
CS 105

Lab 2: Debugger

Playing with X86-64 Assembly

Introduction and Goals

NOTE: This lab must be run on Wilkes. If you run it on a different machine, you may get incorrect
answers.

The goals of this assignment are to do some basic investigation of the x86-64 architecture and assembly
language, and to begin learning how to use the debugger gdb. You can read the manual page for gdb by
typing “man gdb” on the command line.1 You can scroll up and down in the manual page using the space bar
or the up/down and page-up/page-down keys, and can exit by pressing the “q” key. The lab Web page also
has links to a quick gdb summary and to a printable gdb reference card; you can also find other information
about gdb with Google or another favorite search engine.

Optimizing your learning. In this lab, we will frequently tell you to type certain gdb commands. Please
pay attention to those commands; don’t just blindly copy them from the handout without thinking about
them. In each case, we have carefully selected them because they will be useful to you in this lab, in later
labs, and in life. Facility with the debugger is an extremely valuable skill for a computer scientist; you can
find and fix bugs far more quickly with the debugger’s help than by inserting print statements or staring at
the code.2

Compiler options. It will be useful to know that you can get the compiler to generate the assembler
source for a program foo by running “gcc -S foo.c”. You should also know that to use the debugger
effectively, you will need to compile with the “-g” switch. In fact, you should just get in the habit of always
compiling with “-g”; the situations where it’s undesirable are extremely unusual. (But note that -S and
-g are best kept separate.) Also, it’s usually wise to compile with the “-Og” switch so that optimization
doesn’t make debugging more difficult. Remember that debugging is nearly always more important than
optimization! (Important detail: you can compile with -S and any optimization level, and in fact doing so
can produce useful insights.)

The manual page for gcc is quite lengthy; however you may find it interesting to skim the sections that
describe the debug option (-g) and optimization options (variants of -O). Note that you can search inside a
manual page after opening it by hitting the “/” key, typing your search, and then pressing Enter. You can
use search to quickly locate the sections “Options for Debugging Your Program” and “Options That Control
Optimization”.

Getting set up. Download the files problem1.c and problem2.c from the lab Web page. You won’t be
editing these files, but you will be using them with the debugger throughout the lab.

1In general, you can read the manual page for a command (or built-in library function) called foo using “man foo”
2Sometimes those other techniques are useful too, but debuggers are designed to help you find bugs, and they do a good job

of it!
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Collect your answers to all of the following questions in a plain-text file named “lab02.txt”. Identify
each section by problem number, and each answer by question number. Be sure to put your name and your
partner’s name at the top of the file.

Submission. Submit ONLY the lab02.txt answer file, using the following command:

cs105submit -a 02 lab02.txt.

NOTE: Do not change either of the programs in this lab!

Problem 1—Debugging Optimized Code (16 Points)

Let’s first look at problem1.c. You can quickly view the contents of a file using the less command, e.g.,
“less problem1.c”. You can navigate through a file using less the same way you navigate through man

pages. (In fact, man uses less to display the manual!).
This file contains a function that has a small while loop, and a simple main that calls it. Briefly study

the loop_while function to understand how it works (you don’t need to fully decode it; just get a clue about
what’s going on).

It will also be useful to know what the atoi function does. Type “man atoi” in a terminal window to
view the manual page for atoi and find out. (Side note: the function’s name is pronounced “ay to eye,” as
in “ASCII to integer”, not “a toy.”)

Finally, it will be useful to have a slight clue about printf. Since printf is quite complicated, for now
we’ll just say that it prints answers, and "%d" means “print in decimal”. We encourage you to read more
about printf in Kernighan & Ritchie or online (the advantage of reading in K&R is that the description
there is less complex; recent versions of printf have tons of extensions that aren’t particularly useful in this
course).

Compile the program with the -g switch and with no optimization: “gcc -g -o problem1 problem1.c”.
Run gdb problem1 and set a breakpoint in main (“b main”). (When you “set a breakpoint,” you are telling
the debugger that whenever the program reaches that line, you want to freeze it so you can type more
debugger commands, such as examining variables. It’s much quicker than using printf!)

Run the program by typing “r” or “run”. The program will stop in main. (Ignore any warnings; they’re
meaningful but we’ll work around them.)

Again, pay attention to the commands below. For example you should remember that “r” is the quickest
way to run a program under gdb (see above) and that if you use “run” alone it remembers the arguments
you used last time (see Step 6 below).

(Note: to help you keep track of what you’re supposed to doing, we have used italics to list the break-
points you should have already set at the beginning of each step—except when they don’t matter. Also,
when possible we have listed the state you should be in.)

1. Existing breakpoint at main.
Type “c” (or “continue”) to continue past the breakpoint. What happens?

2. Existing breakpoint at main; after the program terminates.
Type “bt” (or “backtrace”). That will print a “trace” of which function called which to get to where
the program died. Take note of the numbers in the left column; they identify the stack frames of the
calls that led to the point of failure. The point of failure is #0, and main is the last function listed.
Type “frame n”, where where n is one of those numbers, to get to main’s stack frame so that you can
look at main’s variables. What file and line number are you on?

3. Existing breakpoint at main; after the program terminates.
Usually when bad things happen in the library (here, several variants of strtol) it’s your fault, not
the library’s. In this case, the problem is that main passed a bad argument to atoi. There are two
ways to find out what the bad argument is: look at atoi’s stack frame, or print the argument. Figure

2



out how to look at atoi’s stack frame (note that gcc sometimes mangles function names a bit). Can
you see the value of the argument (nptr) that was passed to atoi? (Answer yes or no.)

4. Existing breakpoint at main; after the program terminates.
The lack of information is sometimes caused by compiler optimizations, other times by minor debugger
issues. In either case it’s a nuisance. Rerun the program by typing “r” (you’ll have to confirm that
you really want to do that) and let it stop at the breakpoint. Note that in Step 2, atoi was called
with the argument “argv[1]”. You can find out the value that was passed to atoi with the command
“print argv[1]”. What is printed?

5. Existing breakpoint at main; after rerunning the program and stopping at the breakpoint.
If you took CS 70, you will recognize that number as the value of a NULL pointer. Like many library
functions, atoi doesn’t like NULL pointers. Rerun the program with an argument of 5 by typing “r
5”. When it reaches the breakpoint, continue (type “c”). What does the program print?

6. Existing breakpoint at main; after the program terminates.
Without restarting gdb, type “r” (without any further parameters) to run the program yet again.
(If you restarted gdb, you must first repeat Step 5.) When you get to the breakpoint, examine the
variables argc and argv by using the print command. For example, type “print argv[0].” Also try
“print argv[0]@argc”, which is gdb’s notation for saying “print elements of the argv array starting
at element 0 and continuing for argc elements.” What is the value of argc? What are the elements of
the argv array? Where did they come from, given that you didn’t add anything to the run command?

7. Existing breakpoint at main; at main.
The step or s command is a useful way to follow a program’s execution one line at a time. Type “s”.
Where do you wind up? If you end up on a line inside atoi.c, type “finish” to get out of atoi and
then type “s” again so that you end at a line inside problem1.c. Now answer where you wind up.

8. Existing breakpoint at main; at main.
Gdb always shows you the line that is about to be executed. Sometimes it’s useful to see some context.
Type “list” and the Enter (return) key. What lines do you see? Then hit the Enter key again. What
do you see now?

9. Existing breakpoint at main; at main and stepped once as described in Step 7.
Type “s” (and Enter) to step to the next line. Then hit the Enter key three more times. What do you
think the Enter key does?

10. Existing breakpoint at main; after stepping once as described in #7 and then stepping four more times.
What are the values of result, a, and b?

11. Existing breakpoint at main; after stepping once as described in #7 and then stepping four more times.
Type “quit” to exit gdb. (You’ll have to tell it to kill the “inferior process”, which is the program you
are debugging. Insulting!) Recompile the program, this time optimizing it more by adding -O2 after
the -g: “gcc -g -O2 -o problem1 problem1.c”. Note that O is the letter, not a zero. (Also note
that the lowercase “-o” is still necessary!) Debug it, set a breakpoint at loop_while (not main!), and
run it with an argument of 20 (not 5!). Where does the program stop?

12. Existing breakpoint at loop while; after running with argument of 20.
Hmmm. . . that’s kind of odd. Disassemble the main function by typing “disassem main” (or “disas
main”). Interesting. Note that the call to atoi has disappeared! What has replaced it? (You may
wish to refer back to what you saw in Steps 2–3 when looking at the backtrace.) What is the address
of the instruction that calls printf? (You will have to do some inference here, because gcc mangles
the names a bit.)

13. Existing breakpoint at loop while; after running with argument of 20.
That wasn’t too hard. But what’s up with loop_while? Where’s the call to it?
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14. Existing breakpoint at loop while; after running with argument of 20.
A handy feature of print is that you can use it to convert between bases. For example, what happens
when you type “print/x 42”? How about “p 0x2f”?

15. Existing breakpoint at loop while; after running with argument of 20.
We might not have covered it in lecture yet, but functions return results in %rax. So the result of atoi
will be in %rax (also known, for this problem, as %eax—go figure). After the call to atoi (or whatever
replaced it) there are a few lea instructions (lea is gdb’s version of leal and leaq, depending on the
destination). The lea you want to look at contains a small hexadecimal constant. Can you find a
matching decimal value (positive or negative) in problem1.c?

16. Some of the instructions following the call to atoi are of secondary importance, and the rest are pretty
hard for novices to decode. But if the value in %eax is called a, the important instructions (which
are the ones at +36, +39, +41, +44, and +46) calculate 15(a − 16) + 2a − 1680.3 (After you’ve
developed a bit more facility with the x86-64 instruction set, it will be worth your time to return to
these instructions and analyze them.)

That’s weird. Or not: it turns out that the compiler is so smart that it figured out the underlying
math of loop_while and replaced it with a straight-line calculation. Wow!

No answer is needed here.

Problem 2—Stepping and Looking at Data (17 Points)

Now take a look at problem2.c. This file contains three static constants and three functions. Read the
functions and figure out what they do. (If you’re new to C, you may need to consult your C book or some
online references.) Here are some hints: argv is an array containing the strings that were passed to the
program on the command line (or from gdb’s run command); argc is the number of arguments that were
passed. By convention, argv[0] is the name of the program, so argc is always at least 1. The malloc line
allocates a variable-sized array big enough to hold argc integers (which is slightly wasteful, since we only
store argc-1 integers there, but what the heck).

By now we hope you’ve learned that optimization is bad for debugging. So compile the program with
-Og -g and bring up the debugger on it.

1. Gdb provides you lots of ways to look at memory. For example, type “print puzzle1” (something you
should already be familiar with). What is printed?

2. Gee, that wasn’t very useful. Sometimes it’s worth trying different ways of exploring things. How
about “p/x puzzle1”? What does that print? Is it more edifying?

3. You’ve just looked at puzzle1 in decimal and hex. There’s also a way to look at it as a string, although
the notation is a bit inconvenient. The “x” (examine) command lets you look at arbitrary memory in
a variety of formats and notations. For example, “x/bx” examines bytes in hexadecimal. Let’s give
that a try. Type “x/4bx &puzzle1” (the “&” symbol means “address of”; it’s necessary because the x
command requires addresses rather than variable names). How does the output you see relate to the
result of “p/x puzzle1”? (Incidentally, you can look at any arbitrary memory location with x, as in
“x/wx 0x404078”.)

4. OK, that was interesting and a bit weird. But we still don’t know what’s in puzzle1. We need help!
And fortunately gdb has help built in. So type “help x”. Then experiment on puzzle1 with various
forms of the x command. For example, you might try “x/16i &puzzle1”. (x/16i is one of our favorite
gdb commands—but since here we suspect that puzzle1 is data, not instructions, the results might be

30x690 is 1680 in decimal.
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interesting but probably not correct.) Keep experimenting until you find a sensible value for puzzle1.
What is the human-friendly value of puzzle1?

Hints:

• Don’t accept an answer that is partially garbage!

• Although puzzle1 is declared as an int, it’s not actually an integer. But on a 32-bit machine an
int is 4 bytes, 2 halfwords, or one (in gdb terms) word.

• There are 44 possible combinations of sizes and formats. But you know the size, right? And the
“c”, “i”, and “s” formats don’t make sense with a size, so you have a manageable number of
choices. Try them all! Be systematic.

5. Having solved puzzle1, look at the value carefully. Is it correct? (You might wish to check it online.)
If it’s wrong, why is it wrong?

6. Now we can move on to puzzle2. It pretends to be an array of ints, but you might suspect that it
isn’t. Using your newfound skills, figure out what it is. (Hint: since there are two ints, the entire
value occupies 8 bytes. So you’ll need to use some of the size options to the x command.) What is the
human-friendly value? (Hint: it’s not “105”. Nor is there garbage in it.)

7. Are you surprised?

8. Is it correct?

9. We have one puzzle left. By this point you may have already stumbled across its value. If not, figure
it out; it’s often the case that in a debugger you need to make sense of apparently random data. What
is stored in puzzle3?

10. We’ve done all this without actually running the program. But now it’s time to execute! Set a
breakpoint in fix_array. Run the program with the arguments 1 1 2 3 5 8 13 21 44 65. When it
stops, print a_size and verify that it is 10. Did you really need to use a print command to find the
value of a_size? (Hint: look carefully at the output produced by gdb.)

11. Existing breakpoint at fix array; stopped at that breakpoint.
What is the value of a?

12. Existing breakpoint at fix array; stopped at that breakpoint.
Type “display a” to tell gdb that it should display a every time you step (although gdb will only
obey part of the time). Step five times. Which line last displayed a?

13. Existing breakpoint at fix array; after hitting that breakpoint and then stepping five times.
Step twice more (a sixth and seventh time). What is the value of a now? What is i?

14. Existing breakpoint at fix array; after hitting that breakpoint and then stepping seven times.
At this point you should (again) be at the call to hmc_pomona_fix. You already know what that
function does, and stepping through it is a bit of a pain. The authors of debuggers are aware of that
fact, and they always provide two ways to step line-by-line through a program. The one we’ve been
using (step) is traditionally referred to as “step into”—if you are at the point of a function call, you
move stepwise into the function being called. The alternative is “step over”—if you are at a normal
line it operates just like step, but if you are at a function call it does the whole function just as if it
were a single line. Let’s try that now. In gdb, it’s called next or just n. Type “n” twice. What line do
we wind up at? What is the value of i now? (Recall that in gdb as in most debuggers, the line shown
is the next line to be executed.)
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15. Existing breakpoint at fix array; after hitting that breakpoint, stepping seven times, and typing next

twice.
It’s often useful to be able to follow pointers. Gdb is unusually smart in this respect; you can type
complicated expressions like p *a.b->c[i].d->e. Here, we have kind of lost track of a, and we just
want to know what it’s pointing at. Type “p *a”. What do you get?

16. Existing breakpoint at fix array; after hitting that breakpoint, stepping seven times, and typing next

twice.
Often when debugging, you know that you don’t care about what happens in the next three or six
lines. You could type “s” or “n” that many times, but we’re computer scientists, and CS types sneer
at doing work that computers could do for them—especially mentally taxing tasks like counting to
twelve. So on a guess, type “next 12”. What is the value of *a now?

17. Existing breakpoint at fix array; after hitting that breakpoint, stepping seven times, and (in effect)
typing next 14 times (whew!).
Let’s use n to verify that it works just like s when you’re not at a function call. Type n until you see
a line from main. Then type n one more time. Which two lines of main were displayed?

Finally, a small side comment: if you’ve set up a lot of display commands and want to get rid of some
of them, investigate info display and help undisplay.

Problem 3—Assembly-Level Debugging (18 Points)

So far, we’ve mostly been taking advantage of the fact that gdb understands your program at the source
level: it knows about strings, source lines, call chains, and even complicated C++ data structures. But
sometimes it’s necessary to dive into the assembly code.

Note: If you get to this point before we’ve done the lecture on “flow control”, this would be a good time
to take a break and work on some other class.

Note: When you are working with assembly code, it can be very helpful to issue the gdb command “set
disassemble-next-line on”. That will tell gdb that whenever the program stops, it should disassemble
and display the next instruction that is to be executed. We suggest that you issue this command whenever
you start gdb.

To be sure we’re all on the same page, let’s quit gdb and bring it up on problem2 again, still using the
result of compiling with -Og -g. Run the program with arguments of 1 42 2 47 3.

1. No breakpoints; after running problem2.
What is the output? Whoop-dee-doo.

2. No breakpoints.
Set a breakpoint in main. Run the program again (use “r” alone so that it gets the same arguments).
What line does it stop at?

3. Existing breakpoint at main; after running the program.
Booooooooooring. Type “list” and then Enter to see what’s nearby, then type “b 35” and “c”. Where
does it stop now?

4. Existing breakpoints at main lines 29 and 35; after running and continuing.
Shocking. But since that’s the start of the loop, typing “c” will take you to the next iteration, right?

5. Existing breakpoints at main lines 29 and 35; after running and continuing twice.
Oops. Good thing we can start over by just typing “r”. Continue past that first breakpoint to the
second one, which is what we care about. But why, if we’re in the for statement, didn’t it stop the
second time? Type “info b” (or “info breakpoints” for the terminally verbose). Lots of good stuff
there. The important thing is in the “address” column. Take note of the address given for breakpoint
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2, and then type “disassem main”. You’ll note that there’s a helpful little arrow right at breakpoint
2’s address, since that’s the instruction we’re about to execute. Looking back at the corresponding
source code, what part of the for statement does this assembly code correspond to?

6. Existing breakpoints at main lines 29 and 35; after running and continuing once.
The instructions after main+32 comprise the rest of the for loop, at lines 35–37 of the source. See if
you can find the end of the loop body, where it jumps back to main+39. This is all part of the for

loop pattern we covered in class. We’ve successfully breaked (“broken?” “set a breakpoint?”) at the
loop initialization. But we’d like to have a breakpoint inside the for loop, so we could stop on every
iteration. Sometimes we want to break at a given line of assembly, even if it’s in the middle of a source
line. No worries, though, because gdb will let us set a breakpoint on any instruction even if it’s in the
middle of a statement! Just type “b *(main+39)” or “b *0x4011f1” (assuming that’s the address of
main+39, as it was when we wrote these instructions). The asterisk tells gdb to interpret the rest of the
command as an address in memory, as opposed to a line number in the source code. What does “info
b” tell you about the line number you chose? (Fine, we could have just set a breakpoint at that line.
But there are more complicated situations where there isn’t a simple line number, so it’s still useful to
know about the asterisk.)

7. Existing breakpoints at main lines 29 and 35, and at instruction main+39; after running and continuing
twice before hitting the third breakpoint.
We can look at the current value of the array by typing “p array[0]@argc” or “p array[0]@6”. But
the current value isn’t interesting. Let’s continue a few times and see what it looks like then. Typing
“c” over and over is tedious (especially if you need to do it 10,000 times!) so let’s use continue or c
to get to breakpoint 3 and then try “c 4”. What are the full contents of array?

8. Existing breakpoints at main lines 29 and 35, and at instruction main+39; after continuing until break-
point 3 has been hit and then typing c 4.
Perhaps we wish we had done “c 3” instead of “c 4”. We can rerun the program, but we really
don’t need all the breakpoints; we’re only working with breakpoint 3. Type “info b” to find out
what’s going on right now. Then use “d 1” or “delete 1” to completely get rid of breakpoint 1. But
maybe breakpoint 2 will be useful in the future, so type “disable 2”. Use “info b” to verify that
it’s no longer enabled (“Enb”). Run the program again. Where do we stop? (Well, that was hardly a
surprise.)

9. No previous state.
Sometimes, instead of stepping through a program line by line, we want to see what the individual
instructions do. Of course, instructions manipulate registers. Quit gdb and restart it, setting a break-
point in fix_array. (Remember to issue “set disassemble-next-line on”.) Run the program with
arguments of 1 42 2 47 3. Type “info registers” (or “info r” for the lazy) to see all the processor
registers in both hex and decimal. Which registers have not been covered in class?

10. Existing breakpoint at fix array; after running and hitting the breakpoint.
Well, that’s because they’re weird and not terribly important. (Except eflags, which holds the
condition codes—and some other things. Note that instead of being given in decimal, it’s given
symbolically—things like CF, ZF, etc.) Of the flags we have discussed in class, which ones are set
right now? What preceding instruction caused those flags to be set?

NOTE: If you haven’t been through the “x86 control flow” lecture, you will have to return
to this step after that.

11. Existing breakpoint at fix array; after running and hitting the breakpoint.
Often, looking at all the registers is excessive. Perhaps we only care about one. Type “p $rdi”. What
is the value? Is “p/x $rdi” more meaningful?

7



12. Existing breakpoint at fix array; after running and hitting the breakpoint.
We mentioned a fondness for “x/16i”.4 Actually, what we really like is “x/16i $rip”. Compare that
to the result of “disassem fix array”. Then, immediately after doing “x/16i $rip”, hit the Enter
key. What do you see? (What function do you see instructions from?)

13. Existing breakpoint at fix array; after running and hitting the breakpoint.
Finally, we mentioned stepping by instructions. That’s done with “stepi” (“step one instruction”).
Type that now, and note that gdb gives a new instruction address but says that you’re in the left curly
brace. If you remembered to do “set disassemble-next-line on” then gdb will also tell you what
instruction you are on.5 What instruction are we on?

14. Keep hitting Enter to step one instruction at a time until you reach a call instruction. What function
is about to be called?

15. Existing breakpoint at fix array; after hitting the breakpoint and then stepping by instruction until a
call is about to be executed.
As with source-level debugging, at the assembly level it’s often useful to skip over function calls. At
this point you have a choice of typing “stepi” or “nexti”. If you type “stepi”, what do you expect
the next instruction to be (hexadecimal address)? What about “nexti”? (By now, your debugging
skills should be strong enough that you can try one, restart the program, and try the other, so there’s
little excuse for getting this one wrong!)

16. Existing breakpoint at fix array; after experimenting with stepi and nexti.
Almost there! Stepping one instruction at a time can be tedious. You can always use “stepi n” to zip
past a bunch of them, but when you’re dealing with loops and conditionals it can be hard to decide
whether it’s going to be 1,042 or 47,093 instructions before you reach the next interesting point in your
program. Sure, you could set a breakpoint at the next suspect line. But sometimes the definition of
“interesting” is inside a line. Let’s say, just for the sake of argument, that you are interested in how the
retq (aka ret) instruction works. You may want to “disassem fix array” to see at which address
this instruction occurs. You can set a breakpoint there by typing “b *0x4011c9” (assuming that is its
address, as it was when we wrote these instructions). Do so, and then continue. What source line is
listed?

17. Existing breakpoints at fix array and *0x4011c9; stopped at retq instruction.
The retq (ret) instruction manipulates registers in some fashion. Start by looking at what %rsp points
to. You can find out the address with “p/x $rsp” and then use the x command, or you could just
try “x/x $rsp”. Or you could get wild and use C-style typecasting: “p/x *(long *)$rsp” (try it!).
What is the value?

18. Existing breakpoints at fix array and *0x4011c9; stopped at retq instruction.
Use “info reg” to find out what all the registers are. Then use “stepi” to step past the retq

instruction, and look at all the registers again. Which registers have changed, and what are their old
and new values?

That’s it; you’re done!

4There’s nothing special about the number 16; we just like powers of 2, and 16 gives you enough instructions to be useful.
5An alternative, which shows only one line, is to use “display/i $rip”. Don’t combine the two techniques or you’ll get

confused.
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