance but also for maintainability.

*This material is based upon work supported by the National Science Foundation under
Grant No. 0448128.



1 Introduction

This essay discusses the relationship between database and programming lan-
guage research and practice. Our goal is to present a call to action and stimulate
discussion by presenting our subjective view of the problem, our interpretation
of its history, and a vision for next steps.

The key issue we wish to discuss is the cultural and technical separation
between database (DB) and programming language (PL) research. Much of
the world’s critical information infrastructure is built by combining general-
purpose programming languages with relational databases. These enterprise
applications manage the flow of untold transactions daily in support of our
government, business, and personal lives. They support a mixture of online
transaction processing (OLTP) and online analytic processing (OLAP). In this
essay we focus on transaction processing applications, although similar points
could be made about analytics. Building, managing, and maintaining these
applications is a primary focus of a large portion of the software developers
active today, spanning commercial software companies, global consulting firms,
and corporate information technology departments. These systems are primar-
ily built using object-oriented languages for general-purpose computation and
relational databases to control concurrent access to data, efficiently search large
amounts of data, and/or update data reliably.

Object-oriented programming and relational databases are two great suc-
cess stories. They both began about the same time 40 years ago. Relational
databases dominate both theory and practice in the database world. Object-
oriented programming is ubiquitous in practice, but is still somewhat contro-
versial within the programming language research community.

Yet for all its success, we argue that the work is still not complete. Industry
struggles to interface programming languages and databases. Applications that
access databases are awkward to design and develop. Careful optimizations are
often needed to attain good performance, resulting in programs that are difficult
to maintain and evolve. We discuss some of the different schools of thought on
how best to architect enterprise systems, but the more fundamental problem is
a lack of systematic efforts to evaluate these designs. New APIs and proposals
are created every year; despite some significant recent progress, the problem is
far from completely solved. At a theoretical level there may not be any problem
at all. If so, then perhaps our theories are too abstract to capture the essence
of a problem that is very real to practitioners.

The thesis of this essay is that programming language and database research
and practice can benefit from greater coordination to solve joint problems. Right
now there is very little coordination or mutual understanding between the re-
search communities. The authors cannot claim to know the truth about how
this came about, all we can do is try to infer causes from the effects we see today
in our daily work.



2 Cultural Divide

Our experience is that the database community seems to have little interest
in how databases are used to build larger systems. One explanation for this
could be that the use of databases in larger systems is out of scope; that it
belongs to software engineering, or industry should figure it out. But whenever
we mention this to senior database researchers, they have agreed and said that
it is a problem.

The programming language community has an analogous tendency: a sense
that databases aren’t really necessary, or can be subsumed by the programming
language runtime. A cynical interpretation is that the kinds of programs pro-
gramming language researchers usually write (e.g., compilers, type checkers) are
not the kind that need industrial strength databases. But there can be good
technical reasons for taking this view.

Orthogonal persistence [AM95] is a natural extension of the traditional con-
cept of variable lifetime to allow objects or values to persist beyond a single
program execution [AB87]. In the most pure form, persistent values exist as
long as they are referenced (transitively) by a persistent root. Persistence is
orthogonal because the persistence behavior of a value is independent of any
other programming considerations, including the type of the value or where it
was created. Programs manipulate persistent data by nawigation, traversing
object references as they would for in-memory data structures.

Examples of orthogonal persistence systems include PJama [ADJ*96], Thor
[LACT96], and OPJ [MBMZ01]. We believe orthogonality is not absolute,
but describes the degree of uniformity in the treatment of persistent and non-
persistent data. A fully orthogonal persistent version of a conventional language
cannot have a transaction model [BZ99], although other options may be possible
if both persistent and non-persistent data are transactional.

The idea of orthogonal persistence is appealing to the programming lan-
guages community. Programmers are already familiar with using navigation for
data access. Studies of orthogonal persistence can also show much better per-
formance than systems based on relational databases [Jor04]. In Section 4 we
discuss these studies.

Object-oriented databases (OODBs) are a form of orthogonal persistence, as
described in the Object-Oriented Database System Manifesto [ABD*89]. But
OODB implementations were not necessarily able to meet all its goals. For ex-
ample, early OODBs did not support automatic indexing, query optimization,
or transactions. The Object Query Language (OQL) [Bie03] which was even-
tually proposed for object databases was not adopted by many databases. We
disagree with some requirements in the manifesto, for example, the requirement
that behavior (methods) be stored in the database [ADJ196]. Finally, some
important requirements were optional or omitted entirely, including evolution
and support for multiple client languages.

We sense that object-oriented databases are a sore point for many researchers
and practitioners. The common belief on the fate of OODBs was expressed in
a review of an early version of this essay: “the problem [integration of PL and



DB] raised in this paper is solved by OODB. The only reason why we are still
talking about it is that the big database vendors managed to kill the competition
instead of adopting the new technology. ... The issue is not technical-—we had
the technical solution. It is a business issue—convincing the big guys to modify
dramatically their engines and move away from dirty solutions such as object-
relational.”

We don’t believe the fundamental assumption of this argument: that OODBs
fully covered all the requirements for building enterprise applications. This
is just a conjecture, but it is one of the key points in this essay: we believe
that object databases have never been fully evaluated with respect to relational
databases for effectiveness in building, deploying and maintaining large, scalable,
reliable enterprise applications. Small changes in the relational style, to create
object-relational databases [CD96], are not a significant step toward OODBs.
This evaluation may find points lacking in OODBs that can lead to new research
opportunities.

2.1 Data & Access Models

It is often assumed that the mismatch between object and relational data mod-
els is the main source of problems in connecting programming languages and
databases. We believe that the more fundamental problem is the mismatch be-
tween access models; programming languages rely on navigation while databases
rely on queries.

The Entity Relationship (ER) model [Che76] is a point of unification be-
tween relations and objects. It is common practice to use ER models for logical
database design, then translate these to relational tables. ER diagrams are also
the basis for UML Class diagrams [Bur97]. The fundamental model is that of a
graph of nodes and edges representing an information model. Objects and re-
lations are two different representations of abstract information models. Trees
and XML have a natural place in this unification as well: trees have a natural
embedding in graphs. Alternatively, relations and objects can be encoded as
trees [MS03].

There are many other differences, in the details, between relational, object-
oriented and XML tree implementations of information models: handling of
null values, encoding of inheritance, relationships, etc. However, none of these
differences adds up to fundamental incompatibility in the structure of data.

The real pain in integrating programming languages and databases comes
not so much from the mismatch in representation as from the differences in ac-
cess style: navigation versus queries. Programmers prefer to navigate predefined
relationships, rather than specify joins when connecting objects. These relation-
ships may be specified with ER or UML diagrams. Some database researchers
feel that graph-based navigation is tainted by the failure of the network data
model (CODASYL) [TF76] However, CODASYL was a flawed experiment, and
so its failure is not an indictment of graph-based navigation. Another argument
against the primacy of ER models is that they do not allow for ad-hoc joins.
However, transactional enterprise applications generally do not perform ad-hoc



joins, although they are frequently used in analytic processing.

Access patterns are the key to Maier’s original definition of impedance mis-
match: “Whatever the database programming model, it must allow complex,
data-intensive operations to be picked out of programs for execution by the
storage manager, rather than forcing a record-at-a-time interface” [Mai87].

Historically the dominant way to “pick out database operations” is to embed
SQL queries into object-oriented programs. But manipulating SQL as strings
in a program is fraught with well-known problems, so a series of increasingly
sophisticated and complex libraries has been created to generate queries auto-
matically.

Functional programming is a clean way to bridge the gap between navigation
and queries. The map function from Lisp applies an operation to all items
in a collection. List comprehensions are an alternative notation for mapping
and filtering without using an explicit higher-order function [Won00]. C# has
recently been extended with a reflective mechanism to access the abstract syntax
of a higher-order function, enabling user-defined translation of C# functions into
alternative execution environments. This technique was used to create a data
access library called LINQ [BHO7] which translates map into a procedure over
data. DLINQ and XLINQ perform the specialized translations needed for data
access from databases and XML respectively. These advances in programming
languages promise finally to overcome the impedance mismatch. More work
is needed, however before this solution provides full functionality for updates,
prefetch, security, and modularity.

3 The DB/PL Interface

We believe that there are good reasons for maintaining separation between ap-
plication programs and databases. Business and historical reasons often dictate
that different applications possibly written in different languages share a sin-
gle database. Separating the application and database also allows developers
to distribute and replicate each component to provide better performance and
scalability. If such a separation is desirable then it is important to study this in-
terface and—from time to time—re-evaluate its design in light of the continuous
progress made in both domains.

One conclusion from the previous section is that SQL queries in enterprise
applications are automatically generated by translation libraries. In fact, many
of the applications we have worked on have no hand-written SQL. Since SQL is
the target of translation from model level query languages or program navigation
patterns, it is reasonable to view SQL as an assembly language of data. As in
hardware assembly language, the words of memory (tables) are interpreted by
the operations (joins) performed upon them, but have little inherent semantics
of their own.

One of the design ideas behind reduced instruction set architectures (RISC)
was that the interface between the compiler and the architecture can be ana-
lyzed and optimized, by moving functionality between the architecture and the



compiler. SQL could benefit from a similar analysis and would be better able
to accommodate queries generated by high-level translators. For example, a
common logical operation is to retrieve a set of entities and some of their rela-
tionships. But entity graphs or trees cannot be compactly represented in SQL
query results, so generators have to balance a tradeoff between the size of the
results and the number of queries.

Our point is not to promote the inclusion of specific features in SQL or any
other query language. Instead we are suggesting that the interface between
programming languages and databases is a fertile ground for research, which
looks at overall system behavior and considers the interfaces as flexible. How
might databases be modified to better interface with programming languages?
Other topics that might be reconsidered in this light are active databases, which
include some application functionality in the database, and security. In the
interest of space, we discuss security and concurrency briefly.

Security is a large area with many aspects. Two that we have experience with
are authentication and authorization. Databases typically have an authentica-
tion model based on login IDs. Programming languages do not have predefined
authentication models, although the current user is typically represented as an
application object. In an enterprise system, the application server typically au-
thenticates to the database with a single system login ID; the end-users of the
application do not have database login IDs. As a result, the authorization mod-
els supported by databases cannot be used, since they depend on users having
unique login IDs.

Even if they could be used, database authorization models are not typically
sophisticated enough to implement the attribute-based authorization that is
more and more common in enterprise applications [GGW02, OGMO08]. Query
rewriting is often used to implement security, leading to even more complex
automatic query generation [RMSR04]. More study is needed to determine how
to partition authorization tests between the application and the database.

Concurrency is also an area in which applications and databases use different
techniques. Traditionally, programming languages use locks to manage concur-
rency, while relational databases use transactions. Concurrency which spans
application logic and data access is messy. An example of such concurrency
is in-memory cache management. In practice, applications demarcate database
transactions with explicit library calls or meta programming, e.g. Java anno-
tations, and interpret database transaction states using error codes and excep-
tions. There is no way for a database to signal an application that a transaction
has failed until the next application command. With software transactional
memory, there is an opportunity for a more uniform interface. Currently, the
few languages such as Fortress [Sun07] that do support transactional memory
do not provide any method to integrate external transaction partners such as
databases.



4 Evaluation

A thorough evaluation of an enterprise application is a monumental undertaking.
Even if researchers could agree on the standards against which such applications
should be evaluated, the heterogeneous nature of enterprise applications frus-
trates researchers’ attempts to evaluate them. This obstacle, however, presents
an opportunity to researchers: If we are able to provide more complete evalua-
tion of our efforts we can be of real service to application developers and facilitate
the adoption of our efforts in industrial applications. To meet this challenge,
the database and programming language research communities should work to-
gether to widen our scope as much as possible. The effort will require significant
investment in research infrastructure, including platforms, tools, methodologies,
and benchmarks.

Every researcher is aware of the gulf that exists between most research plat-
forms and their industrial counterparts. The PL / DB research community
maintains a symbiotic, though at times estranged, relationship with industry.
Our research ideas are not fully validated until they are deployed, yet we often
lack industry-quality platforms on which to develop and test our research. This
means that we cannot provide industry-quality evaluation of our results.

Developers who write enterprise applications attempt to maximize the per-
formance of a conflicting set of application behaviors, but our current research
methodologies do not adequately address this reality. Enterprise applications
should be evaluated on a range of metrics including performance, scalability,
resilience to failures, development costs and maintainability. Some of these
metrics—like performance and maintainability—are often in direct conflict.

It is a tall order to provide quantitative metrics for heterogeneous systems.
It is much easier to evaluate a homogeneous system with a well-defined interface
against a single objective measurement. But we must consider our audience and
attempt to address all their concerns.

Most current evaluation methodologies focus on one or only a few metrics
such as program execution time, number of queries executed, or query execution
time. Future methodologies should also report other performance metrics in-
cluding overall system throughput and latency, memory footprint, and commu-
nication time and bandwidth. Methodologies should also measure the system’s
software engineering properties by reporting soft metrics including maintain-
ability, extensibility and scalability.

If we are to provide a more realistic evaluation of our research, we need more
realistic benchmarks. Current popular benchmarks, including OO7 [CDKN94|
and TORPEDO [Mar05], do not accurately represent the reality of enterprise
application architecture nor are they equipped to measure the full range of
metrics we have advocated. If we are not measuring our work against a realistic
standard, how can we be sure our efforts are not misguided?

Although we advocate ambitious goals for future methodologies, we believe
our communities can achieve these goals by making our research techniques and
results more available to one another.



5 Cultural Exchange

Programming Languages and Databases are both relatively small specialties
within computer science whose basic concepts are not very well-known out-
side the specialty. At job talks for candidates seeking tenure-track positions
in databases or programming languages, we have noticed that many computer
science academics do not have solid understanding of either relational algebra
and query optimization, nor of lambda calculus and abstract interpretation.

Yet databases and programming languages have a lot in common. A database
management system can be viewed as an interpreter for SQL, a hybrid func-
tional /imperative domain specific language. The query engine is a very sophis-
ticated algorithm compiler. New database optimization techniques can achieve
orders of magnitude speedups that researchers working on compilers for general
purpose languages can only dream of. Issues of data representation, modularity,
security, and abstraction are also relevant to both databases and programming
languages.

Our separate theoretical foundations, formalisms and vocabularies naturally
impede cultural exchange. The programming language and database research
communities rarely communicate their successes directly to one another. Nor
does either community communicate its needs to the other. There is a bian-
nual conference on Database Programming Languages [AS07]. However, a quick
review of the papers reveals that very few of them address the goal of the con-
ference directly, which is to explore the intersection of programming languages
and databases.

The economic culture of each community also impedes cultural exchange,
because it affects the availability of quality research platforms. Programming
tools are commercially viable (e.g., compilers, IDEs) but have never been the
foundation for large companies. Programming tools typically support operating
systems, and operating system vendors invest in tools in order to drive adoption
and innovation on their platforms (e.g., Microsoft, Sun, Apple). Many widely-
used programming language tools (e.g., gce, Eclipse) are open source. Databases
on the other hand have been the foundation for several large companies. More
recently there has been increasing success of open-source databases.

Programming language researchers therefore have access to quality research-
oriented implementations of language runtimes (e.g., Jikes RVM) and language
and compiler tools (e.g., Polyglot, Soot and JastAdd). Unfortunately, databases
are not everyday tools for most computer science academics and certainly not
for most programming language researchers. We feel these effects in our research
efforts: other than Berkeley DB and Apache DB, we are unaware of research
database platforms.

6 Conclusions

The thesis of this essay is that there are research opportunities related to the
assembly of complete systems that incorporate databases and programming lan-



guages. We believe that improving enterprise systems is not just a matter
of technology transfer of existing results. To address these opportunities, re-
searchers must redefine the scope of the problems they are willing to address.
We believe:

e Programmers prefer logical Entity-Relational/Class models with naviga-
tional (OQL) query languages rather than direct use of the relational
model and joins. As programming languages blend object-oriented and
functional features, it is easier for them to express queries concisely and
check them for type safety.

e Most queries are generated automatically, and often use query rewriting
to implement security resulting in very dynamic queries. Many question
the prevailing wisdom that queries must be hand-crafted as stored proce-
dures. Databases should embrace this trend and provide an interface that
is designed for automatic query generators, not humans. This is similar
to the shift from CISC to RISC in hardware architecture.

e Databases and programming languages should be evaluated in the con-
text of complete systems, with metrics for scalability, redundancy, and
maintainability in addition to performance. There is a lot of uncertainty
about how to partition and architect effective solutions. This could be
a fertile ground for new research, and it would help to lay to rest some
long-standing open questions about persistence models.

e Research communities should deliver research results in a way that is
usable by other research communities, not just in papers but in demon-
stration systems.

References

[AB8T7] Malcolm P. Atkinson and O. Peter Buneman. Types and persistence in
database programming languages. ACM Computing Surveys, 19(2):105—
170, 1987.

[ABD'89] Malcolm Atkinson, Francois Bancilhon, David DeWitt, Klaus Dittrich,
David Maier, and Stanley Zdonik. The object-oriented database system
manifesto. In Deductive and Object-Oriented Databases, pages 223-240,
1989.

[ADJT96] Malcolm P. Atkinson, Laurent Daynes, Mick J. Jordan, Tony Printezis,
and Susan Spence. An orthogonally persistent Java. SIGMOD Record,
25(4):68-75, 1996.

[AM95] M. P. Atkinson and R. Morrison. Orthogonally persistent object systems.
The VLDB Journal, 4(3):319-401, 1995.

[ASO7] Marcelo Arenas and Michael I. Schwartzbach, editors. Database Program-
ming Languages, 11th International Symposium, DBPL 2007, Vienna,

Austria, September 23-24, 2007, Revised Selected Papers, volume 4797
of Lecture Notes in Computer Science. Springer, 2007.



[BHO7]

[Bie03]

[Bur97]

[BZ99]

[CDY6]

[CDKNY4]

[CheT76]

[GGW02]

[Jor04]

[LACt96]

[Mai87]

[Mar05]

[MBMZ01]

[MS03]

[OGMOS]

[RMSRO4]

Don Box and Anders Hejlsberg. LINQ: .NET Language-Integrated Query.
http://msdn.microsoft.com/en-us/library/bb308959.aspx, 2007.

G. M. Bierman. Formal semantics and analysis of object queries. In The
ACM SIGMOD International Conference on Management of Data, pages
407-418, 2003.

Rainer Burkhardt. UML: Unified Modeling Language. Addison-Wesley,
1997.

Stephen Blackburn and John N. Zigman. Concurrency — the fly in the
ointment? In The International Workshop on Persistent Object Systems,
pages 250-258, 1999.

Michael J. Carey and David J. DeWitt. Of Objects and Databases: A
Decade of Turmoil. In The International Conference on Very Large Data
Bases, pages 3—-14, 1996.

Michael J. Carey, David J. DeWitt, Chander Kant, and Jeffrey F.
Naughton. A status report on the OO7 OODBMS benchmarking effort.
In The ACM Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications, pages 414—426, 1994.

Peter P. Chen. The Entity-Relationship Model — Toward a Unified View
of Data. ACM Transactions on Database Systems, 1(1):9-36, 1976.

Richard Goodwin, SweeFen Goh, and Frederick Y. Wu. Instance-level
access control for business-to-business electronic commerce. IBM Systems
Journal, 41(2):303-321, 2002.

Mick Jordan. Comparative study of persistence mechanisms for the Java
platform. Technical Report TR-2004-136, Sun Microsystems, September
2004.

B. Liskov, A. Adya, M. Castro, S. Ghemawat, R. Gruber, U. Maheshwari,
A. C. Myers, M. Day, and L. Shrira. Safe and efficient sharing of persis-
tent objects in Thor. In The ACM SIGMOD International Conference on
Management of Data, pages 318-329, 1996.

David Maier. Representing database programs as objects. In The ACM
SIGMOD Workshop on Database Programming Languages, pages 377-386,
1987.

Bruce E. Martin. Uncovering database access optimizations in the middle
tier with TORPEDO. In The IEEE International Conference on Data
Engineering, pages 916-926, 2005.

Alonso Marquez, Stephen Blackburn, Gavin Mercer, and John N. Zig-
man. Implementing Orthogonally Persistent Java. In The International
Workshop on Persistent Object Systems, pages 247-261, 2001.

Erik Meijer and Wolfram Schulte. Programming with rectangles, triangles,
and circles. In Conference on XML, 2003.

Lars E. Olson, Carl A. Gunter, and P. Madhusudan. A formal framework
for reflective database access control policies. In The ACM Conference on
Computer and Communications Security, October 2008.

Shariq Rizvi, Alberto Mendelzon, S. Sudarshan, and Prasan Roy. Ex-
tending query rewriting techniques for fine-grained access control. In The
ACM SIGMOD International Conference on Management of Data, pages
551-562, 2004.

10



[Sun07]

[TF76]

[Won00]

Sun Microsystems Corporation. The Fortress language spec-
ification. http://research.sun.com/projects/plrg/Publications/
fortressl.Obeta.pdf, 2007.

Robert W. Taylor and Randall L. Frank. CODASYL database manage-
ment systems. ACM Computing Surveys, 8:67-103, 1976.

Limsoon Wong. Kleisli, a functional query system. Journal of Functional
Programming, 10(1):19-56, 2000.

11



