Data! CS 133: Databases Need systems to Data is everywhere ٠ manage the data - Banking, airline reservations Fall 2019 - Social media, clicking anything on the internet Lec 01 - 09/03 http://www.bigdataanalyticstoday.com/category/infographic Introduction & Relational Model REVOLUTION IS HERE Prof. Beth Trushkowsky 90% DOES HE UNDERSTAND I THINK WE SHOULD WHAT COLOR DO YOU BUILD AN SQL WHAT HE SAID OR WANT THAT DATABASE? IS IT SOMETHING I THINK HE SAW IN A TRADE MAUVE HAS AGAZINE AD? THE MOST BIG

Goals for Today

- What is a database anyway?
- Important DBMS features - and challenges!
- Course logistics

DATABASE

- Relational data model
 - Why it's great
 - What it looks like (intro to SQL)

So, what is a database?

I DATA ANALYTICS

From the textbook:

cebook friend wheel", https://www.flickr.com/photos/antjeverena/

- Database: a collection of data, typically describing the activities of one or more related organizations
- Database system, DataBase Management System (DBMS): software designed to assist in maintaining and utilizing large collections of data

DBMS desiderata

- Ask questions (queries) about data
- Add and update data
- Persist the data (keep it around)
- E.g., banking application
 - Query: What is Alice's balance?
 - Update: Alice deposits \$100
 - Persist: Alice hopes her money is still there after a power outage...

Sounds easy!

- Account, Branch, Name, Balance 45, Claremont, Alice, 200 67, Claremont, Bob, 100000 78, Pasadena, Carl, 987654 .
- Store data in text files
 - Accounts separated by newlines
 - Fields separated by commas
- Query: what is Alice's balance?

Abstracting data management

- Can come up with tricks to optimize a particular query/application
 - End up redoing this work for new apps

Relational DBMS to the rescue

[There should be] *a clear boundary* between the **logical and physical aspects** of database management¹

Turing award, 1981

Physical Independence

- Applications need not know how data is physically structured and stored
- Instead, have logical data model
- Leave the implementation details and optimization to DBMS

Concurrent Access Concurrent Access Banking example: ATM withdrawal pseudocode Alice withdraws \$100 Bob withdraws \$50 get *balance*; get balance; \$400 if *balance* > *amount* get *balance*; \$400 withdraw amount; if balance > amount newBalance = balance - amount; write *balance* = *newBalance*: withdraw amount; newBalance = balance - amount: Alice and Bob share an account. if *balance* > *amount* write *balance* = *newBalance*; \$350 Alice goes to one ATM, withdraws \$100 withdraw amount: Bob goes to another ATM, withdraws \$50 *newBalance = balance - amount:* What can write *balance* = *newBalance*; \$300 • Initial balance = \$400 we do? • Final balance? Final balance = \$300!! Example from Jun Yang Example from Jun Yang System Failures Modern DBMS Features (cntd) Banking example: balance transfer Logical data model decrement account X by \$100 • Declarative language increment account Y by \$100 Persistence • What if power goes out after first instruction? Concurrent access DBMS buffers and updates some data in memory Fault tolerance before writing to disk • Performance! - what if power goes out before write to disk? - Lots of queries • *Keep a log of updates, undo/redo upon recovery* - Lots of data Example from Jun Yang

Grade Components (see syllabus)

The Relational Model

• Many RDBMS vendors, including open-source

• We'll touch on other data models as well

Oracle
MySQL
PostgreSQL
SQLite
DB2

– SQL Server

— ...

Weekly problem sets	14%	70 pts
• (5) Labs	40%	200 pts
Midterm	20%	100 pts
• Final	20%	100 pts
 Participation 	6%	30 pts

Administrivia

 Course website: https://www.cs.hmc.edu/~beth/courses/cs133/current Syllabus, calendar, lab descriptions 							
 Textbook: Database Management Systems 3rd Edition, by Ramakrishnan and Gehrke 							
 Piazza for questions about labs, problem sets, etc.: piazza.com/hmc/fall2019/cs133/home 							
 Assignment submission Problem sets → Sakai Lab assignments → Gradescope 							
 Grutors – Ivy Liu 							
Key Concepts: Relational Model							
 Database: collection of relations 		\ \					
• <i>Relation:</i> list of attributes	SID name login gpa 45 Alice alicious 3.4 67 Bob bobtastic 3.5	1					
• Relations have sets of <i>tuples</i>	Courses CID Name Dept						
• Schema (metadata)	121Software DevCS70Data StructuresCS						
 Specification of how data is to be structured logically 							

- Contains attribute *types*
- Defined at set-up

Relational Model: Synonyms

More formal		Less formal
Relation	Table	
Tuple	Row	Record
Attribute	Column	Field
Domain	Туре	

Structured Query Language (SQL)

- Data definition language (DDL)
 - Define the schema (create, change, delete relations)
 - Specify constraints, user permissions
- Data modification language (DML)
 - Find data that matches criteria
 - Add, remove, update data

Don Chamberlin (HMC '66)!

Co-invented by

- The DBMS is responsible for efficient evaluation!

Photo: http://researcher.watson.ibm.com/ researcher/view.php?person=us-dchamber

A Relation Instance

- An *instance* of a relation is its contents at a given time
 - *cardinality: # tuples*
 - arity: # attributes

Students

SID	Name	Login	SSN	GPA
45	Alice	alicious	000-00-0000	3.4
67	Bob	bobtastic	000-00-0001	3.9
78	Carl	carl	000-00-0010	2.5

SQL: Creating Relations

- Create Students relation:
- Create Enrolled relation:

CREATE TABLE Students (sid CHAR(20), name CHAR(20), login CHAR(100), SSN CHAR(12), gpa FLOAT);

CREATE TABLE Enrolled (sid CHAR(20), cid CHAR(20), grade CHAR(2));

- Domain info is type of Integrity constraint (IC)
 - IC: a condition on the database schema, restricts data that can be stored

