
Know your place:∗

Selectively executing statements based on context

Ben Wiedermann
(ben@cs.utexas.edu)

May 14, 2004

1 Introduction

This project provides a way for programmers to insert runtime context-sensitive code
into their C programs. The idea is that a program will executea piece of code only if
the program is in a given calling context (i.e., a stack of procedure calls). One way to
accomplish this technique is for the program to examine the runtime stack, determine
if it matches a given context, then execute the context-sensitive code. Of course, this
method is extremely inefficient.

A more efficient way to determine the context is to staticly compute a unique “con-
text value” for every possible context along a chain of procedure calls. At runtime, the
program compares the actual context number to the desired context number. If these
numbers are equivalent, the program executes the context-sensitive code.

This facility can be useful in several scenarios:

Checkpointing A programmer may want to insert checkpoints at certain locations in
the program, butonly if the program is in a certain context.

Profiling A programmer could use this technique to implement efficient, context-
sensitive profiling. The program would simply write out the context number
at appropriate points.

Context-sensitive garbage collectionGarbage often occurs in phases: a program al-
locates an amount of memory, uses it for awhile, then the memory becomes
garbage. Very often, the behavior coincides with a certain stack behavior (i.e.,
a procedure exits and a large chunk of memory becomes available). A profiling
technique could be combined with this context-sensitive technique to explicitly
trigger a collection at given points.

This project describes a modification to the Ball-Larus pathprofiling technique [1]
that provides a way to compute the context value, as described above. The technique is

∗Completed as a project for Dr. Calvin Lin’s CS380c course at The Univeristy of Texas at Austin.

1

implemented as a series of C-Breeze walkers and changers that modify C code to keep
track of a running context value. The programmer can then insert selective statements
in the modified code.

The remainder of this report briefly describes the Ball Larustechnique (Section 2)
before detailing the changes necessary to track contexts (Section 3). Section 4 describes
the C-Breeze implementation, and Section 5 gives an exampleof how to insert context-
sensitive code. We conclude with a section on future work (Section 6), which describes
some ways in which the technique can be improved.

2 The Ball-Larus Path Profiling Technique

The Ball-Larus path profiling technique efficiently recordshow frequently a program
executes a control-flow path. Their technique annotates theedges of the program’s
control-flow graph with integer “modifiers”, that — when summed over a path — pro-
duce a unique value for that path. In this way, the technique assigns a unique integer
value to each path through the program. To compute the frequency of each path’s ex-
ecution, Ball and Larus then describe a way to instrument theprogram code such that
the program increments a path-specific counter every time the program executes the
corresponding path. The algorithm that computes control-flow graph modifiers is as
follows:

for all noden in reverse topological orderdo
if n is a leafthen

NumPaths(n)← 1
else

NumPaths(n)← 0
for all edgee of the formn→ m do

Val(e)← NumPaths(n)
NumPaths(n)← NumPaths(n) + NumPaths(m)

end for
end if

end for

Figure 1 shows a simple control-flow graph, in which there arefour paths. Applying
the algorithm above yields the edge labels in the graph. Notethat, at each leaf, the sum
of the modifiers along the edges to that leaf yield a unique path number (zero through
three). The Ball-Larus technique instruments the leaves torecord which path has been
taken.

The above algorithm works only on directednon-cyclic graphs. Ball and Larus
handle loops by effectively breaking a program’s paths on loop boundaries. The tech-
nique tracks separate paths from before the loop through theloop body, from the loop
entry through the loop and from the loop exit through the remainder of the program.
The point here is not the details of their technique’s handling of loops, but rather the

2

a

b

0

c

2

d

0

e

1 0

f

1

Figure 1: A simple control-flow graph

idea that cycles in the graph pose a problem that we must handle when we adapt the
technique to callsite graphs.

3 Deriving Contexts from a Callsite Graph

Our approach adapts the Ball-Larus path profiling algorithmto enumerate a program’s
possible contexts. As a continuing example, consider the program in Fig. 2, whose
callsite graph also appears in the figure.

/* example.c */

vo id f () {}

vo id e () {}

vo id d () {}

vo id c ()
{e () ; f () ;}

vo id b ()
{d () ; e () ;}

vo id a ()
{b () ; c () ;}

vo id main ()
{a () ;}

example.c: b

example.c: d example.c: e

example.c: c

example.c: f

example.c: a

example.c: main

Figure 2: Simple program and its callsite graph

3

Our goal is to assign a unique modifier to each edge in the graph, so that, at any
given node, we can determine the path (context) by which thatnode has been reached.
Certainly, we could directly adapt the Ball-Larus algorithm from the previous section
to operate over callsite graphs, instead of control-flow graphs. If we were to do so,
then we would obtain identical modifiers for the graph in Fig.2 as for the graph in
Fig. 1. However, there is a key difference between identifying paths and identifying
contexts. When identifying paths, it is a branch that creates the possibility of a multiple
paths. When identifying contexts, it is a merge that createsthe possibility of multiple
contexts.

Therefore, we do not need to instrument the edgeb→ d (as we did in Fig. 1), be-
cause there is only one possible context for functiond (namelymain→ a→ b→ d).
Similarly, we do not need to instrument either edgea→ b or edgea→ c (as we did in
Fig. 1), because these two edges do not imply different contexts for their targets. We
do, however, need to instrument either edgeb→ e and edgec→ e, because there are
two possible contexts in whiche can be called.

Another key difference is that, while control-flow graphs are directed graphs, call-
site graphs are directedmultigraphs, because one function may call another function
multiple times. We may want to differentiate among multiplecallsites, and must be
able to capture this information in our analysis.

We can formalize the differences between the two techniquesby defining the fol-
lowing algorithm:

for all noden in topological orderdo
if n is a leafthen

NumContexts(n)← 1
else

currentContext← NumContexts(n)
for all edgee of the formm→ n do

Val(e)← currentContext
currentContext← currentContext + NumContexts(m)

end for
NumContexts(n)← currentContext

end if
end for

Performing this algorithm over the graph in Fig. 2 gives the annotated graph shown
in Fig. 3. One benefit of this algorithm is that we represent the context number mini-
mally, because we can reuse context numbers for independentnodes (e.g., functionsd
andf).

Cycles (i.e., recursion) in a callsite graph create problems, because we cannot topo-
logically sort a cyclic, directed graph. However, recursion is a common programming
technique, so we must find some way for our analysis to handle it. A sensible solu-
tion, for a simple recusive function, might be to record whether the program recursed
before reaching some node. However, this solution proved too complex to implement,

4

example.c: c

example.c: e

0

example.c: f

0

example.c: b

1

example.c: d

0

example.c: a

0 0

example.c: main

0

Figure 3: Annotated version of graph in Fig. 2

given our simple, modified Ball-Larus algorithm. Instead, we choose to collapse the
strongly-connected compontents of the callsite graph and perform the alogorithm over
the resulting, acyclic graph.

Figure 4 contains a more complex version of the program in Fig2, along side its
callsite graph and its modified, annotated control-flow graph. Notice that the algorithm
handles recursion as well as multiple calls to the same function from within another
function. The key observation about our approach to recursion is that we retain all
information about how we reached a strongly connected component and how we ex-
ited a strongly connected component, but we lose all information about what occurs
inside the strongly connected component. In other words, recursion becomes a black
box in terms of contexts. For a more detailed discussion of the recursion issue, with
suggestions for improvement, see Section 6.

4 Implementation

This project is implemented as a series of C-Breeze [3]Walkers andChangers. We
added two phases:context andcsg, which changes the compiled code to keep track
of the context number and which prints notation for DOT [2] graphs, respectively. We
use a custom graph implementation, specialized for the callsite graph and operations
the phases perform on it. In this section, we overview the specialized implementation of
the callsite graph, the C-BreezeWalker for annotating the graph with context values,
theChanger for keeping track of the context number in the code, and theWalker
for printing the DOT notation for the annotated graph. We conclude the section with a
discussion of the performance characteristics of the various program elements.

5

/* example2.c */

vo id a () ; vo id b (i n t) ; vo id c (i n t) ;
vo id d () ; vo id e () ; vo id f () ;

vo id f () {}

vo id e () {}

vo id d () {}

vo id c (i n t i)
{ i f (i ! =0) b (0) ;

e () ; f () ;}

vo id b (i n t i)
{c (i) ; d () ;

e () ; d () ;}

vo id a ()
{b (1) ; c (1) ;}

vo id main ()
{a () ;}

example2.c: b

example2.c: c example2.c: d

example2.c: eexample2.c: f

example2.c: a

example2.c: main

SCC (./example2.c: b ./example2.c: c)

./example2.c: d

0 2

./example2.c: e

0 2

./example2.c: f

0

./example2.c: a

0 1

./example2.c: main

0

Figure 4: Program with recursion, callsite graph, and annotated modified callsite graph

4.1 Representing Graphs

We use two classes to represent graphs:CallSiteGraph andContextGraph.
ClassCallSiteGraph represents a basic graph, where the nodes correspond to
functions and an edge corresponds to a call from one functionto another. Class
ContextGraph subclassesCallSiteGraph, to provide functionality for aCallSiteGraph
annotated according to the modified Ball-Larus algorithm.

4.1.1 CallSiteGraph

We represent the callsite graph abstractly as a pair(Nodes, Edges), whereNodes
is a list ofprocNodes and an edge exists between nodesA andB if function A calls
functionB. Thus, the graph is a directed, possibly cyclic multigraph.Every node has a
name that is a string. Every edge has a label that is aninteger and corresponds to
the modifier for that edge. Table 1 lists the availableCallSiteGraph operations.

6

Name Return Value Description
addNode(node) void adds a new node to the graph
getNodes() list of nodes returns a list of all nodes in the graph
name(node) string given a node, returns its name
name(node, string) void given a node and a new name, renames the node
addEdge(node, node, callNode *) void adds edge from one node to another, with the correspondingcallNode
deleteEdge(edge) void removes a given edge from the graph
getEdges() list of edges returns a list of all edges in the graph
getPreds(node) list of edges given a node, returns a list of the node’s incoming edges
getSuccs(node) list of edges given a node, returns a list of the node’s outgoing edges
label(edge) int given an edge, returns the edge’s label
label(edge, int) void given an edge and a new label, changes the edge’s label
getSource(edge) node returns the source of the edge
getTarget(edge) node returns the target of the edge
getCallNode(edge) callNode * returns a pointer to the callNode that corresponds to a givenedge
topsort() list of nodes if the graph is acyclic, returns a list of nodes in topological order
findSCC() list of lists ofnodes returns lists that contain nodes for each strongly-connected component
collapseSCC() void collapses the strongly connected components of the graph
printDot() void prints to standard output the DOT representation of the graph

Table 1:CallSiteGraph operations

4.1.2 ContextGraph

ClassContextGraph provides an interface to aCallSiteGraph annotated with
context values. Thealgorithmmethod of this class annotates the callsite graph, ac-
cording to the algorithm described in Section 3. Table 2 lists the availableContextGraph
operations.

Name Return Value Description
context(node) int returns the number of contexts through which a given node canbe reached
context(node, int) void sets the number of contexts through which a given node can be reached
modifier(callNode *) int returns the annotation for the edge that corresponds to the givencallNode
modifier(callNode *, int) void sets the annotation for the edge that corresponds to the given callNode
algorithm() void executes the algorithm from Section 3 on theContextGraph

Table 2:ContextGraph operations

4.2 Building the Callsite Graph

ClassContextWalker is a C-Breeze walker that builds the callsite graph and runs
the algorithm described in 3. The walker provides one staticmethodbuildContextGraph
that performs the walker’s work, and returns an object of class ContextGraph,
which represents the annotated callsite graph. To perform its work, methodbuildContextGraph
executes the following steps:

7

initialize list of functionsF to be∅
initialize aContextGraph cw to be(∅, ∅)
for all u ∈ unitsdo

for all d ∈ u’s defintitionsdo
if d is a function definitionthen

addd to F

addd to the nodes ofcw
end if

end for
end for
for all f ∈ F do

for all f ′ ∈ F such thatf callsf ′ do
addf → f ′ to edges ofcw, with the correspondingcallNode

end for
end for
run Section 3’s algorithm oncw

C-Breeze phases can use theContextWalker by callingbuildContextGraph,
then performing work over the resultingContextGraph object. In this report, we
discuss two such phases:context (Section 4.3) andcsg (Section 4.4).

4.3 Keeping Track of the Context Number

This project provides thecontext phase that, given a C program, will insert code in
functions that updates a global context number, according to an annotatedContextGraph.
To execute this code on a file, use the following command:

cbz -context -c-code <file>

ClassContextChanger is a C-Breeze changer that peforms the work of the
context phase. This phase is simple, and performs the following steps:

perform Section 4.2’s algorithm, to obtainContextGraph cw

for all u ∈ unitsdo
add definitionint context := 0 to the top ofu
for all c ∈ callsitesdo

modifier← c’s modifier, according tocw
if modifier > 0 then

changec’s statementcall(. . .) to
context += modifier

call(. . .)
context -= modifier

end if
end for

end for

8

Figure 5 shows the results of running thecontext phase on the program from
Fig. 2. Notice that we change a call only when its modifier is greater than 0, making
the resulting code slightly more efficient.

i n t c o n t e x t = 0 ;

vo id f (vo id) {}

vo id e (vo id) {}

vo id d (vo id) {}

vo id c (vo id)
{e () ; f () ;}

vo id b (vo id)
{

d () ;
{

c o n t e x t += 1 ;
e () ;

c o n t e x t −= 1 ;
} ;

}

vo id a (vo id)
{b () ; c () ;}

vo id main (vo id)
{a () ;}

Figure 5: Program from Fig. 2, after runningcontext phase
Now, the programmer can specialize the function code, basedon the value of

context (see Section 5).

4.4 Displaying the Context Graph

This project provides thecsg phase that, given a C program, will print (to standard
out) the DOT notation for the program’s annotatedContextGraph. To execute this
code on a file, use the following command:

cbz -csg <file>

The output from this phase can be piped todot in the following way, to create a
postscript file of the graph:

9

cbz -csg <file> | dot -Tps -o <file>.ps

ClassContextViewer is a C-Breeze walker that peforms the work of thecsg
phase. This phase simply invokesContextWalker’sbuildContextGraphmethod
to obtain aContextGraph object. Then the phrase invokes theContextGraph’s
printDotmethod. All the annotated graph diagrams in this report werecreated with
thecsg phase. Section 5 describes how the programmer can use such code to selec-
tively execute statements based on context.

4.5 Performance Considerations

Tables 3 and 4 list the time complexity for graph operations.In these tables,n refers to
the number of nodes, andm refers to the number of edges (callsites). Many operations
(e.g.,addNode, context) areO(n) or O(m), because the operations first search
through the list of nodes or edges, to ensure correctness.

Operation Complexity
addNode(node) O(n)
getNodes() O(1)
name(node) O(n)
name(node, string) O(n)
addEdge(node, node, callNode *) O(1)
deleteEdge(edge) O(m)
getEdges() O(1)
getPreds(node) O(1)
getSuccs(node) O(1)
label(edge) O(m)
label(edge, int) O(m)
getSource(edge) O(1)
getTarget(edge) O(1)
getCallNode(edge) O(1)
topsort() O(n + m)
findSCC() O(n + m)
collapseSCC() O(m ∗ n)
printDot() O(m)

Table 3:CallSiteGraph performance

Operation Complexity
context(node) O(n)
context(node, int) O(n)
modifier(callNode *) O(n)
modifier(callNode *, int) O(n)
algorithm() O(m ∗ n)

Table 4:ContextGraph performance

10

5 Selectively Executing Code

The programmer can use the two phases created by this project— context andcsg
— to modify the code to selectively execute statements basedon context. The pro-
grammer first should run thecontext phase on the code, to obtain code that keeps
track of the current context number. Then the programmer should use the graph pro-
duced by thecsg phase to determine the context number(s) for the particularfunction
in which context-sensitive code should execute. Then the programmer can insertif
statements that compare the value ofcontext to the desired value. As a simple
example, functione in Fig. 6 will print the string‘‘hello’’ only when the function
has been called by functionb.

6 Future Work

In this section, we briefly discuss an alternate idea for handling recursion. The current
solution handles recursion by collapsing the strongly connected components of the
callsite graph. This technique is lossy, because we cannot know whether recursion
occured or how many times it occurred. A reasonable expectation for recursion might
be that we care only whether recursion has occured. Considerthe callsite graph in
Fig. 7. When at functionc, we might want to know whether we have reachedc from
a recursive call tob or from a non-recursive call tob. In other words, we want to
differentiate between two contexts:a→ b→ c anda→ b

+
→ b→ c, whereb

+
→ b

means thatb called itself one or more times.
This notation leads to the observation that contexts are really regular expressions.

The callsite graph in Fig. 7 has the regular expressiona(b+)c. This regular expression
yields an infinite number of possible contexts. However, forour purposes, we only care
about two contexts, described by the regular expressionab(b?)c. In other words, for
simple recursion, we can reduce a regular expression that accepts an infinite number of
strings to a regular expression that accepts a finite number of strings. The only remain-
ing issue is to devise instrumentation that differentiatesbetween the two contexts. The
instrumentation must ensure that the first recursive call ina context is recorded and all
subsequent recursive calls are idempotent with respect to the context.

While this technique works for simple recursion, more complex recursive cases
require more study. Consider the example in Fig. 8. This callsite graph yields the
regular expressiona((b(cb)∗c?)|(c(bc)∗b?))d. However, we might reasonably expect
to be concerned only with the contexts:

abd
acd
abcd
acbd
abcbd
acbcd

which can be enumerated by the regular expressiona((b((cb)|c)?)|(c((bc)|c)?))d.
The rule here for transforming infinite regular expressionsto finite regular expressions

11

inc lude <s t d i o . h>

i n t c o n t e x t = 0 ;

vo id f (vo id) {}

vo id e (vo id)
{

i f (c o n t e x t == 1)
p r i n t f (” h e l l o \n”) ;

}

vo id d (vo id) {}

vo id c (vo id)
{e () ; f () ;}

vo id b (vo id)
{

d () ;
{

c o n t e x t += 1 ;
e () ;

c o n t e x t −= 1 ;
} ;

}

vo id a (vo id)
{b () ; c () ;}

vo id main (vo id)
{a () ;}

Figure 6: Example of selectively executed code

a

b

c

Figure 7: A callsite graph with a recursive function

12

a

b

c

d

Figure 8: A callsite graph with mutually recursive functions

is more complex and would be a good starting point for future work.
In any case, to obtain more precision in the contexts we can recognize, the work on

simple recursion outlined in this section could be applied with little effort to the current
body of work.

7 Acknowledgements

I gratefully acknowlege Sam Guyer, Mike Bond, and Alison Norman for the feedback
they gave me as I developed this project. I am particularly indebted to Mike Bond for
the idea of adapting the Ball-Larus path-profiling algorithm to call graphs.

References
[1] T. Ball and J. R. Larus. Efficient path profiling. InInternational Symposium on Microarchitecture, pages

46–57, 1996.

[2] E. Koutsofios and S. C. North.Drawing graphs with dot. Murray Hill, NJ.

[3] C. Lin, S. Z. Guyer, and D. Jimenez. The C-Breeze CompilerInfrastructure. TR 01-43, The University
of Texas at Austin, Austin, TX, USA, 2001.

13

	Introduction
	The Ball-Larus Path Profiling Technique
	Deriving Contexts from a Callsite Graph
	Implementation
	Representing Graphs
	CallSiteGraph
	ContextGraph

	Building the Callsite Graph
	Keeping Track of the Context Number
	Displaying the Context Graph
	Performance Considerations

	Selectively Executing Code
	Future Work
	Acknowledgements

