Goals for Today

- Brief overview of course
- Course evaluations
- More details about the Final Exam
- Practice exercises

Final Exam: Logistics

- Take-home exam
 - Available to you Friday December 14th, 4pm (printed, Olin hallway cubbies)
 - Due to my office (Olin 1267) at or before Monday, December 17th, 5:15pm

- Two 8.5x11, double-sided note sheets
 - You can use your note sheet from the midterm as one of the two
 - No other resources
- 3-hour timed exam

Why Use a DBMS?

- Data independence and efficient access
 - Declarative language: say what you want, not how to get it!
 - Hides complexity from user
 - Accommodates changes in database without requiring applications to be recompiled

- Data integrity and security

- Concurrent access, recovery from system crashes.
Simplified RDBMS Architecture

Optimize the Memory Hierarchy

- DBMS worries about Disk vs. Memory
 - Can spend a lot of CPU cycles thinking about how to best fetch data from disk
 - e.g., query optimization, buffer replacement strategies
 - I/O cost “hides” the CPU think time

Practical Algorithm Analysis

- Due to need for query cost estimation, DBMS developers understand the real costs of their main algorithms
 - e.g., external sorting

- In many applications, the bottlenecks determine the cost model
 - E.g., I/O is mostly what matters in DBs
 - Affects the practical analysis of the algorithm

Query Operators & Optimization

- Query operators are actually all similar:
 - Iterator model approach to building query plans

- Query Optimization steps
 - Define a plan space
 - Estimate costs for plans
 - Algorithm to search in the plan space for cheapest
ACID Transactions

- Concurrency and reliability
 - Transactions and 2-Phase Locking
 - Write-ahead-logging to ensure consistency if system crashes

Database Design

- Components
 - Conceptual design
 - Schema refinement
 - Physical design

- Complex!
 - Modeling real-life application
 - Tools like BCNF normalization to help avoid anomalies
 - Heuristics and tradeoffs

Course Objectives

- Provide a solid background in database management system design principles

- Promote understanding of these principles through hands-on exercises implementing the internals of a relational database management system

- Further develop students' ability to reason about algorithm and software design, optimization, and tradeoffs generally applicable in computer science

Possible Topics on Final

- Cumulative-ish
 - Topics we covered earlier still relevant (e.g., hash & tree indexes, estimating cost in I/Os)
 - Won’t focus on nitty gritty from before midterm (e.g., linear vs extendible hashing)

- Query Optimization
- Transactions and ACID
- Database design
- ORDBMS, Distributed DBMS and NoSQL, OLAP (high-level)

- General themes
 - Reasoning about cost and tradeoffs
 - Consistency and correctness with concurrent access and failures
Query Optimization

- **Query**
 - relational algebra tree
 - logical plan
 - physical plan
- **Unit of optimization:** query block
- **Logical plan**
 - Relational algebra equivalences
 - Outer vs. inner relation in joins
 - Query plan tree shape: bushy, linear, deep

ACID Transactions

- Transactions, how to achieve ACID
- **Isolation (I)**
 - Schedules: serializable, conflict-serializable, etc.
 - Anomalies from interleaved actions, conflicting actions
 - Locking, lock granularity and compatibility, deadlock detection and prevention
 - 2PL vs Strict 2PL, cascading aborts
 - Optimistic concurrency control, backwards validation algorithm
- **Recovery (A and D)**
 - Steal vs. force and implications on UNDO/REDO
 - Write-Ahead-Logging
 - ARIES recovery algorithm

Query Optimization

- Choosing physical plan
 - Enumerate plan space
 - Join permutations and orders
 - System R choices
 - Estimate cost of plan
 - Picking cheapest
 - Dynamic programming algorithm (idea)
 - Interesting orders
- **Cost estimation**
 - Operator algorithm cost
 - Estimating cost of different join algorithms
 - Operator result size estimation
 - Selectivity/Reduction Factor, statistics, histograms
 - Using indexes

Database design

- **E/R modeling (general idea)**
 - Entities, relationships, weak entities
 - Capturing key and participation constraints
- **Functional dependencies**
 - Attribute closure, Armstrong’s axioms
 - Determining candidate keys
 - Role in detecting data redundancy
- **Schema refinement**
 - Normalization
 - BCNF normalization process
- **Capturing integrity constraints in relational schema**
- **General motivation and ideas from ORDBMS**
Special Topics

• Distributed DBMS
 – Goals of data partitioning and data replication
 • Types of partitioning: range vs hash
 – Replication
 • Synchronous vs asynchronous
 • Strong vs. eventual/weak consistency
 – Challenges with distributed xacts (generally)

• NoSQL
 – CAP theorem
 – Query restrictions for performance (generally)

• Analytics
 – Generally what OLAP is, vs. OLTP, and what kinds of queries run