Lab 4: Buffer Pool and Deadlock detection

- Buffer pool policy: NO STEAL, FORCE
 - (no logging)

- Deadlock detection
 - Timeout-based approach or
 - Waits-for-graph

Goals for Today

- Learn about the process of designing a database to model a real-world application

- Understand how to encode an application in an entity-relationship (ER) diagram

- Reason about translating an ER model to a relational model

Database Design

- Requirements Analysis
 - user needs; what must database do?

- Conceptual Design
 - high level description (often done w/ ER model)

- Logical Design
 - translate ER into DBMS data model

- Schema Refinement
 - consistency, normalization

- Physical Design - indexes, disk layout

- Security Design - who accesses what
Data Models – Describing Data

- A **Database design** encodes some portion of the real world

- A **Data Model** is a set of concepts for thinking about this encoding

Helpful to start with a graphical representation: the *Entity-Relationship* model!

Integrity Constraints (ICs)

- Remember the “C” in ACID (Consistency)

- **Integrity Constraint (IC):** condition that must be true for any instance of the database
 - e.g., *domain constraints, keys and foreign key*
 - ICs are specified when schema is defined.
 - ICs are checked when relations are modified.

- Come from *semantics of the real world!*
 - Should be determined during Requirements Analysis and/or Conceptual Design phases

Entity-Relationship (ER) Model Basics

- **Entity**: Real-world object, distinguishable from other objects. An entity can have a set of *attributes*
 - Each *attribute* is atomic (not a list or set)

- **Entity Set**: A collection of similar entities. E.g., all employees.
 - All entities in an entity set have the same set of attributes. *(Until we consider hierarchies, anyway)*
 - Each entity set has a *key* *(underlined)*.
 - Each attribute has a *domain*.

ER Model Basics (Contd.)

- **Relationship**: Association among two or more entities. E.g., Alice *works in* Pharmacy department.
 - Relationships can have their own attributes
 - Relationships uniquely identified only by participating entities, excluding attributes

- **Relationship Set**: Collection of similar relationships
 - An n-ary relationship set \(R \) relates \(n \) entity sets \(E_1, ..., E_n \); each relationship in \(R \) involves entities \(e_1 \in E_1, ..., e_n \in E_n \)
ER Model Basics (Cont.)

- Same entity set can participate in different relationship sets, or in different “roles” in the same set.

Key Constraints

An employee can work in **many** departments; a dept can have **many** employees.

In contrast, each dept has **at most one** manager, according to the **key constraint** on Manages.

Participation Constraints

- Does every employee work in a department?
 - If so, the participation of Employees in Works_In is said to be **total** (vs. **partial**)
- What if every department has an employee working in it?
- Use bold edge in ER diagram... basically means “one or more”

Weak Entities

A **weak entity** can be identified uniquely only with the primary key of another (owner) entity.

- Owner entity set and weak entity set must participate in a **one-to-many** relationship set (one owner, many weak entities).
- Weak entity set must have total participation in this **identifying** relationship set.

Weak entities have only a “**partial key**” (dashed underline)
Exercise 2: Interpret E/R diagram

- Courses
 - dept
 - num
 - name
 - Taught in
 - building
 - num
 - semester
 - year
 - projectors
- Classrooms

a) Every classroom must be taught in. Not every class has to be taught.
b) No. A relationship is uniquely identified by its participating entities only

ISA (‘is a’) Hierarchies

If we declare A ISA B, every A entity is also considered to be a B entity

- Overlap constraints: Can Alice be an Hourly_Emps as well as a Contract_Emps entity? (Allowed/disallowed)
- Covering constraints: Does every Employees entity also have to be an Hourly_Emps or a Contract_Emps entity? (Yes/no)
- Reasons for using ISA:
 - To add descriptive attributes specific to a subclass.
 - i.e., not appropriate for all entities in the superclass
 - To identify entities that participate in a particular relationship
 - i.e., not all superclass entities participate

Conceptual Design Using the ER Model

- ER modeling can get tricky!
- Example design choices:
 - Should a concept be modeled as an entity or an attribute?
 - Should a concept be modeled as an entity or a relationship?
- Note constraints of the ER Model:
 - A lot of data semantics can (and should) be captured
 - But some constraints cannot be captured in ER diagrams
 - We’ll refine things in our logical (relational) design

Entity vs. Attribute

- E.g., capturing employee “Address”:

 ![Diagram showing Employees with address vs. Employees has Address]

- It depends! Semantics and usage
 - Several addresses per employee?
 - must be an entity!
 - atomic attribute types (no set-valued attributes!)
 - Care about structure? (city, street, etc.)
 - must be an entity!
 - atomic attribute types (no tuple-valued attributes!)
Exercise 3

• Example answer:

```
CREATE TABLE Employees
(ssn CHAR(11),
name CHAR(20),
lot INTEGER,
PRIMARY KEY (ssn))
```

Relationship Sets to Tables

• In translating a many-to-many relationship set to a relation, attributes of the relation must include:

1) Keys for each participating entity set (as foreign keys).

This set of attributes forms a super key for the relation.

2) All descriptive attributes for the relationship set.

```
CREATE TABLE Works_In(
  ssn CHAR(1),
did INTEGER,
since DATE,
PRIMARY KEY (ssn, did),
FOREIGN KEY (ssn) REFERENCES Employees,
FOREIGN KEY (did) REFERENCES Departments)
```

Translating ER with Key Constraints

One way to translate the Manages Relationship (one-to-many):

```
CREATE TABLE Manages(
  ssn CHAR(11),
did INTEGER,
since DATE,
PRIMARY KEY (did),
FOREIGN KEY (ssn) REFERENCES Employees,
FOREIGN KEY (did) REFERENCES Departments)
```

Logical DB Design: ER to Relational

Entity sets to tables

```
CREATE TABLE Employees
(ssn CHAR(11),
name CHAR(20),
lot INTEGER,
PRIMARY KEY (ssn))
```
Translating ER with Key Constraints (Take 2)

Since each department has a unique manager, we could instead combine Manages and Departments as Dept_Mgr:

```
CREATE TABLE Dept_Mgr(
  did INTEGER,
  dname CHAR(20),
  budget REAL,
  ssn CHAR(11),
  since DATE,
  PRIMARY KEY (did),
  FOREIGN KEY (ssn) REFERENCES Employees)
```

Translating Weak Entity Sets

- Weak entity set and identifying relationship set are translated into a single table.
 - When the owner entity is deleted, all owned weak entities must also be deleted.

```
CREATE TABLE Dep_Policy (  
  pname CHAR(20),
  age INTEGER,
  cost REAL,
  ssn CHAR(11) NOT NULL,
  PRIMARY KEY (pname, ssn),
  FOREIGN KEY (ssn) REFERENCES Employees,  
  ON DELETE CASCADE)
```

Participation Constraints in SQL

- We can capture participation constraints involving one entity set in a binary relationship, but little else

```
CREATE TABLE Dept_Mgr (  
  did INTEGER,  
  dname CHAR(20),  
  budget REAL,  
  ssn CHAR(11) NOT NULL,  
  since DATE,  
  PRIMARY KEY (did),  
  FOREIGN KEY (ssn) REFERENCES Employees,  
  ON DELETE NO ACTION)
```

ISA Hierarchies to Relations

- **Three relations**

 Employees(ssn, name, lot)

 Contract_emps(ssn, contractid)

 Hourly_Emps(ssn, hourly_wages, rating, hours_worked)

- **Alternative (assuming covering)**

 Names of all Employees?
 Names of just Hourly Emps?

 Query to get:
 Names of all Employees?
 Names of just Hourly Emps?

```
Contract_emps(ssn, name, lot, contractid)
```

```
Hourly_Emps(ssn, name, lot, hourly_wages, rating, hours_worked)
```