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Abstract. We present a parameterized widening operator that determines the
control-flow sensitivity of an analysis, i.e., its flow-sensitivity, context-sensitivity,
and path-sensitivity. By instantiating the operator’s parameter in different ways,
the analysis can be tuned to arbitrary sensitivities without changing the abstract
semantics of the analysis itself. Similarly, the analysis can be implemented so that
its sensitivity can be tuned without changing the analysis implementation. Thus,
the sensitivity is an independent concern, allowing the analysis designer to design
and implement the analysis without worrying about its sensitivity and then easily
experiment with different sensitivities after the fact. Additionally, we show that
the space of control-flow sensitivities induced by this widening operator forms
a lattice. The lattice meet and join operators are the product and sum of sensi-
tivities, respectively. They can be used to automatically create new sensitivities
from existing ones without manual effort. The sum operation in particular is a
novel construction, which creates a new sensitivity less precise than either of its
operands but containing elements of both.

1 Introduction

A program analysis designer must balance three opposing characteristics: soundness,
precision, and tractability. An important dimension of this tradeoff is control-flow sen-
sitivity: how precisely the analysis adheres to realizable program execution paths. Ex-
amples from within this space include various types of path sensitivity (e.g., property
simulation [11] and predicate abstraction [3]), flow sensitivity (e.g., flow-insensitive [4]
and flow-sensitive [15]), and context sensitivity (e.g., k-CFA [27] and object sensitiv-
ity [21]). By tracking realizable execution paths more precisely, the analysis may com-
pute more precise results but also may become less tractable. Thus, choosing the right
control-flow sensitivity for a particular analysis is crucial for finding the sweet-spot that
combines useful results with tractable performance.

We present a set of insights and formalisms that allow control-flow sensitivity to be
treated as an independent concern, separately from the rest of the analysis design and
implementation. This separation of concerns allows the analysis designer to empirically
experiment with many different analysis sensitivities in a guaranteed sound manner,
without modifying the analysis design or implementation. These sensitivities are not
restricted to currently known strategies; the designer can easily develop and experiment
with new sensitivities as well. Besides allowing manual exploration of potential new
sensitivities, we also describe a mechanism to automatically create new sensitivities,
based on the insight that the space of control-flow sensitivities forms a lattice. The



meet and join operators of this lattice can be used to construct novel sensitivities from
existing ones without requiring manual intervention.

Key Insights. Our key insight is that control-flow sensitivity is a form of widening, and
that we can exploit this to separate control-flow sensitivity from the rest of the analy-
sis. This paper describes control-flow sensitivity as a widening operator parameterized
by an equivalence relation that partitions states according to an abstraction of the pro-
gram’s history of computation. This widening-based view of control-flow sensitivity
has both theoretical and practical implications: it generalizes and modularizes existing
insights into control-flow sensitivity, and provides the analysis designer with a method
for implementing and evaluating many possible sensitivities in a modular way.

Our work builds off of previous efforts to formalize control-flow sensitivity. A
known technique to formalize a given form of control-flow sensitivity abstracts a pro-
gram’s concrete control flow as a specific abstract trace (i.e., some notion of the history
of computation that led to a particular program point). There are many ways to de-
sign such an abstraction, including ad-hoc values that represent control-flow (e.g., the
timestamps of van Horn and Might [29]), designed abstractions with a direct connec-
tion to the concrete semantics (e.g., the mementoes of Nielson and Nielson [22]), and
calculated abstractions that result from the composition of Galois connections (e.g.,
the 0-CFA analysis derived by Midtgaard and Jensen [20]). Existing formalisms of
control-flow abstraction are also tied to the notion of abstraction by partitioning [10]:
the control-flow abstraction partitions the set of states into equivalence relations, the
abstract values of which are merged.

Our formalisms follow this general approach (tracing and partitioning). However,
prior work starts from a subset of known control-flow approximations (e.g, context-
sensitivity [16, 22, 28], 0-CFA [20], or various forms of k-limiting and store value-based
approximations [17, 24]) and seeks to formalize and prove sound those specific control-
flow approximations for a given analysis. In addition, most prior work uses a calcu-
lation approach through a series of Galois connections that lead to a specific (family
of) control-flow sensitivity. In contrast, our work provides a more general view that
specifies a superset of the control-flow sensitivities specified by prior work and exposes
the possibility of many new control-flow sensitivities, while simplifying the required
formalisms and enabling a practical implementation based directly on our formalisms.

Contributions. This paper makes the following specific contributions:

– A new formulation of control-flow sensitivity as a widening operator, which gener-
alizes and modularizes existing formulations based on abstraction by partitioning.
This formulation leads to a method for designing and implementing a program anal-
ysis so that control-flow sensitivity is a separate and independent component. The
paper describes several requirements on the form a semantics should take to enable
separable control-flow sensitivity. Individually these observations are not novel;
in fact, they may be well-known to the community. When collectively combined,
however, they form an analysis design that permits sound, tunable control-flow ap-
proximation via widening. (Section 2)



– A novel way to automatically derive new control-flow sensitivities by combining
existing ones. Our results follow from category theoretic constructions and reveal
that the space of control-flow sensitivities forms a lattice. (Section 3)

– An in-depth example that applies our method to a language with mutable state and
higher-order functions, creating a tractable abstract interpreter with separate and
tunable control-flow sensitivity. We describe several example trace abstractions that
induce well-known sensitivities. We also illustrate our example with an accompa-
nying implementation, available in the supplemental materials.4 (Section 4)

2 Separating Control-Flow Sensitivity from an Analysis

In this section we describe how to use widening to separate control-flow sensitivity from
the rest of the analysis and make it an independent concern. We first establish our start-
ing point: an abstract semantics that defines an analysis with no notion of sensitivity. We
then describe a parameterized widening operator for the analysis and show how differ-
ent instantiations of the parameter yield different control-flow sensitivities. Finally, we
discuss some requirements on the form of semantics used by the analysis that make it
amenable to describing control-flow sensitivity. The discussion in this section leaves the
exact language and semantics being analyzed unspecified; Section 4 provides a detailed
concrete example of these concepts for a specific language and semantics.

2.1 Starting Point

This subsection provides background and context on program analysis, giving us a start-
ing point for our design. Nothing in this particular subsection is novel, the material is
adapted from existing work [8]. For concreteness, we assume that the abstract semantics
is described as a state transition system, e.g., a small-step abstract machine semantics;
Section 2.4 will discuss more general requirements on the form of the semantics. The
abstract semantics is formally described as a set of states ς̂ ∈ Σ] and a transition relation
between states F ] ⊆ Σ] ×Σ]. The semantics uses a transition relation instead of a func-
tion to account for nondeterminism in the analysis due to uncertain control-flow (e.g.,
when a conditional guard’s truth value is indeterminate, and so the analysis must take
both branches). The set of states forms a lattice L] = (Σ],v,u,t). We leave the defi-
nition of states and the transition relation unspecified, but we assume that any abstract
domains used in the states are equipped with a widening operator.5

The program analysis is defined as the set of all reachable states starting from some
set of initial states and iteratively applying the transition relation. This definition is
formalized as a least fixpoint computation. Let F̊ ](S) def

== S ∪ F ](S), i.e., a relation that
is lifted to remember every state visited by the transition relation F ]. The analysis of a
program P is defined as ~P�] def

== lfp
Σ
]
I

F̊ ], i.e., the least fixpoint of F̊ ] starting from an

initial set of states Σ]
I

derived from P.

4 http://www.cs.ucsb.edu/∼pllab/vmcai-14.zip.
5 If the domain is a noetherian lattice then the lattice join operator is a widening operator.



The analysis ~P�] is intractable, because the set of reachable states is either infinite
or, at the least, exponential in the number of nondeterministic transitions made during
the fixpoint computation. The issue is control-flow—specifically, the nondeterministic
choices that must be made by the analysis: which branch of a conditional should be
taken, whether a loop should be entered or exited, which (indirect) function should be
called, etc. The analysis designer at this point must either (1) bake into the abstract
semantics a specific strategy for dealing with control-flow; or (2) ignore the issue in the
formalized analysis design and use an ad-hoc strategy in the analysis implementation.

Our proposed widening operator is a means to formalize control-flow sensitivity
in a manner that guarantees soundness, but does not require that any specific strategy
must be baked into the semantics. On a practical level, it also allows the analysis de-
signer to experiment with many different sensitivities without modifying the analysis
implementation.

2.2 Widening Operator

Our goal is to limit the number of states contained in the fixpoint, while still retain-
ing soundness. We do so by defining a widening operator for the fixpoint computation,
which acts on entire sets of states rather than on individual abstract domains inside
the states. This widening operator: (1) partitions the current set of reachable states into
disjoint sets; (2) merges all of the states in each partition into a single state that over-
approximates that partition; and (3) unions the resulting states together into a new set
that contains only a single state per partition. The widening operator controls the perfor-
mance and precision of the analysis by setting a bound on the number of states allowed:
there can be at most one state per partition. Decreasing the number of partitions can
speed up the fixpoint computation, thus helping performance, but can also merge more
states together in each partition, thus hindering precision.

Formally, the widening operator for control-flow sensitivity is parameterized by a
(unspecified) equivalence relation ∼ on abstract states. Given a widening operator O on
individual abstract domains, our new widening operator O] is defined as:6

O] ∈ P(Σ]) × P(Σ])→ P(Σ])

A O] B =

 h

ς̂∈X

ς̂

∣∣∣∣∣ X ∈ (A ∪ B)
/
∼


where for a set S the notation S/∼ means the set of partitions of S according to equiv-
alence relation ∼, and the widening operator O on individual abstract domains is used
to merge the states in each resulting partition into a single state. Note that if the number
of partitions induced by ∼ is finite, then the number of states in each partition is also
finite because we apply the widening operator at each step of the fixpoint computation.

Theorem 1 (widening). If the number of partitions induced by ∼ is finite, then O] is a
widening operator.

6 This widening operator is reminiscent of an existing notion called disjunctive abstract do-
mains [6]. We discuss the relation between the two further in Section 5.



Proof. Follows from the definition of a widening operator [9].

We now lift the transition relation F ] in a similar fashion as before, except instead

of using set union we use our widening operator:
O
F ](S) def

== S O] F ](S). Then the

control-flow sensitive abstract semantics is defined as ~P�]O
def
== lfp

Σ
]
I

O
F ].

Even though we have not specified the equivalence relation that parameterizes the
widening operator, we can still prove the soundness of the analysis. Informally, because
the widening operator merges the states within each partition using O , the reachable

states using
O
F ] over-approximate the reachable states using F̊ ]. Thus, the control-flow

sensitive abstract semantics is sound with respect to the original abstract semantics:

Theorem 2 (soundness).

γ(~P�]) ⊆ γ(~P�]O )

Proof. We must show that (1) the least fixpoint denoted by ~P�]O exists; and (2) it
over-approximates ~P�].

1. The existence of the fixpoint follows from part 2 of the definition of a widening
operator as given by Cousot and Cousot [9, def. 9.1.3.3].

2. That the widened fixpoint over-approximates the original fixpoint follows from part
1 of the definition of a widening operator as given by Cousot and Cousot [9, defs.
9.1.3.1–9.1.3.2].

2.3 Control-Flow Sensitivity

It remains to show how our widening operator determines the control-flow sensitivity
of the analysis. The determining factor is how the states are partitioned, which is con-
trolled by the specific equivalence relation on states ∼ that parameterizes the widening
operator. The question is, what constitutes a good choice for the equivalence relation?
For Theorem 1 to hold, it must induce a finite number of partitions, but what other
characteristics should it have? Our goal is tractability with a minimal loss of precision;
this means we should try to partition the states so that there are a tractable number of
partitions and the states within each partition are as similar to each other as possible (to
minimize the information lost to merging).

A reasonable heuristic is to partition states based on how those states were com-
puted, i.e., the execution history that led to each particular state. The hypothesis is that
if two states were derived in a similar way then they are more likely to be similar.
This heuristic of similarity is exactly the one used by existing control-flow sensitivities,
such as flow-sensitive maximal fixpoint, k-CFA, object-sensitivity, property simulation,
etc. These sensitivities each compute some abstraction of the execution history (current
program point, last k call-sites, last k allocation sites, etc.) and use that abstraction to
partition and merge the states during the analysis.

Therefore, the widening operator should partition the set of states according to their
control-flow sensitivity approximation:

ς̂1 ∼ ς̂2 ⇐⇒ πτ̂(ς̂2) = πτ̂(ς̂2)



where each state contains an abstract trace τ̂ describing some abstraction of the ex-
ecution history, and πτ̂(ς̂) projects a state’s abstract trace. This definition causes the
widening operator to merge all states with the same trace, i.e., all states with the same
approximate execution history. The widened analysis can be defined without specifying
a particular abstract trace domain; different trace domains can be plugged in after the
fact to yield different sensitivities.

Trace Abstractions. We have posited that control-flow sensitivity is based on an ab-
straction of the execution history of a program, called a trace. This implies that the
trace abstraction is related to the trace-based concrete collecting semantics, which con-
tains all reachable execution paths, i.e., sequences of states, rather than just all reachable
states. An abstract trace is an abstraction of a set of paths in the concrete collecting se-
mantics. For example, a flow-sensitive trace abstraction records the current program
point, abstracting all paths that reach that program point. A context-sensitive trace ab-
straction additionally records the invocation context of the current function, abstracting
all paths that end in that particular invocation context (e.g., as in Nielson and Nielson’s
mementoes [22]). Different forms of context-sensitivity define the abstract “context”
differently: for example, traditional k-CFA defines it as the last k call-sites encountered
in the concrete trace; stack-based k-CFA considers the top k currently active (i.e., not yet
returned) calls on the stack; object sensitivity considers abstract allocation sites instead
of call-sites; and so on.

We note that it is not necessary for the trace abstraction to soundly approximate
the concrete semantics for the resulting analysis to be sound. The trace abstraction is
a heuristic for partitioning the states; as long as the number of elements in the trace
abstraction domain is finite (and hence the number of partitions enforced by the widen-
ing operator is finite), the analysis will terminate with a sound solution. In fact, it isn’t
strictly necessary for ∼ to be based on control-flow at all—exploring other heuristics
for partitioning states would be in interesting avenue for future work.

2.4 Semantic Requirements

To benefit from widening-based control-flow sensitivity, an abstract semantics must
satisfy certain requirements. To abstract control, the analysis must be able to introduce
new program execution paths that over-approximate existing execution paths. To make
this possible, we argue that there should be some explicit notion in the program seman-
tics of the “rest of the computation”—i.e., a continuation. When the analysis abstracts
control, it is abstracting these continuations. The explicit control-flow representation
can take a number of possible forms. For example, it could be in the form of a syn-
tactic continuation (e.g., if a program is in continuation-passing style then the “rest of
the computation” is given as a closure in the store) or a semantic continuation (e.g.,
the continuation stack of an abstract machine). Since the abstract states form a lattice,
any two distinct states must have a join, and (according to our requirement) this joined
state must contain a continuation that over-approximates the input states’ continuations.
Thus, by joining states the analysis approximates control as well as data.

Some forms of semantics do not meet this requirement, including various forms pro-
posed as being good foundations for abstract interpretation [18, 25, 26]. For example,



big-step and small-step structural operational semantics implicitly embed the continu-
ations in the semantic rules. Direct-style denotational semantics similarly embeds this
information in the translation to the underlying meta-language. This means that there
is no way to abstract and over-approximate control-flow; the analysis must use what-
ever control-flow the original semantics specifies (or, alternatively, use ad-hoc strate-
gies baked into the analysis implementation to silently handle control-flow sensitivity).
Some limited forms of control-flow sensitivity may still be expressed when the anal-
ysis takes care to join only those states that already have the same continuation (e.g.,
flow-sensitive maximal fixpoint), but many other forms (e.g., k-CFA or other forms of
context-[in]sensitivity) remain difficult to express.

Continuations vs. Control-Flow Graphs. It is common in dataflow analysis to use a
control-flow graph (CFG) to represent a program’s control-flow rather than embedding
continuations inside states. CFG edges can be seen as externalized continuations, i.e.,
continuations removed from the states and reified as a separate data structure [1]. Our
method will work with CFGs, but with some restrictions and caveats due to the fact
that states are divorced from their continuations, and thus joining states does not join
continuations. The basic problem is that it can be difficult to associate the right contin-
uation with the right state. Sometimes the analysis needs to know under what context
it entered a region of code, to compute the next transition (for example, which caller
to return to for an indirect call). When continuations are embedded inside states, this
information is obvious; when continuations are separate, it becomes messy and ad-hoc.
The problem of associating states and continuations usually manifests for interproce-
dural edges; an interesting hybrid scheme would be to use CFGs intraprocedurally, but
internalized continuations for interprocedural control-flow.

3 Relating and Combining Sensitivities

One of the goals of this work is to make it easier for analysis designers to experiment
with new trace abstractions. To this end, it would be useful to systematically create new
trace abstractions from existing ones, and to understand how trace abstractions relate to
one another.

An obvious way to combine trace abstractions in order to create a new form of
control-flow sensitivity is to take their product.7 Given two trace abstractions, one con-
structs their product by taking the cartesian product of the corresponding sets and defin-
ing the update function to act pairwise on the resulting tuple. A less obvious method
of combining trace abstractions is to take their sum. This is a novel way to create new
control-flow sensitivities that has not been presented before. Think of a trace abstrac-
tion as allowing the analysis to decide whether two abstract states computed during the
analysis should be joined. Informally, the product of two trace abstractions joins two
states only if both traces agree that the states should be joined, whereas the sum of two
trace abstractions joins two states if either trace determines that the states should be
joined.

7 Another interesting combination to explore would be the reduced product, however it is not in
general possible to automatically derive the reduced product of two domains [9, §10].



In the next section we describe how to construct the sum of two traces. We then show
that sum and product are the join and meet operations of a lattice of control-flow sensi-
tivities. This construction suggests new control-flow sensitivities that could be used in
practice and also enables a fully automated exploration of control-flow sensitivities that
complements manual exploration. The supplementary material contains an implemen-
tation of the product and sum operators described here, as part of the implementation
of the example abstract semantics described in Section 4.

3.1 Sums of Trace Abstractions

While the product of two traces is obvious, constructing the sum is unintuitive. We
formally define a trace abstraction as a (unspecified) finite set Θ], a distinct element
1 ∈ Θ] that acts as an initial trace for the analysis, and a trace update function τupdate :
(Σ] × Θ]) ] 1 → Θ] that specifies how the trace changes at each statement transition
in the abstract semantics. The pair (Θ], τupdate) is the object we call a trace abstraction.
When discussing multiple trace abstractions we use ΘX , τX , and 1X to denote the Θ],
τupdate, and initial trace for each trace abstraction X.

A naive attempt to construct the sum would use the disjoint union of the trace ab-
stractions’ underlying sets. However, this attempt fails because each trace abstraction
has a unique initial trace, and thus the disjoint union does not constitute a valid trace
abstraction. To create a valid sum X + Y from trace abstractions X and Y , we must cre-
ate a new set ΘX+Y whose initial trace 1X+Y ∈ ΘX+Y “agrees” with both 1X and 1Y , in a
sense that we formalize below. The sum transition function τX+Y must also “agree” with
both τX and τY , in the same sense. The central insight behind the sum construction is to
construct an equivalence relation between elements of ΘX and ΘY , and let the elements
of ΘX+Y be the corresponding equivalence classes. Then 1X+Y and τX+Y agree with the
individual trace abstractions X and Y if they produce equivalence classes that contain
the same elements that would have been produced by X and Y individually. It remains to
describe how the analysis creates these equivalence classes: they cannot be constructed
before the analysis begins, rather the analysis constructs them dynamically (i.e., as it
executes) in the following way.

Definition 1. Let X and Y be trace abstractions and ς̂ be an abstract state. Inductively
define an equivalence relation ∼ on the disjoint union ΘX ]ΘY by taking the symmetric,
reflexive and transitive closure while applying the following rules:

1X ∼ 1Y

i, j ∈ {X,Y} a ∈ Θi b ∈ Θ j a ∼ b

τi(ς̂, a) ∼ τ j(ς̂, b)

The sum X + Y has underlying set ΘX+Y = (ΘX ] ΘY )/∼, i.e., the set of equivalence
classes of ΘX ] ΘY according to ∼. The equivalence relation is defined by construction
so that τX and τY will always agree on which equivalence class of τ̂X]τ̂Y to transition to.
We now define the disjoint union transition function τX+Y . For τ̂ ∈ ΘX , let [τ̂] denote the
equivalence class of τ̂ in ΘX+Y . The function τX+Y is defined as follows: for any ς̂ ∈ Σ]

and [τ̂] ∈ ΘX+Y , pick some τ̂′ ∈ ΘX so that τ̂′ ∈ [τ̂]. Then τX+Y (ς̂, [τ̂]) = [τX(ς̂, τ̂′)]. The



equivalence relation ensures this is well defined for any valid choice of τ̂′. By symmetry,
the same applies to τ̂ ∈ ΘY .

The essence of this definition is that it causes the following diagram to commute,
making τX and τY agree with τX+Y :

Σ] × ΘX ] 1

(ς̂,x) 7→ (ς̂,[x])
1 7→1 //

τX

��

Σ] × ΘX+Y ] 1

τX+Y

��

Σ] × ΘY ] 1

(ς̂,[y])← [ (ς̂,y)
1← [1oo

τY

��

ΘX [·]
// ΘX+Y ΘY[·]

oo

X + Y is a trace abstraction which is less precise than both X and Y individually,
but still contains some information from both. When implemented, the definition of the
equivalence relation is unknown until runtime, where it is incrementally discovered by
the analysis. Initially, the relation is the one forcing 1X ∼ 1Y . At each iteration of the
fixpoint calculation the functions τX and τY are computed, and the results are used to
discover more equivalences.

From another perspective, one can also view a trace abstraction X as a finite automa-
ton with a set of automaton states ΘX , a transition function τX , and an initial point 1X .
The input alphabet is the set Σ]. We were surprised to discover that, from this perspec-
tive, our definition of summing trace abstractions corresponds exactly to a widening
operator on finite automata described by Bartzis and Bultan [5]. Their operator was de-
signed to provide a “less precise” finite automaton that accepts a larger language than
both of its inputs.

3.2 Trace Abstractions Form a Lattice
The sum and product operations described above are dual to each other in a special way:
they are the join and meet operations of a lattice. The lattice partial order is based on
the precision of the trace abstractions. Using the notation from the previous section, we
say that a trace abstraction X is more precise than Y (written as X ≤ Y) if there exists a
relation on the corresponding automata satisfying certain properties.
Definition 2. X ≤ Y if there is a relation R ⊂ Y × X such that

1. (1Y ,1X) ∈ R
2. (y, x) ∈ R implies for all ς̂ ∈ Σ], (τY (ς̂, y), τX(ς̂, x)) ∈ R
3. R is injective, meaning (y, x) ∈ R and (y′, x) ∈ R implies y = y′.

The relation R forces Y and X to behave in the same way, but also requires that X has
“more” members than Y . It can be likened to an injective function. The relation ≤ is a
preorder; by implicitly taking equivalence classes it becomes a partial order. Intuitively,
X < Y corresponds to the intuition “X is strictly more precise than Y”, in every way
of measuring it. Members of the same equivalence class correspond to families of trace
abstractions that provide exactly the same precision.
Theorem 3. The space of trace abstractions form a lattice, where sum corresponds to
join and product corresponds to meet.

Proof. The proof follows from elementary results in category theory, order theory and
our definitions. The details are given in the supplementary materials.



Use of Category Theory. Category theory provides useful constructions that apply in
general settings. We arrived at our construction of the sum operator and the lattice of
sensitivities via category theory, because they were non-obvious without this perspec-
tive. We used category theory to derive the definition for sums of trace abstractions and
prove the theorems elegantly, and we suspect it can be used to achieve further insights
into combining sensitivities. In our supplementary material we detail how we used it to
arrive at our results.

4 Analysis Design Example

In this section we give a detailed example of how to build an abstract interpreter with
separate and tunable control-flow sensitivity. Our example picks up in the middle of
the design process: an analysis designer has formally defined an abstract semantics
that is amenable to defining control-flow sensitivity (cf. Section 2) and the semantics
has been proven sound with respect to a concrete semantics.8 We show how to extend
this analysis to support tunable control flow and how to easily and modularly tune the
control-flow sensitivity of the resulting analysis. The supplementary material contains
an implementation of this example analysis written in Scala.

4.1 Syntax

Figure 1 gives the syntax of a small but featureful language. It contains integers, higher-
order functions, conditionals, and mutable state. As discussed in Section 2.4, tunable
control-flow sensitivity requires an explicit representation of a program’s control. For
this example we chose to make control-flow explicit in the program syntax, hence we
use continuation-passing style (CPS). We assume that the CPS syntax is the result of a
CPS-translation from a programmer-facing, direct-style syntax.

n ∈ Z x ∈ Variable ⊕ ∈ BinaryOp ` ∈ Label

L ∈ Lam ::= λ−→x . S

T ∈ Trivial ::= [n1..n2] | x | L | Tl ⊕ Tr

S ∈ Serious ::= let x = T in S | set x = T in S | if T St Sf | x(
−→
T )

Fig. 1: Continuation-passing style (CPS) syntax for the example language. Vector nota-
tion denotes an ordered sequence. The notation [n1..n2] denotes nondeterministic choice
from a range of integers, to simulate, e.g., user input.

As usual for CPS [23], expressions are separated into two categories: Trivial and
Serious. Trivial expressions are guaranteed to terminate and to have no side-effects;
Serious expressions make no such guarantees. Functions take an arbitrary number of

8 For reasons of space we omit the concrete semantics and soundness proof; neither are novel.



arguments and can represent either user-defined functions from the direct-style program
(modified to take an additional continuation parameter) or the continuations created by
the CPS transform (including a halt continuation that terminates evaluation). We assume
that it is possible to syntactically disambiguate among calls to user-defined functions,
calls to continuations that correspond to a function return, and all other calls. All syn-
tactic entities have an associated unique label ` ∈ Label; the expression ·` retrieves this
label (for example, the label of Serious expression S is S`).

4.2 Original Abstract Semantics

The original abstract semantics defines a computable approximation of a program’s be-
havior using a small-step abstract machine. Figure 2a describes the semantic domains
(for now, ignore the boxed elements9). An abstract state consists of a set of Serious
expressions S (which represents the set of expressions that might execute at the current
step), an abstract environment ρ̂, and an abstract store σ̂. Because the language is dy-
namically typed, any variable may be an integer or a closure at any time. Thus, abstract
values are a product of two abstractions: one for integers and one for closures.10 Integers
are abstracted with the constant propagation lattice Z] = Z∪{>Z] ,⊥Z] }, and closures are
abstracted with the powerset lattice of abstract closures. The analysis employs a finite
address domain Address] and a function alloc to generate abstract addresses; we leave
these elements unspecified for brevity.

Figure 2b describes the semantic function η̂, which abstractly interprets Trivial ex-
pressions. Literals evaluate to their abstract counterparts, injected into a tuple. Variable
lookup joins all the abstract values associated with that variable. The abstract transition
function F ] transforms abstract states. Note that in the rule for function calls we use
the notation

−→
T to mean the sequence of argument expressions, Ti to mean a particu-

lar argument expression, and [−−−−−−→pi → qi] to mean each pi maps to its corresponding qi.
The semantics is nondeterministic, meaning that one state may potentially transition to
multiple states. The semantics also employs weak updates: when a value is updated,
the analysis joins the new value with the old value. It is possible under certain circum-
stances to strongly update the store (by replacing the old value instead of joining with
it), but for simplicity our example always uses weak updates.

Figure 2c describes the abstract semantics of Serious expressions. The unboxed
features are standard. Note the sources of non-determinism: An if statement may lead
to multiple states (i.e., when the condition’s abstract value is not precise enough to
send the abstract interpretation down only one brach). A function call also may lead to
multiple states (i.e., when evaluating the function’s name leads to a set of closures, each
of which is traced by the abstract interpretation).

The full analysis is defined as the reachable states abstract collecting semantics of
Serious evaluation: ~S�] = lfp

Σ
]
I

F̊ ]. This analysis is sound and computable, however it

9 All the unboxed elements define the original abstract semantics. The boxed elements describe
the extensions that support parameterized control-flow sensitivity; they are described in Sec-
tion 4.3.

10 For brevity, we omit error-handling semantics. We also sometimes omit one part of the tu-
ple, when the meaning is clear from the context (e.g., when interpreting Serious values in
Figure 2c).



n̂ ∈ Z] ⊕̂ ∈ BinaryOp] τ̂ ∈ Θ]

ς̂ ∈ Σ] = P(Serious) × Env] × Store] × Θ] (abstract states)
ρ̂ ∈ Env] = Variable→ P(Address]) (environments)

σ̂ ∈ Store] = Address] → Value] (stores)

ĉlo ∈ Closure] = Θ] × Env] × Lam (closure values)
v̂ ∈ Value] = Z] × P(Closure]) (abstract values)

F ] ∈ P(Σ])→ P(Σ]) = Figure 2c (transition function)

(a) Abstract semantic domains.

η̂ ∈ Trivial × Env] × Store] × Θ] → Value]

η̂([n1..n2], ρ̂, σ̂, τ̂) = 〈α([n1..n2]), ∅〉

η̂(x, ρ̂, σ̂, τ̂) =
⊔

â ∈ ρ̂(x)

σ̂(â)

η̂(λ−→x . S, ρ̂, σ̂, τ̂) = 〈⊥Z] , {〈 τ̂ , ρ̂, λ
−→x . S〉}〉

η̂(Tl ⊕ Tr, ρ̂, σ̂, τ̂) = η̂(Tl, ρ̂, σ̂, τ̂) ⊕̂ η̂(Tr, ρ̂, σ̂, τ̂)

(b) Abstract Trivial evaluation.

Si ∈ S where S′ ρ̂′ σ̂′ τ̂′

let x = T in Sb ~T� = v̂ Sb ρ̂[x 7→ â′] σ̂ t [â′ 7→ v̂] τstmt(ς̂, Sb)

set x = T in Sb ~T� = v̂ ∧ ρ̂(x) =
−→
â Sb ρ̂ σ̂ t [

−−−−−→
âi 7→ v̂] τstmt(ς̂, Sb)

if T St Sf
~T� < {0̂,⊥Z] } St ρ̂ σ̂ τstmt(ς̂, St)

~T� w 0̂ S f ρ̂ σ̂ τstmt(ς̂, S f )

x(
−→
T )

~Ti� = v̂i ∧ Sc ρ̂c[
−−−−−−→
yi 7→ â′i ] σ̂ t [

−−−−−−→
â′i 7→ v̂i] τcall(ς̂, ĉlo)

〈 τ̂c , ρ̂c, λy . Sc〉︸               ︷︷               ︸
ĉlo

∈ ~x�

(c) Abstract transition function F ], where ~·� = η̂(·, ρ̂, σ̂, τ̂) and a fresh address â′ is given by
alloc. Given a current state ς̂ = 〈S, ρ̂, σ̂, τ̂〉, the transition function yields a set of new states
F ](ς̂) = 〈{S′}, ρ̂′, σ̂′, τ̂′〉.

Fig. 2: A standard abstract semantics over a simple abstract value domain (constant-
and closure-propagation). The boxed elements indicate what extensions are necessary
for this semantics to support parameterized control-flow sensitivity.



is still intractable because the set of reachable states grows exponentially with the num-
ber of nondeterministic branch points. To make this analysis tractable requires some
form of control-flow sensitivity.

4.3 Tunable Control-Flow Sensitivity

We now extend the abstract semantics for our language to express tunable control-
flow sensitivity. As described in Section 2, we extend the definition of abstract states
to include a trace abstraction domain τ̂ ∈ Θ]. We leave the trace abstraction domain
unspecified; the specific instantiation of the trace abstraction domain will determine the
analysis control-flow sensitivity, as exemplified in Appendix A.

We make three changes to the abstract semantics of the previous section to integrate
trace abstractions into the semantics; these are represented by the boxed elements in
Figure 2. First, we add the trace abstraction domain to the abstract state definition.
Next, we modify F ] to operate on this new domain. This change gives the trace update
mechanism access to all the data needed to compute a new abstract trace. Finally, we
extend abstract closures to contain an abstract trace. Intuitively, a closure’s abstract
trace corresponds to the trace that existed before a function was called. Any analysis
that tracks calls and returns (e.g., stack-based k-CFA) can use this extra information to
simulate stack behavior upon exiting a function call by restoring the trace to the point
before a function was called.

The analysis designer tunes control-flow sensitivity by specifying an abstract trace
domain and a pair of transition functions that generate new abstract traces:

τ̂ ∈ Θ]

τstmt ∈ Σ
] × Serious→ Θ]

τcall ∈ Σ
] × Closure] → Θ]

The abstract trace domain summarizes the history of program execution. The abstract
trace transition function τstmt specifies how to generate a trace when execution transi-
tions between two program points in the same function. The abstract trace transition
function τcall specifies how to generate a trace when execution transitions across a func-
tion call. The program analysis is defined as the widened reachable states abstract col-

lecting semantics, ~S�]O = lfp
Σ
]
I

O
F ], where the equivalence relation ∼ is the one given

in Section 2.3.
The precision and performance of the analysis depend on the particular choice of

trace abstraction for control-flow sensitivity. In this section, we present one illustrative
example. Appendix A gives fives more. We could define many more, but our choices
are sufficient to demonstrate the utility and flexibility of our method. Note that given
these six definitions, we can automatically construct many distinct sensitivities using
various combinations of the sum and product operators defined in Section 3.

Example: Flow-sensitive, stack-based k-CFA analysis In dataflow analysis, k-CFA
is usually defined as having a stack- like behavior: upon returning from a function call,
the current callstring is discarded and replaced by the callstring that held immediately



before making that function call (in effect, the callstring is “pushed” when entering a
function and “popped” when exiting the function). The analysis designer can achieve
this behavior by modifying τcall to detect continuation calls that correspond to function
returns and to replace the current callstring with the callstring held in the return contin-
uation’s closure. The CPS transformation guarantees this callstring to be the one that
held immediately before the current function was called.

Algorithm 1 Flow-sensitive, stack-based k-CFA

τ̂ ∈ Θ] = Label × Label?

τstmt(〈 , , , τ̂〉, S) = 〈S`, π2(τ̂)〉

τcall(〈S, , , τ̂〉, 〈τ̂c, , λy . Sc〉) = 〈S`c, τ̂
′〉

where τ̂′ =


first k of (S` :: π2(τ̂)) if S ∈ UserCalls
π2(τ̂c) if S ∈ ReturnKont
π2(τ̂) otherwise

5 Related Work

In abstract interpretation, there is a relatively small but dedicated body of research on
trace abstraction and on formalizing control-flow sensitivity as partitioning. What dis-
tinguishes our work and prior efforts is a different focus: prior work focuses on the
integration of control-flow abstractions into an existing analysis; our work focuses on
the separation of control-flow abstractions from an existing analysis, so that it is eas-
ier for analysis designers to experiment with different control-flow sensitivities. In this
section, we discuss the implications of these differences. Broadly, no prior work has
couched control-flow sensitivity in terms of a widening operator based on abstractions
of the program history, which permits a simpler, more general, and more tunable for-
mulation of control-flow sensitivity.

Trace Partitioning. Our work is similar in some respects to the trace partitioning work
by Mauborgne and Rival [17, 24], which itself builds on the abstraction-by-partitioning
of control-flow by Handjieva and Tzolovski [13]. Trace partitioning was developed in
the context of the Astrée static analyzer [7] for a restricted subset of the C language, pri-
marily intended for embedded systems. Mauborgne and Rival observe that usually ab-
stract interpreters are (1) based on reachable states collecting semantics, making it diffi-
cult to express control-flow sensitivity; and (2) designed to silently merge information at
control-flow join points11—what in dataflow analysis is called “flow-sensitive maximal
fixpoint” [14]. They propose a method to postpone these silent merges when doing so

11 By which they mean that the abstract semantics say nothing about merging information, but
the implementation does so anyway.



can increase precision; effectively they add a controlled form of path-sensitivity. They
formalize their technique as a series of Galois connections.

Mauborgne and Rival describe a denotational semantics-based analysis that can use
three criteria to determine whether to merge information at a particular point: the last k
branch decisions taken (i.e., whether an execution path took the true or false branch);
the last k while-loop iterations (effectively unrolling the loop k times); and the value of
some distinguished variable. These criteria are guided by syntactic hints inserted into a
program prior to analysis; the analysis itself can choose to ignore these hints and merge
information anyway as a form of widening operator. This feature is a form of dynamic
partitioning, where the choice of partition is made as the analysis executes. Our sum
abstraction (Section 3.1) is another form of dynamic partitioning.

The analysis described by Mauborgne and Rival requires that the program is non-
recursive; it fully inlines all procedure calls to attain complete context-sensitivity. Be-
cause the semantics they formulate does not contain an explicit representation of con-
tinuations, there is no way in their described system to achieve other forms of context-
sensitivity (e.g., k-CFA, including 0-CFA, i.e., context-insensitive analysis) without
heavily modifying their design, implementation, and formalisms (cf. our discussion
in Section 2.4). Because our method seeks more generality, it can express all of the
sensitivities described by Mauborgne and Rival.

Predicate Abstraction. Fischer et al. [12] propose a method to join dataflow analy-
sis with predicate abstraction using predicate lattices to gain a form of tunable intra-
procedural path-sensitivity. At a high level these predicate lattices perform a similar
“partition and merge” strategy as our own method. However, our method is more gen-
eral: we can specify many more forms of control-flow sensitivity due to our insights
regarding explicit control state. One can consider their work as a specific instantiation
of our method using predicates as the trace abstraction. On the other hand, Fisher et al.
use predicate refinement to automatically determine the set of predicates to use, which
is outside the current scope of our method. In order to do the same, our method would
need to add a predicate refinement strategy.

Context sensitivity. There are several papers that describe various abstract interpretation-
based approaches to specific forms of context sensitivity, including Nielson and Niel-
son [22], Ashley and Dybvig [2], Van Horn and Might [29], and Midtgaard and Jensen [19,
20]. Nielson and Nielson describe a form of context-sensitivity based on abstractions of
the history of a program’s calls and returns [22]. Although this formulation is separa-
ble, it is not as general as the one described in this paper. For example, it cannot capture
calls and returns in obfuscated binaries (which may contain no explicit calls and re-
turns); to capture such behavior, a different formulation similar to property simulation
is required [16]. Our parameterized, widening-based approach we describe is general
enough to capture either of these formulations (and many more).

Ashley and Dybvig [2] give a reachable states collecting semantics formulation of
k-CFA for a core Scheme-like language; they instrument both the concrete and abstract
semantics with a cache that collects CFA information. The analysis as described in the
paper is intractable (i.e., although it yields the same precision as k-CFA, the number of
states remains exponential in the size of the program). Ashley and Dybvig implement



a tractable, flow-insensitive version of the analysis independently from the formally-
derived version, rather than deriving the tractable version directly from the formal se-
mantics.

Van Horn and Might [29] also give a method for constructing analyses, using an
abstract machine-based, reachable states collecting semantics of the lambda calculus.
Their analysis includes a specification of k-CFA. An important contribution of their
paper is a technique to abstract the infinite domains used for environments and semantic
continuations using store allocation (this is an alternative we could have used for our
example analysis in Section 4 instead of CPS form). As with Ashley and Dybvig, the
analysis as described in their paper does not directly yield a tractable analysis. Van Horn
and Might describe a tractable version of their analysis (not formally derived from the
language semantics) that uses a single, global store to improve efficiency, but disallows
flow-sensitive analysis because it computes a single solution for the entire program.

Midtgaard and Jensen [19] derive a tractable, demand-driven 0-CFA analysis for
a core Scheme-like language using abstract interpretation. Their technique specifically
targets 0-CFA, rather than general k-CFA. They employ a series of abstractions via
Galois connections, the composition of which leads to the final 0-CFA analysis. In a
later paper [20], Midtgaard and Jensen derive another 0-CFA analysis to compute both
call and return information. Our example semantics of Section 4 bears a resemblance
to Midtgaard and Jensen’s (and to van Horn and Might’s machine construction), but
our goals differ. Our example illustrates how to achieve a sound analysis with arbitrary
control-flow sensitivity, without having to derive the soundness for each sensitivity.

Relation to Disjunctive Domains The widening operator we define in Section 2 is rem-
iniscent of an existing notion called disjunctive abstract domains [6]. This techniqe is
used to augment the precision of a convex abstract domain by using the corresponding
powerset domain, i.e., an abstract value is now a set of absract elements instead of a
single element. The analysis interpret a set of elements as a disjunction. However, the
powerset domain (also known as the disjunctive domain) is exponentially larger than the
original domain, which makes the analysis intractable. Thus, we need to define a widen-
ing operator O on the powerset domain that accelerates convergence by occasionally
merging elements instead of unioning them.

The relation to our method is clear: our domain for the abstract collecting seman-
tics is the powerset domain of abstract states (which can be interpreted as a disjunctive
domain) and our widening operator accelerates convergence by occasionally merging
states (using the state widening operator) instead of unioning states. The novelty of our
method comes from two aspects. First, we link the notions of widening and control-flow
sensitivity, which have never been related before. This link is possible when control is
explicit in the abstract states as discussed in Section 2.4; thus joining states (our widen-
ing) necessarily abstracts control as well as data. It is exactly this behavior that enables
control-flow sensitivity. Second, we show how to use this relation to create tunable
control-flow sensitivity, as discussed in Section 2.3 and exemplified in Section 4. By
making the relation between widening and control-flow sensitivity explicit and formal,
we are able to take advantage of this new insight to create a practical method for tunable
precision.



6 Conclusions and Future Work

We have presented a method for program analysis design and implementation that al-
lows the analysis designer to parameterize over control-flow abstractions. This sepa-
ration of concerns springs from a novel theoretical insight that control-flow sensitivity
is induced by a widening operator parameterized by trace abstractions. Our method
makes it easier for an analysis designer to specify, implement, and experiment with
many forms of control-flow sensitivity, which is critical for developing new, practical
analyses. For example, there are many popular hybrid object-oriented / functional lan-
guages (e.g., JavaScript, C#, Scala, etc.), but no one knows whether we should analyze
them with control-flow sensitivities that were developed in a functional context (e.g.,
k-CFA) or an object-oriented context (e.g., object-sensitivity) or some hybrid thereof.
Our method can be used to quickly experiment with a wide range of possibilities to gain
insight into this question.

Our perspective on the space of trace abstractions as a category also enabled new
insights into automatically constructing and combining trace abstractions in novel ways
to achieve new forms of control-flow sensitivity. Our future work involves exploring
these ideas further, for example, using combinatorial optimization to explore the vast
space of possible trace abstractions. Also, as observed earlier, there is really nothing in
our method specific to control-flow: our method applies to any property of a program
that can be abstracted and that might be useful to partition the analysis state-space. We
will also explore possible heuristics besides control-flow.
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A Examples of Control-Flow Sensitivities

In this section, we define example control-flow sensitivities for the analysis given in
Section 4.

Flow-insensitive, context-insensitive analysis. In a flow-insensitive analysis, any Serious
expression can execute after any other Serious expression, regardless of where those
expressions appear in the program. Rather than compute separate solutions for each
program point, the analysis computes a single solution for the entire program. Using
our method, the analysis designer can specify flow-insensitive analysis by making the
Θ] domain a single value, so that all states will necessarily have the same abstract trace
and hence belong to the same singular partition.

Analysis 2 Flow-insensitive, context-insensitive

τ̂ ∈ Θ] = 1

τstmt( , ) = 1

τcall( , ) = 1

We use an underscore to indicate an arbitrary value in the function parameters.
The widened analysis joins every state into one single global state, i.e., the fixpoint
computation continually adds information to a single program-wide state until that state
converges.

Flow-sensitive (FS), context-insensitive analysis. A flow-sensitive analysis executes
statements in program-order, computing a single solution for each program point. The
analysis designer can specify flow-sensitive analysis by making the Θ] domain the set
of program labels and updating the trace at each step to be the current program point.

Analysis 3 Flow-sensitive, context-insensitive

τ̂ ∈ Θ] = Label

τstmt( , S) = S`

τcall( , 〈 , , λy . Sc〉) = S`c

The abstract semantics at each step collects all states at the same program point
and joins them together, constraining the maximum number of abstract states to be the
number of program points. In the dataflow analysis community this is called the flow-
sensitive maximal fixpoint analysis (MFP).



FS + traditional k-CFA analysis. Traditional k-CFA [27] is a context-sensitive anal-
ysis that keeps track of the last k call-sites encountered along an execution path and
uses this callstring to distinguish information at a given program point that arrives via
different routes. At each function call, the analysis appends the call-site to the callstring
and truncates the result so that the new callstring has at most k elements. Within a func-
tion, the analysis can be flow-insensitive or flow-sensitive—flow-sensitivity makes the
most sense and matches the behavior achieved by translating let and set into function
calls. The analysis designer can specify flow-sensitive k-CFA by making the Θ] domain
contain a tuple of the current program point and the callstring (as a sequence of labels).
The first element of the tuple tracks flow-sensitivity; the second element of the tuple
tracks context-sensitivity.

Analysis 4 Flow-sensitive, k-CFA

τ̂ ∈ Θ] = Label × Label?

τstmt(〈 , , , τ̂〉, S) = 〈S`, π2(τ̂)〉

τcall(〈S, , , τ̂〉, 〈 , , λy . Sc〉) = 〈S`c, τ̂
′〉

where τ̂′ =

first k of (S` :: π2(τ̂)) if S ∈ UserCalls
π2(τ̂) otherwise

The τstmt transition function is the same as for flow-sensitivity. The τcall transition
function distinguishes between user-defined calls and continuation calls that were in-
troduced during the CPS transformation. For a user-defined call, the transition function
updates the callstring; for continuations, it leaves the callstring as-is.

Note that the current callstring is left unmodified when returning from a call (i.e.,
calling the continuation that was passed into the current function); thus the callstring
does not act like a stack.

FS + k-allocation-site sensitive analysis Object-sensitivity [21] is a popular form of
context-sensitive control-flow sensitivity for object-oriented languages. We do not have
objects in our example language, but as noted elsewhere [28] object-sensitivity should
more properly be termed allocation-site sensitivity—it defines a function’s context in
terms of the last k allocation-sites (i.e., abstract addresses) rather than callstrings. Under
the assumption that every function call uses a variable as the first argument, the analysis
designer can employ a form of allocation-site sensitivity by using that variable’s address
to form the abstract trace.



Analysis 5 Flow-sensitive, k-allocation-site sensitive

τ̂ ∈ Θ] = Label × Address]
?

τstmt(〈 , , , τ̂〉, S) = 〈S`, π2(τ̂)〉

τcall(〈S, , , τ̂〉, 〈τ̂c, , λy . Sc〉) = 〈S`c, τ̂
′〉

where τ̂′ =


first k of (self :: π2(τ̂)) if S ∈ UserCalls
π2(τ̂c) if S ∈ ReturnKont
π2(τ̂) otherwise

The value self refers to the address of the call’s first argument. In an object-oriented
language, this argument always corresponds to the receiver of a method (i.e., the self or
this pointer).

Property simulation analysis A more unusual form of control-flow sensitivity is Das
et al.’s property simulation [11]. The previous sensitivities we have described use low-
level notions of execution trace, either in terms of calls or addresses. Property simula-
tion relies on a finite-state machine (FSM) that describes a higher-level notion of exe-
cution trace—for example, an FSM whose states track whether a file is open or closed,
or whether a lock is locked or unlocked. The analysis transitions this FSM according
to the instructions it encounters. At a join point in the program (e.g., immediately after
the two branches of a conditional) the analysis either merges the execution state or not
depending on whether the FSMs along the two paths are in the same FSM state. The
analysis designer can specify property simulation by making Θ] be a tuple that con-
tains the current program point and the current state of the FSM. The FSM is updated
based on an API (e.g., for file or lock operations) so that τcall will transition the FSM
accordingly.

Analysis 6 Flow-sensitive, property-sensitive

τ̂ ∈ Θ] = Label × FSM

τstmt(〈 , , , τ̂〉, S) = 〈S`, π2(τ̂)〉

τcall(〈S, , , τ̂〉, 〈τ̂c, , λy . Sc〉) = 〈S`c, δFSM(S, π2(τ̂))〉


