
CS	133:	Databases	

Fall	2019	

Lec	01	–	09/03	

Introduction	&	Relational	Model	

	

Prof.	Beth	Trushkowsky	

http://www.puntogeek.com/wp-content/uploads/2012/12/21168.strip_.gif	

Data!	

•  Data	is	everywhere		
–  Banking,	airline	reservations	
–  Social	media,	clicking	anything	on	the	internet	

“facebook	friend	wheel”,	https://www.flickr.com/photos/antjeverena/	

http://www.bigdataanalyticstoday.com/category/infographics/	

Need	systems	to	

manage	the	data	

Goals	for	Today	

•  What	is	a	database	anyway?	

•  Important	DBMS	features	

–  and	challenges!	

•  Course	logistics	

•  Relational	data	model	

– Why	it’s	great	

– What	it	looks	like	(intro	to	SQL)	

So,	what	is	a	database?	

From	the	textbook:	

•  Database:	a	collection	of	data,	typically	
describing	the	activities	of	one	or	more	related	

organizations		

	

•  Database	system,	DataBase	Management	System	

(DBMS):	software	designed	to	assist	in	

maintaining	and	utilizing	large	collections	of	data		

DBMS	desiderata	

•  Ask	questions	(queries)	about	data	
•  Add	and	update	data	
•  Persist	the	data	(keep	it	around)	

•  E.g.,	banking	application	
– Query:	What	is	Alice’s	balance?	

– Update:	Alice	deposits	$100	
– Persist:	Alice	hopes	her	money	is	still	there	after	a	

power	outage…	

Sounds	easy!	

•  Store	data	in	text	files	
– Accounts	separated	by	newlines	
– Fields	separated	by	commas	

•  Query:	what	is	Alice’s	balance?	

Account,	Branch,	Name,	Balance	

45,	Claremont,	Alice,	200	

67,	Claremont,	Bob,	100000	

78,	Pasadena,	Carl,	987654	

.	

.	

.	

Abstracting	data	management	

•  Can	come	up	with	tricks	to	optimize	a	

particular	query/application	

– End	up	redoing	this	work	for	new	apps	

Relational	DBMS	to	the	rescue	

Physical	Independence	

•  Applications	need	not	know	how	data	is	physically	structured	
and	stored	

•  Instead,	have	logical	data	model	
•  Leave	the	implementation	details	and	optimization	to	DBMS	

Edgar	F.	Codd	

Turing	award,	1981	

[There	should	be]	a	clear	

boundary	between	the	logical	
and	physical	aspects	of	
database		management

1	

1

http://en.wikiquote.org/wiki/E._F._Codd	

Relational	DBMS	to	the	rescue	

•  Relational	data	model:	data	is	stored	in	relations	

•  Example:	Banking	info	
account	 branch	 	name	 balance	

45	 Claremont	 	Alice	 200	

67	 Claremont	 	Bob	 100000	

78	 Pasadena	 	Carl	 987654	

•  A	declarative	query	language	
–  Specify	what	answers	a	query	should	return,		but	not	how	the	
query	is	executed	

–  E.g.,	SQL,	Datalog	(subset	of	Prolog)	

Query:	what	is	Alice’s	balance?	

SELECT balance  
FROM Banking  
WHERE name = “Alice”;

Relational	Model:		

Levels	of	Abstraction	

•  Conceptual/Logical	schema	

Students	(sid:	string,	name:	string,	login:	string,	gpa:	real)		

Courses	(cid:	string,	cname:	string,	credits:	integer)	

Enrolled	(sid:	string,	cid:	string,	grade:	string)		
	

	

•  Physical	schema	

–  Store	the	relations	as	unsorted	files	
–  Create	indexes	on	Students.sid	and	Courses.cid	
	

	

•  External	schema	(“views”)	

–  view	each	course’s	enrollment		

CourseInfo(cid:	string,	enrollmnt:	integer)		

Entities	and	

relationships!	

CREATE VIEW CourseInfo AS
SELECT cid, COUNT (*) as enrollmnt
FROM Enrolled
GROUP BY cid;

DBA	d
esigns

	

these!
	

Allow	customized	

data	access	

Describes	data	in	

terms	of	data	model	

Specifies	

storage	details	

Data	Independence	

•  Logical	data	
independence	

–  Protected	from	changes	

in	conceptual	schema	

	

•  Physical	data	
independence	

–  Protected	from	changes	

in	physical	schema	
Physical	schema	

Conceptual	schema	

View	1	 View	2	 View	n	

Modern	DBMS	Features	

•  Logical	data	model	

– We	focus	on	relational	in	this	course	

•  May	touch	on	others,	e.g.,	XML,	Document	

– Data	independence!	

•  Declarative	language	
– Queries	
– Updates	

•  Persistence	
But	wait,	there’s	more…	

Concurrent	Access	

•  Banking	example:	ATM	withdrawal	pseudocode	
get	balance;	

if	balance	>	amount	

		withdraw	amount;	

		newBalance	=	balance	-	amount;	

		write	balance	=	newBalance;	

•  Alice	and	Bob	share	an	account.		
–  Alice	goes	to	one	ATM,	withdraws	$100	

–  Bob	goes	to	another	ATM,	withdraws	$50	

•  Initial	balance	=	$400	
•  Final	balance?	

Example	from	Jun	Yang	

Concurrent	Access	

Alice	withdraws	$100	

get	balance;	

	

	

	

	

	

if	balance	>	amount	

		withdraw	amount;	

		newBalance	=	balance	-	amount;	

		write	balance	=	newBalance;	

Bob	withdraws	$50	

	

get	balance;	

if	balance	>	amount	

		withdraw	amount;	

		newBalance	=	balance	-	amount;	

		write	balance	=	newBalance;	

$400	

$400	

$350	

Final	balance	=	$300!!	

$300	
What	can	

we	do?	

Example	from	Jun	Yang	

System	Failures	

•  Banking	example:	balance	transfer	
decrement	account	X	by	$100	

increment	account	Y	by	$100	

•  What	if	power	goes	out	after	first	instruction?	

•  DBMS	buffers	and	updates	some	data	in	memory	

before	writing	to	disk	

– what	if	power	goes	out	before	write	to	disk?	

•  Keep	a	log	of	updates,	undo/redo	upon	recovery	
	

Example	from	Jun	Yang	

Modern	DBMS	Features	(cntd)	

•  Logical	data	model	

•  Declarative	language	
•  Persistence	

•  Concurrent	access	
•  Fault	tolerance	
•  Performance!	

– Lots	of	queries	
– Lots	of	data	

Simplified	RDBMS	Architecture	

Data	records	

Disk	management	

Buffer	management	

Access	methods	

Application	

Query	optimizer	

Query	executor	

Concerned	with	

concurrency	

control	and	

recovery	

Declarative	

Query	

Query	results	

Course	Overview		

•  Design	principles	behind	DBMS!	

•  “Bottom-up”	order	of	topics	to	show	role	of	

abstraction	and	algorithms	for	efficiency/
optimization	
–  Physical	data	organization	
–  Relational	algebra	and	SQL		
– Query	evaluation	and	optimization	

–  Transactions,	concurrency	control,	recovery	
– Database	design	

Course	Objectives	

•  Provide	a	solid	background	in	database	management	

system	design	principles	

•  Promote	understanding	of	these	principles	through	hands-

on	exercises	implementing	the	internals	of	a	
relational	database	management	system	

•  Further	develop	students'	ability	to	reason	about	algorithm	

and	software	design,	optimization,	and	tradeoffs	
generally	applicable	in	computer	science	

Labs:	SimpleDB	

•  Labs	1-4:	Implement	key	features	of	a	(simplified)	

DBMS	in	Java	

–  Files,	Storage	
–  Relational	Operators	
– Query	Optimizer	

–  Locking	with	Transactions	

•  Lab	5:	database	design	

Lab	1:	Getting	started	“due”	next	Wednesday	

Grade	Components	(see	syllabus)	

•  Weekly	problem	sets 	14% 	 	70	pts	

•  (5)	Labs 	 	 	 	 	 	40% 	 	200	pts	

•  Midterm	 	 	 	 	 	20% 	 	100	pts	

•  Final 	 	 	 	 	 	 	20% 	 	100	pts	

•  Participation 	 	 	 			6% 	 	30	pts	

Administrivia	

•  Course	website:	

https://www.cs.hmc.edu/~beth/courses/cs133/current	

–  Syllabus,	calendar,	lab	descriptions	

•  Textbook:	Database	Management	Systems	3rd	Edition,		
by	Ramakrishnan	and	Gehrke	

•  Piazza	for	questions	about	labs,	problem	sets,	etc.:		

piazza.com/hmc/fall2019/cs133/home	

•  Assignment	submission		

–  Problem	sets	à	Sakai	

–  Lab	assignments	à	Gradescope	

•  Grutors	

–  Ivy	Liu	

The	Relational	Model	

•  Many	RDBMS	vendors,	including	open-source	

– Oracle	
– MySQL	

–  PostgreSQL	
–  SQLite	
– DB2	
–  SQL	Server	
– …	

•  We’ll	touch	on	other	data	models	as	well	

		

Key	Concepts:	Relational	Model	

•  Database:	collection	of	
relations		

•  Relation:	list	of	attributes	

•  Relations	have	sets	of	tuples	

•  Schema	(metadata)	

–  Specification	of	how	data	is	to	
be	structured	logically	

–  Contains	attribute	types	
–  Defined	at	set-up	

CID	 Name	 Dept	

121		 Software	Dev	 CS	

70	 Data	Structures	 CS	

Courses	

Students	
SID	 	name	 login	 	gpa	

45		Alice	 alicious	 3.4	

67		Bob	 bobtastic	 3.9	

Relational	Model:	Synonyms	

More	formal	 ………	 Less	formal	

Relation	 Table	
Tuple	 Row	 Record	
Attribute	 Column	 Field	
Domain	 Type	

Structured	Query	Language	(SQL)	

•  Data	definition	language	(DDL)	
–  Define	the	schema	(create,	change,	delete	relations)	

–  Specify	constraints,	user	permissions	

•  Data	modification	language	(DML)	

–  Find	data	that	matches	criteria	

–  Add,	remove,	update	data	

–  The	DBMS	is	responsible	for	efficient	evaluation!	

	

•  Co-invented	by		
Don	Chamberlin	(HMC	‘66)!	

Photo:	http://researcher.watson.ibm.com/

researcher/view.php?person=us-dchamber	

A	Relation	Instance	

•  An	instance	of	a	relation	is	its	contents	at	a	
given	time	

– cardinality:	#	tuples	
– arity:	#	attributes	

Students	
SID	 	Name	 Login	 	SSN	 	GPA	

45	 	Alice	 alicious	 000-00-0000	 3.4	

67	 	Bob	 bobtastic	 000-00-0001	 3.9	

78	 	Carl	 carl	 000-00-0010	 2.5	

SQL:	Creating	Relations	

•  Create	Students	relation:	

•  Domain	info	is	type	of	Integrity	constraint	(IC)		

–  IC:	a	condition	on	the	database	schema,	restricts	data	

that	can	be	stored	

CREATE TABLE
Students (
 sid CHAR(20),

 name CHAR(20),
 login CHAR(100),
 SSN CHAR(12),
 gpa FLOAT);

CREATE TABLE Enrolled (
 sid CHAR(20),
 cid CHAR(20),
 grade CHAR(2));

Create	Enrolled	relation:	

Adding	and	Removing	Tuples	

•  Insert	a	single	tuple	

INSERT INTO Students (sid, name, login, SSN, gpa)
VALUES (45, ‘Alice’, ‘alicious’, ‘000-00-0000,
3.4);

	

•  Delete	tuples	that	satisfy	condition	(predicate)	

DELETE FROM Students S
WHERE S.name = ‘Alice’;

Integrity	Constraints:	Keys	

•  Superkey	is	a	set	of	field(s)	that	
– Uniquely	identifies	a	tuple	
–  Candidate	key:	does	so	minimally	

–  Primary	key:	a	chosen	candidate	key	
	

Students	

	 SID	 	Name	 Login	 	SSN	 	GPA	

45		Alice	 alicious	 000-00-0000	 3.4	

67		Bob	 bobtastic	 000-00-0001	 3.9	

78		Carl	 carl	 000-00-0010	 2.5	

Primary	key	

Integrity	Constraints:	Foreign	Keys	

•  Referential	integrity,	logical	“pointer”	
– Set	of	fields	in	one	relation	refer	to	primary	key	of	

another	

	 	 	 	 	 	 	 	 	 		

	

SID	 CID	 	Grade	

45		CS133	 A	

45		CS121	 B	

78		CS5	 A	

Primary	key	 Foreign	key	

SID	 	Name	 Login	 	SSN	 	GPA	

45		Alice	 alicious	 000-00-0000	 3.4	

67		Bob	 bobtastic	 000-00-0001	 3.9	

78		Carl	 carl	 000-00-0010	 2.5	

Students		 Enrolled	

INSERT INTO
Enrolled(sid,cid,grade)
VALUES (43,CS133,D); ?	

Defining	Key	Constraints	

•  Specified	in	schema	definition	

CREATE TABLE Enrolled (

 sid CHAR(20),
 cid CHAR(20),
 grade CHAR(2),

 PRIMARY KEY (sid,cid),

 FOREIGN KEY (sid)
 REFERENCES Students

);

CREATE TABLE Students (
 sid CHAR(20),

 name CHAR(20),

 login CHAR(10),

 SSN CHAR(20),

 gpa FLOAT,

 PRIMARY KEY(sid),

 UNIQUE (SSN)
);

•  Possibly	many	candidate	keys		(specified	using	UNIQUE),	one	of	

which	is	chosen	as	the	primary	key.	

•  Keys	must	be	used	carefully!	

•  Example:		

“For	a	given	student	and	course,	there	is	a	single	grade.”	

CREATE TABLE Enrolled
 (sid CHAR(20)
 cid CHAR(20),
 grade CHAR(2),
 PRIMARY KEY (sid,cid))

CREATE TABLE Enrolled
 (sid CHAR(20)
 cid CHAR(20),
 grade CHAR(2),
 PRIMARY KEY (sid),
 UNIQUE (cid, grade))

 vs.

Primary	and	Candidate	Keys	in	SQL	

	

“Students	can	take	only	one	course,	and	no	two	students	in	a	
course	receive	the	same	grade.”	

SQL:	Single	Relation	Queries	

SELECT name  
FROM Students
WHERE gpa > 3.7;

name	

Bob	

SELECT *  
FROM Students S
WHERE S.gpa > 3.7;

sid	 name	 login	 gpa	

67		Bob	 bobtastic	 3.9	

SID	 	name	 login	 	gpa	
45	 	Alice	 alicious	 3.4	

67	 	Bob	 bobtastic	 3.9	

78	 Carl	 carl	 2.5	

Students	

Query	Execution:	Teaser	

Query	optimizer	transforms	a	declarative	query	

into	a	pipeline	of	dataflow	operators	called	a	
query	execution	plan	
	
	
SELECT name  
FROM Students
WHERE gpa > 3.7;

Students	

Filter	

(gpa	>	3.7)	

Project	

(name)	

Iterators!!	

SQLite	Demo	

Also	see: 	“Resources”	on	course	website	and		www.sqlite.org	

The	database	is	in	the	file	you	specify.	

The	file	is	created	if	it	doesn’t	exist.	

SQL	statements	end	with	a	semicolon.		

Capitalization	looks	nice,	but	not	required.	

These	two	settings	for	mode	and	header		
make	query	results	easier	to	read.	

