Know your place
Selectively executing statements based on context

Ben Wiedermann
(ben@cs.utexas.edu)

May 14, 2004

1 Introduction

This project provides a way for programmers to insert ruatoantext-sensitive code
into their C programs. The idea is that a program will exeeupéece of code only if
the program is in a given calling context (i.e., a stack ofcedure calls). One way to
accomplish this technique is for the program to examine tinéme stack, determine
if it matches a given context, then execute the contextiSemsode. Of course, this
method is extremely inefficient.

A more efficient way to determine the context is to staticlynpoite a unique “con-
text value” for every possible context along a chain of pcage calls. At runtime, the
program compares the actual context number to the desimdxdanumber. If these
numbers are equivalent, the program executes the corgasitive code.

This facility can be useful in several scenarios:

Checkpointing A programmer may want to insert checkpoints at certain lonatin
the program, bubnly if the program is in a certain context.

Profiling A programmer could use this technique to implement efficienntext-
sensitive profiling. The program would simply write out thentext number
at appropriate points.

Context-sensitive garbage collectionGarbage often occurs in phases: a program al-
locates an amount of memory, uses it for awhile, then the nmgrmecomes
garbage. Very often, the behavior coincides with a certanksbehavior (i.e.,

a procedure exits and a large chunk of memory becomes a&ilabprofiling
technique could be combined with this context-sensitichéue to explicitly
trigger a collection at given points.

This project describes a modification to the Ball-Larus gatifiling techniquel]il]
that provides a way to compute the context value, as destaibeve. The technique is

*Completed as a project for Dr. Calvin Lin’s CS380c courseta Univeristy of Texas at Austin.

implemented as a series of C-Breeze walkers and changéradllify C code to keep
track of a running context value. The programmer can thegrirsglective statements
in the modified code.

The remainder of this report briefly describes the Ball Laachinique (Sectiol 2)
before detailing the changes necessary to track context$i¢8B). Sectiofl4 describes
the C-Breeze implementation, and Secfibn 5 gives an examhplaw to insert context-
sensitive code. We conclude with a section on future workt{8eld), which describes
some ways in which the technique can be improved.

2 The Ball-Larus Path Profiling Technique

The Ball-Larus path profiling technique efficiently recotdsv frequently a program
executes a control-flow path. Their technique annotategdges of the program’s
control-flow graph with integer “modifiers”, that — when surdover a path — pro-
duce a unique value for that path. In this way, the technigséyas a unique integer
value to each path through the program. To compute the frexyusf each path’s ex-
ecution, Ball and Larus then describe a way to instrumenptbgram code such that
the program increments a path-specific counter every tiragpthgram executes the
corresponding path. The algorithm that computes contoal-firaph modifiers is as
follows:

for all noden in reverse topological ordeio
if n is a leafthen
NumPathsg) «— 1
else
NumPaths{) < 0
for all edgee of the formn — m do
Val(e) « NumPaths()
NumPaths{) — NumPaths{) + NumPathsf)
end for
end if
end for

Figured shows a simple control-flow graph, in which therdaue paths. Applying
the algorithm above yields the edge labels in the graph. thatiz at each leaf, the sum
of the modifiers along the edges to that leaf yield a uniqule pamber (zero through
three). The Ball-Larus technique instruments the leavesdord which path has been
taken.

The above algorithm works only on directedn-cyclic graphs. Ball and Larus
handle loops by effectively breaking a program’s paths ap looundaries. The tech-
nique tracks separate paths from before the loop througlotigebody, from the loop
entry through the loop and from the loop exit through the riacher of the program.
The point here is not the details of their technique’s hangdbf loops, but rather the

Figure 1: A simple control-flow graph

idea that cycles in the graph pose a problem that we must davitén we adapt the
technique to callsite graphs.

3 Deriving Contexts from a Callsite Graph

Our approach adapts the Ball-Larus path profiling algoritbmnumerate a program’s
possible contexts. As a continuing example, consider tbgram in Fig.[2, whose
callsite graph also appears in the figure.

[+ exanple.c */

void f() {}

void e () {}
void d() {}

void c ()
{e(); O}

void b()
{d(); e(;}

void a()
{b(); cO;}

void main ()

{a();}

Figure 2: Simple program and its callsite graph

Our goal is to assign a unique modifier to each edge in the gsapthat, at any
given node, we can determine the path (context) by whichrtbde has been reached.
Certainly, we could directly adapt the Ball-Larus algamitfrom the previous section
to operate over callsite graphs, instead of control-flowphgsa If we were to do so,
then we would obtain identical modifiers for the graph in Hiyas for the graph in
Fig. . However, there is a key difference between identiypaths and identifying
contexts. When identifying paths, it is a branch that crette possibility of a multiple
paths. When identifying contexts, it is a merge that cretiteossibility of multiple
contexts.

Therefore, we do not need to instrument the eldge d (as we did in Fig[l), be-
cause there is only one possible context for functidgnamelymai n — a — b — d).
Similarly, we do not need to instrument either edge:> b or edgea — ¢ (as we did in
Fig.), because these two edges do not imply different atsfer their targets. We
do, however, need to instrument either edige> e and edge — e, because there are
two possible contexts in whiok can be called.

Another key difference is that, while control-flow graphe directed graphs, call-
site graphs are directadultigraphs, because one function may call another function
multiple times. We may want to differentiate among multipilsites, and must be
able to capture this information in our analysis.

We can formalize the differences between the two technigyetefining the fol-
lowing algorithm:

for all noden in topological ordedo
if n is a leafthen
NumContextsf) «— 1
else
currentContext— NumContextsg)
for all edgee of the formm — n do
Val(e) < currentContext
currentContext— currentContext + NumContexis(
end for
NumContexts() < currentContext
end if
end for

Performing this algorithm over the graph in Fig. 2 gives theatated graph shown
in Fig. [d. One benefit of this algorithm is that we represeatdbntext number mini-
mally, because we can reuse context numbers for independdas (e.g., functiond
andf).

Cycles (i.e., recursion) in a callsite graph create probkldmacause we cannot topo-
logically sort a cyclic, directed graph. However, recunsi® a common programming
technique, so we must find some way for our analysis to handlg sensible solu-
tion, for a simple recusive function, might be to record vieetthe program recursed
before reaching some node. However, this solution proveddonplex to implement,

0
0 1

Figure 3: Annotated version of graph in Fig. 2

given our simple, modified Ball-Larus algorithm. Instead @hoose to collapse the
strongly-connected compontents of the callsite graph anfibpm the alogorithm over
the resulting, acyclic graph.

Figure[4 contains a more complex version of the program irZ-iglong side its
callsite graph and its modified, annotated control-flow brayotice that the algorithm
handles recursion as well as multiple calls to the same ifmmdétom within another
function. The key observation about our approach to reonri that we retain all
information about how we reached a strongly connected compoand how we ex-
ited a strongly connected component, but we lose all inféionaabout what occurs
inside the strongly connected component. In other worasirsson becomes a black
box in terms of contexts. For a more detailed discussion @fdtursion issue, with
suggestions for improvement, see Secfibn 6.

4 Implementation

This project is implemented as a series of C-BreEz&\i3]ker s andChanger s. We
added two phases.ont ext andcsg, which changes the compiled code to keep track
of the context number and which prints notation for DOIT [2gins, respectively. We
use a custom graph implementation, specialized for thsitaljraph and operations
the phases performonit. In this section, we overview theisfized implementation of
the callsite graph, the C-Bree¥@l ker for annotating the graph with context values,
the Changer for keeping track of the context number in the code, andvthieker

for printing the DOT notation for the annotated graph. Wedatode the section with a
discussion of the performance characteristics of the uanwogram elements.

[+ exanpl e2.c */

void a(); void b(int); void c(int);
void d(); void e(); void f();

example2.c: main

void f() {}

void e() {}
void d() {}

Jexample2.c: main
0

void c(int i)
{if (i!'=0) b(0);
e(); fO:}

void b(int i)
{c(i); d();
e(); d():}

void a()

{b(1); c(1);}

void main ()

{a():}
Figure 4: Program with recursion, callsite graph, and asteotmodified callsite graph

4.1 Representing Graphs

We use two classes to represent grap@ial | Si t eGr aph and Cont ext G- aph.

ClassCal | Si t eG aph represents a basic graph, where the nodes correspond to
functions and an edge corresponds to a call from one funttoanother. Class

Cont ext Gr aph subclasse€al | Si t eG aph, to provide functionality for &al | Si t eGr aph
annotated according to the modified Ball-Larus algorithm.

411 Call SiteG aph

We represent the callsite graph abstractly as a(gsirdes, Edges), whereNodes

is a list of pr ocNodes and an edge exists between noAemdB if function A calls
functionB. Thus, the graph is a directed, possibly cyclic multigraptery node has a
nane that is a string. Every edge has a label that i$ aheger and corresponds to
the modifier for that edge. Taldlg 1 lists the availabié | Si t eGr aph operations.

Name Return Value Description
addNode(node) voi d adds a new node to the graph
get Nodes() list of nodes returns a list of all nodes in the graph
nanme(node) string given a node, returns its name
nanme(node, string) voi d given a node and a new name, renames the node
addEdge(node, node, cal | Node *) voi d adds edge from one node to another, with the corresporedihgy Node
del et eEdge(edge) voi d removes a given edge from the graph
get Edges() list of edges returns a list of all edges in the graph
get Preds(node) list of edges given a node, returns a list of the node’s incoming edges
get Succs(node) list of edges given a node, returns a list of the node’s outgoing edges
| abel (edge) int given an edge, returns the edge’s label
| abel (edge, int) voi d given an edge and a new label, changes the edge’s label
get Sour ce(edge) node returns the source of the edge
get Tar get (edge) node returns the target of the edge
get Cal | Node(edge) cal | Node * returns a pointer to the callNode that corresponds to a gidee
topsort() list of nodes if the graph is acyclic, returns a list of nodes in topolo§maer
findSCC() list of lists ofnodes | returns lists that contain nodes for each strongly-cortkecomponent
col | apseSCC() voi d collapses the strongly connected components of the graph
print Dot () voi d prints to standard output the DOT representation of thetgrap

Table 1:Cal | Si t eGr aph operations

4.1.2 Cont ext Graph

ClassCont ext Gr aph provides an interface to@al | Si t eGr aph annotated with
context values. Thal gor i t hmmethod of this class annotates the callsite graph, ac-
cording to the algorithm described in Secfidn 3. Téble 2 lise availabl€ont ext Gr aph
operations.

Name Return Value Description
cont ext (node) int returns the number of contexts through which a given nodéeaeached
cont ext (node, int) voi d sets the number of contexts through which a given node caedmhed
nmodi fier(call Node *) int returns the annotation for the edge that corresponds totkagal | Node
nodi fier(call Node *, int) voi d sets the annotation for the edge that corresponds to tha galel Node
al gorithm() voi d executes the algorithm from Sect{gh 3 on @ent ext G aph

Table 2:Cont ext Gr aph operations

4.2 Building the Callsite Graph

ClassCont ext Wl ker is a C-Breeze walker that builds the callsite graph and runs

the algorithm described [d 3. The walker provides one staéthodoui | dCont ext G aph

that performs the walker's work, and returns an object of<fzont ext G- aph,

which represents the annotated callsite graph. To perfsrwadrk, methodui | dCont ext Gr aph
executes the following steps:

initialize list of functionsF to be®
initialize aCont ext Gr aph cw to be((, 0)
for all w € unitsdo
forall d € u’s defintitionsdo
if d is a function definitiorthen
adddto I
addd to the nodes ofw
end if
end for
end for
forall f € F do
forall f' € F such thatf calls f’ do
addf — f’ to edges ofw, with the correspondingal | Node
end for
end for
run SectioliB's algorithm oow

C-Breeze phases can use @mnt ext Wal ker by callingbui | dCont ext Gr aph,
then performing work over the resulti@nt ext Gr aph object. In this report, we
discuss two such phasasont ext (Sectior[4.B) andsg (Sectior[Z}).

4.3 Keeping Track of the Context Number

This project provides theont ext phase that, given a C program, will insert code in
functions that updates a global context number, accordiag tinnotateGont ext G- aph.
To execute this code on a file, use the following command:

cbz -context -c-code <file>

ClassCont ext Changer is a C-Breeze changer that peforms the work of the
cont ext phase. This phase is simple, and performs the followingsstep

perform Sectiofi412’s algorithm, to obtaliont ext Gr aph cw
for all u € unitsdo
add definition nt __cont ext := 0 tothe top ofu
for all ¢ € callsitesdo
modi fier «— ¢'s modifier, according tew
if modi fier > 0 then
change’’s statemental | (...) to
_context += modifier
call (..))
_context -= modifier
end if
end for
end for

Figure[@ shows the results of running thent ext phase on the program from
Fig. [A. Notice that we change a call only when its modifier isager than 0, making
the resulting code slightly more efficient.

int __context = O0;
void f(void) {}
void e (void) {}
void d(void) {}

void c(void)

{e(); f0O;}
void b(void)

d();
{

__context += 1;

e();

__context —= 1;
s
}

void a(void)

{b(); cO;}

void main(void)

{a@);}

Figure 5: Program from Fidl 2, after runningnt ext phase

Now, the programmer can specialize the function code, basethe value of
__cont ext (see Sectiohl5).

4.4 Displaying the Context Graph

This project provides thesg phase that, given a C program, will print (to standard
out) the DOT notation for the program’s annotat@ght ext G- aph. To execute this
code on a file, use the following command:

cbz -csg <file>

The output from this phase can be pipeditt in the following way, to create a
postscript file of the graph:

cbz -csg <file> | dot -Tps -0 <file>. ps
ClassCont ext Vi ewer is a C-Breeze walker that peforms the work of ttegy
phase. This phase simply invokésnt ext Wal ker 'sbui | dCont ext G- aph method
to obtain aCont ext Gr aph object. Then the phrase invokes fGent ext Gr aph’s
pri nt Dot method. All the annotated graph diagrams in this report werated with
thecsg phase. Sectiofl 5 describes how the programmer can use sdehacselec-
tively execute statements based on context.

4.5 Performance Considerations

TabledB anfll4 list the time complexity for graph operatidnshese tables; refers to

the number of nodes, and refers to the number of edges (callsites). Many operations
(e.g.,addNode, cont ext) areO(n) or O(m), because the operations first search
through the list of nodes or edges, to ensure correctness.

Operation Complexity
addNode(node) O(n)
get Nodes() O(1)
name(node) O(n)
name(node, string) O(n)
addEdge(node, node, cal I Node*) | O(1)
del et eEdge(edge) O(m)
get Edges() O(1)
get Preds(node) O(1)
get Succs(node) O(1)
| abel (edge) O(m)
| abel (edge, int) O(m)
get Sour ce(edge) O(1)
get Tar get (edge) O(1)
get Cal | Node(edge) O(1)
topsort () O(n+m)
fi ndSCC() O(n+m)
col | apseSCC() O(m *n)
print Dot () O(m)

Table 3:Cal | Si t eGr aph performance

Operation Complexity
cont ext (node) O(n)
cont ext (node, int) O(n)
nodi fier(cal | Node *) O(n)
nodi fier(callNode *, int) | O(n)
al gorithn() O(m *n)

Table 4:Cont ext Gr aph performance

10

5 Selectively Executing Code

The programmer can use the two phases created by this prejeoint ext andcsg

— to modify the code to selectively execute statements basecbntext. The pro-
grammer first should run theont ext phase on the code, to obtain code that keeps
track of the current context number. Then the programmeulshase the graph pro-
duced by th&sg phase to determine the context number(s) for the partifutetion

in which context-sensitive code should execute. Then tbgrammer can insertf
statements that compare the value afont ext to the desired value. As a simple
example, functiom in Fig.[d will print the string ‘ hel | o’ * only when the function
has been called by functidn

6 Future Work

In this section, we briefly discuss an alternate idea for hiagdecursion. The current
solution handles recursion by collapsing the strongly emted components of the
callsite graph. This technique is lossy, because we canmot kvhether recursion
occured or how many times it occurred. A reasonable expentédr recursion might
be that we care only whether recursion has occured. Contiderallsite graph in
Fig.[. When at functior, we might want to know whether we have reacleeilom

a recursive call td or from a non-recursive call tb. In other words, we want to
differentiate between two contexta:— b — ¢ anda — b 5 b — ¢, whereb & b
means thab called itself one or more times.

This notation leads to the observation that contexts aitynemular expressions.
The callsite graph in Fidl 7 has the regular expressi@r-)c. This regular expression
yields an infinite number of possible contexts. Howeverpiarpurposes, we only care
about two contexts, described by the regular expressign?)c. In other words, for
simple recursion, we can reduce a regular expression thaptscan infinite number of
strings to a regular expression that accepts a finite nunfltetrings. The only remain-
ing issue is to devise instrumentation that differentisietsveen the two contexts. The
instrumentation must ensure that the first recursive calldéontext is recorded and all
subsequent recursive calls are idempotent with respeletodntext.

While this technique works for simple recursion, more caewplecursive cases
require more study. Consider the example in Hi§j. 8. Thissitallgraph yields the
regular expressioa((b(cb)*c?)|(c(bc)*b?))d. However, we might reasonably expect
to be concerned only with the contexts:

abd
acd
abcd
achd
abcbd
achcd

which can be enumerated by the regular expressi@h((cb)|c)?)|(c((bc)|c)?))d.
The rule here for transforming infinite regular expressiwrfinite regular expressions

11

#include <stdio .h>
int __context = O0;
void f(void) {}
void e(void)
{

if (__context == 1)

printf ("hello\n");

¥
void d(void) {}

void c(void)

{e(); f0O;}

void b(void)

d();
{

__context += 1;

e();

__context —= 1;
b
}

void a(void)

{b(); cO;}

void main(void)

{aQ);}

Figure 6: Example of selectively executed code

()
>
o)

Figure 7: A callsite graph with a recursive function

12

Figure 8: A callsite graph with mutually recursive function

is more complex and would be a good starting point for futuoekuw

In any case, to obtain more precision in the contexts we caogréze, the work on
simple recursion outlined in this section could be appliéti little effort to the current
body of work.

7 Acknowledgements

| gratefully acknowlege Sam Guyer, Mike Bond, and Alison ian for the feedback
they gave me as | developed this project. | am particuladygbted to Mike Bond for
the idea of adapting the Ball-Larus path-profiling algaritto call graphs.

References

[1] T.Balland J.R. Larus. Efficient path profiling. International Symposium on Microarchitecture, pages
46-57, 1996.

[2] E.Koutsofios and S. C. NorttDrawing graphs with dot. Murray Hill, NJ.

[38] C.Lin, S.Z. Guyer, and D. Jimenez. The C-Breeze Compiterastructure. TR 01-43, The University
of Texas at Austin, Austin, TX, USA, 2001.

13

	Introduction
	The Ball-Larus Path Profiling Technique
	Deriving Contexts from a Callsite Graph
	Implementation
	Representing Graphs
	CallSiteGraph
	ContextGraph

	Building the Callsite Graph
	Keeping Track of the Context Number
	Displaying the Context Graph
	Performance Considerations

	Selectively Executing Code
	Future Work
	Acknowledgements

