CS 133: Databases

Fall 2018
Lec 22 – 11/27
Database Design
Prof. Beth Trushkowsky

Rules of Inference

• **Armstrong’s Axioms** \((X, Y, Z \text{ are sets of attributes}) \):

 – **Reflexivity**: If \(Y \subseteq X \), then \(X \rightarrow Y \)

 – **Augmentation**: If \(X \rightarrow Y \), then \(XZ \rightarrow YZ \) for any \(Z \)

 – **Transitivity**: If \(X \rightarrow Y \) and \(Y \rightarrow Z \), then \(X \rightarrow Z \)

• Some additional rules (that follow from AA):

 – **Union**: If \(X \rightarrow Y \) and \(X \rightarrow Z \), then \(X \rightarrow YZ \)

 – **Decomposition**: If \(X \rightarrow YZ \), then \(X \rightarrow Y \) and \(X \rightarrow Z \)

 – **Pseudo-transitivity**: If \(X \rightarrow Y \) and \(YW \rightarrow Z \), then \(XW \rightarrow Z \)

Goals for Today

• Learn how to decompose a relation to adhere to Boyce-Codd Normal Form (BCNF)

• Understand lossy vs. loss-less decompositions

• Reason about issues that can result even if a decomposition is loss-less

The Issue with Non-Key FDs

• Why does the FD \(\text{rating} \rightarrow \text{hourly_wages} \) yield redundancy issues?

 • **Rating** is a **non-key field**, so there could be **duplicate pairs** of particular \(\{\text{rating}, \text{hourly_wages}\} \) in this relation

 • By separating \(\{\text{rating}, \text{hourly_wages}\} \) into its own relation, we resolve redundancy!
 – Can regain the original data via **natural join**
“Normal” Forms for a Schema

- **Idea:** decompose relation into two or more relations to remove redundancy. Decomposition **guided by FDs**!

- **Boyce-Codd Normal Form (BCNF)**
 - Adhere to simple conditions and anomalies caused by data redundancy cannot occur

- BCNF definition:
 A Relation R with FDs F is in BCNF if, for all \(X \rightarrow A \) in \(F^+ \)
 - \(A \in X \) (a trivial FD), or
 - \(X \) is a superkey for R

- I.e.,: R is in BCNF if the **only non-trivial FDs over** R are **key constraints**

Lossy vs. Lossless Decomposition

- Example schema:
 Oversees(\text{ProjectId, EmployeeId, DepartmentId})

- FDs:
 - \(E \rightarrow P \) (an employee oversees only one project)
 - \(D \rightarrow P \) (a dept works on only one project)
 - \(E \rightarrow D \) (an employee only works with one dept for these projects)

- Example instance of Oversees:

<table>
<thead>
<tr>
<th>Project</th>
<th>Employee</th>
<th>Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comet</td>
<td>Alice</td>
<td>Physics</td>
</tr>
<tr>
<td>Comet</td>
<td>Bob</td>
<td>Astronomy</td>
</tr>
<tr>
<td>Genomics</td>
<td>Carl</td>
<td>Biology</td>
</tr>
<tr>
<td>Genomics</td>
<td>Denise</td>
<td>Biology</td>
</tr>
</tbody>
</table>

Redundancy?

Problems with Decompositions

- There are three potential problems to consider:
 1. May be **impossible to reconstruct the original relation**! (**Lossiness**)
 2. Checking functional dependencies may require joins
 3. Some queries become more expensive due to joins
 - e.g., *How much does Smiley earn?*

<table>
<thead>
<tr>
<th>S</th>
<th>N</th>
<th>L</th>
<th>R</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>123-22-3666</td>
<td>Atthisoo</td>
<td>48</td>
<td>8</td>
<td>40</td>
</tr>
<tr>
<td>231-31-5368</td>
<td>Smiley</td>
<td>22</td>
<td>8</td>
<td>30</td>
</tr>
<tr>
<td>131-24-3650</td>
<td>Smethurst</td>
<td>35</td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>434-26-3751</td>
<td>Guldu</td>
<td>35</td>
<td>5</td>
<td>32</td>
</tr>
<tr>
<td>612-67-4134</td>
<td>Madayan</td>
<td>35</td>
<td>8</td>
<td>40</td>
</tr>
</tbody>
</table>

Wages

<table>
<thead>
<tr>
<th>R</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>

E.g.: Hourly_Emps2

Lossy vs. Lossless Decomp (cntd)

- **Redundancy with the FD** \(D \rightarrow P \)

<table>
<thead>
<tr>
<th>Project</th>
<th>Employee</th>
<th>Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comet</td>
<td>Alice</td>
<td>Physics</td>
</tr>
<tr>
<td>Comet</td>
<td>Bob</td>
<td>Astronomy</td>
</tr>
<tr>
<td>Genomics</td>
<td>Carl</td>
<td>Biology</td>
</tr>
<tr>
<td>Genomics</td>
<td>Denise</td>
<td>Biology</td>
</tr>
</tbody>
</table>

- **Proposed decomposition:**

<table>
<thead>
<tr>
<th>Project</th>
<th>Employee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comet</td>
<td>Alice</td>
</tr>
<tr>
<td>Comet</td>
<td>Bob</td>
</tr>
<tr>
<td>Genomics</td>
<td>Carl</td>
</tr>
<tr>
<td>Genomics</td>
<td>Denise</td>
</tr>
</tbody>
</table>
Lossy vs. Lossless Decomp (cntd)

• Redundancy with the FD $D \rightarrow P$

<table>
<thead>
<tr>
<th>Project</th>
<th>Employee</th>
<th>Department</th>
<th>Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comet</td>
<td>Alice</td>
<td>Physics</td>
<td>Comet</td>
</tr>
<tr>
<td>Comet</td>
<td>Bob</td>
<td>Astronomy</td>
<td>Comet</td>
</tr>
<tr>
<td>Genomics</td>
<td>Carl</td>
<td>Biology</td>
<td>Genomics</td>
</tr>
<tr>
<td>Genomics</td>
<td>Denise</td>
<td>Biology</td>
<td>Genomics</td>
</tr>
</tbody>
</table>

Tuples not in original!

Lossy vs. Lossless Decomp (cntd)

• Decomposition attempt #2, for FD $D \rightarrow P$:

<table>
<thead>
<tr>
<th>Department</th>
<th>Employee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics</td>
<td>Alice</td>
</tr>
<tr>
<td>Astronomy</td>
<td>Bob</td>
</tr>
<tr>
<td>Biology</td>
<td>Carl</td>
</tr>
<tr>
<td>Genomics</td>
<td>Denise</td>
</tr>
</tbody>
</table>

Loss-less Decomposition

• Decomposition of R into X and Y is lossless-join w.r.t. a set of FDs F if, for every instance r that satisfies F:

$$\pi_X(r) \supseteq \pi_Y(r) = r$$

• Decomposition of R into X and Y is lossless with respect to F if and only if F^+ contains:

- $X \cap Y \rightarrow X$, or
- $X \cap Y \rightarrow Y$

In other words, the common attributes form a key for X or Y

Corollary: If $Z \rightarrow W$ holds over R and $Z \cap W$ is empty, then decomposition of R into ZW and $R-W$ is loss-less.

• In “Oversees” example, decomposing into $\{E,P\}$ and $\{D,P\}$ is lossy because the intersection (i.e., $Project$) is not a key of either resulting relation

Loss-less Decomposition into BCNF

• Relation R has FDs F. If $Z \rightarrow W$ in F violates BCNF:
 – decompose R into $R-W$ and ZW (guaranteed to be loss-less)
Reasoning about BCNF

- Relation R with FDs F is in BCNF if, for all X → A in F⁺
 - A ∈ X (a trivial FD), or
 - X is a superkey for R

Also recall that relations are sets of tuples

Example 1: Is Hourly_Emps in BCNF?

<table>
<thead>
<tr>
<th>S</th>
<th>N</th>
<th>L</th>
<th>R</th>
<th>W</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>123-22-3666</td>
<td>Attishoo</td>
<td>48</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>231-31-5368</td>
<td>Smiley</td>
<td>22</td>
<td>8</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>131-24-3650</td>
<td>Smethurst</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>30</td>
</tr>
<tr>
<td>434-26-3751</td>
<td>Guldru</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>32</td>
</tr>
<tr>
<td>612-67-4134</td>
<td>Madayan</td>
<td>35</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
</tbody>
</table>

- SNLRWH has FDs
 S → SNLRWH
 R → W

Example 2: Is Bar_Sells in BCNF?

- Combing Bars and Sells
 Bar_Sells (bar_name, beer_name, address, price)

- FDs (for just Bar_Sells):
 bar_name → address
 bar_name, beer_name → price

In BCNF??

(Exercise 2)
Examples: BCNF Decomposition

• **Hourly_Emps**

<table>
<thead>
<tr>
<th>S</th>
<th>N</th>
<th>L</th>
<th>R</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>123-22-3666</td>
<td>Attishoo</td>
<td>48</td>
<td>8</td>
<td>40</td>
</tr>
<tr>
<td>231-31-368</td>
<td>Smiley</td>
<td>22</td>
<td>8</td>
<td>30</td>
</tr>
<tr>
<td>131-24-3650</td>
<td>Smethurst</td>
<td>35</td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>434-26-3751</td>
<td>Guldu</td>
<td>35</td>
<td>5</td>
<td>32</td>
</tr>
<tr>
<td>612-67-4134</td>
<td>Madayan</td>
<td>35</td>
<td>8</td>
<td>40</td>
</tr>
</tbody>
</table>

Transitive Dependencies

• Violating FD involves *attribute(s) depending on non-key attribute(s)*

• **Bar_sells**

Partial Dependencies

• Violating FD involves *attribute(s) depending on attribute(s) that are proper subset of a key*

Key = {beer_name, bar_name}

Repeated Decomposition

• *Repeated decomposition*
 – May be needed to get set of relations that are in **BCNF**
 – Can confirm BCNF for original relation R using only FDs F, but each decomposed relation R_i must be checked for violating each [relevant] FD in F^+

• Using *attribute closure* to check decomposed R_i
 – To confirm R_i is in BCNF: for each subset of attributes α in R_i, check that α^+ (under F):
 • Contains no attributes of R_i − α, or
 • Contains all attributes of R_i

Bar_sells violating FD: bar_name → address
Exercise 3: BCNF Decomposition

- Candidate key = \{id, advisorId\}
- FD violation? Both!
- Decomposed into three relations:
 - R1 = \{id, name, dorm\}
 - R2 = \{advisorId, advisorName\}
 - R3 = \{id, advisorId\}

An Aside: *Multiple* Candidate Keys

- For relation $\text{Bars}(\text{bar_name}, \text{address})$, suppose we knew:
 - bar_name \rightarrow address
 - address \rightarrow bar_name
 Either attribute could serve as primary key!

- When creating a relation in SQL, use *one* candidate key as the primary key
 - Enforce others using UNIQUE key word
 - Commonly used when use *surrogate key* as a primary key

Dependency Preservation

- Decomposed example from “Oversees”:
 - E \rightarrow P (an employee oversees only one project)
 - D \rightarrow P (a dept works on only one project)
 - E \rightarrow D (an employee only works with one dept for these projects)

<table>
<thead>
<tr>
<th>Project</th>
<th>Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comet</td>
<td>Physics</td>
</tr>
<tr>
<td>Comet</td>
<td>Astronomy</td>
</tr>
<tr>
<td>Genomics</td>
<td>Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Department</th>
<th>Employee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics</td>
<td>Alice</td>
</tr>
<tr>
<td>Astronomy</td>
<td>Bob</td>
</tr>
<tr>
<td>Biology</td>
<td>Carl</td>
</tr>
<tr>
<td>Biology</td>
<td>Denise</td>
</tr>
</tbody>
</table>

- How can we check E \rightarrow P ??
 (an employee oversees only one project)

Dependency Preserving Decomposition

- **Dependency preserving decomposition** (Intuition):
 - If R is decomposed into X, Y and Z, and we enforce the FDs that hold individually on X, Y, and Z
 \rightarrow then all FDs that were given to hold on R must also hold

- The projection of F on attribute set X (denoted F_X):
 - The set of FDs $U \rightarrow V$ in F^+ (closure of F, not just F!) such that all of the attributes on both sides of the FD are in X
 - That is: U and V are subsets of X
Dependency Preserving Decompositions (Contd.)

- Decomposition of R into X and Y is **dependency preserving** if \((F_X \cup F_Y)^+ = F^+\)
 - i.e., we can check FDs on X and Y independently

- “Oversees” example, continued:
 - \(X = \{\text{Employee, Department}\}, \ F_X = \{\ E \rightarrow D \}\)
 - \(Y = \{\text{Project, Department}\}, \ F_Y = \{\ D \rightarrow P \}\)
 - Does \((F_X \cup F_Y)^+\) include \(E \rightarrow P\)?

 YES! (transitive property)

Movie showings: decomposition issue

- Showings (movie, theater, city)
 - FDs
 - movie, city --> theater
 - theater --> city

Violating FD!

Decompose...

Above decomposition could allow this to happen!

Violates FD

movie, city --> theater

Third Normal Form (3NF)

- **Definition:** for all \(X \rightarrow A\) in \(F^+\)
 - \(A \in X\) (called a trivial FD), or
 - \(X\) is a superkey for \(R\), **OR**
 - \(A\) is a part of some candidate key for \(R\)
- Allows FDs like non-key \(\rightarrow\) partial key

- 3NF but not BCNF?
 - have overlapping composite candidate keys

Always possible to get a loss-less, dependency-preserving decomposition into 3NF!

(may contain redundancy)

Alternate Formulation of 3NF & BCNF

Every non-key attribute must describes a fact about “the key, the whole key, and nothing but the key, so help me Codd”

- Normal forms increasingly restrictive
 - 1st NF ⊇ 2nd NF ⊇ 3rd NF ⊇ Boyce-Codd NF