
CS	133:	Databases	
Fall	2019	

Lec	02	–	09/05	
	

Relational	Model	&	Memory	and	Buffer	Manager	
	

Prof.	Beth	Trushkowsky	

Administrivia	

•  Problem	set	1	out	tonight,	due	Thursday	11:59pm	
– Honor	code:	can	use	lectures	notes	and	textbook,	can	
discuss	general	ideas	with	classmates	

– On	Sakai	

•  Lab	1:	“Getting	started”	due	Wednesday	
– On	course	website		
(labs	will	also	be	linked	from	assignment	on	Sakai)	

– Nothing	to	submit	yet…	eventual	submission	on	
Gradescope	

Goals	for	Today	

•  Reason	about	the	conceptual	evaluation	of	an	
SQL	query	

•  Understand	the	storage	hierarchy	and	why	disk	
input/output	(I/O)	is	an	important	metric	for	
query	cost	

•  See	how	different	policies	for	managing	which	
data	stays	in	RAM	can	impact	cost	of	queries	

Relational	Model	

•  Users	write	declarative	queries	using	logical	schema	

SID	 	name	 login	 	gpa	
45		Alice	 alicious	 3.4	
67		Bob	 bobtastic	 3.9	

CID	 name	 credits	

CS	121		 Software	Dev	 3	

CS	70	 Data	Structures	 3	

Courses	

Students	

College	database		

Courses	(cid:	string,	name:	string,	credits:	integer)	

–  May	actually	interact	with	application	
that	queries	the	database	

–  Database	administrator	(DBA)	
typically	creates	database	

•  Given	declarative	query,	DBMS	
figures	out	efficient	execution	
strategy	

We’ll	start	discussion	of		
“choices”	today!	

Multi-Relation	Queries	

SID	 	name	 login	 	gpa	
45	 	Alice	 alicious	 3.4	
67	 	Bob	 bobtastic	 3.9	
78	 Carl	 carl	 2.5	

Students	
SID	 CID	 	grade	
45	 	CS133	 A	
45	 	CS121	 B	
78	 	CS5	 A	

Enrolled	

SELECT	S.name,	E.CID	
FROM	Students	S,	Enrolled	E		
WHERE	S.sid=E.sid	AND	E.grade	=	“B”;		

S.name	 E.CID	

Alice	 CS121	

Basic	Query:	Select-From-Where	
SELECT [DISTINCT] A1, A2, …, An

FROM R1, R2, …, Rn

WHERE condition(s);

	
	
	
	
	
Also	called	an	SPJ	(select-project-join)	

Relation	List.	
Relations	used	in	query,	implicitly	JOINed.	

Comparisons.	Conjunctive	(“AND”),	and	
Disjunctive	(“OR”)	

Target	List	
Attributes	from	relation	list.		

Query	Semantics	

Conceptual	query	evaluation	steps:	
1.  do	FROM	clause:	cross-product	of	tables	
2.  do	WHERE	clause:	check	conditions,	discard	

tuples	that	fail	
3.  do	SELECT	clause:	delete	unwanted	fields	
4.  do	DISTINCT:	eliminate	duplicate	tuples	

(SQL	SELECT	defaults	to	keeping	duplicates)	

Actually	very	inefficient	in	practice!	
An	optimizer	will	find	more	efficient	strategies	to	get	the	same	answer.		

(1)	FROM:	Cross-Product	

SID	 	name	 login	 	gpa	
45		Alice	 alicious	 3.4	
67		Bob	 bobtastic	 3.9	
78	Carl	 carl	 2.5	

Students	
SID	 CID	 	grade	

45		CS133	 A	
45		CS121	 B	
78		CS5	 A	

Enrolled	

S.SID	 	S.name	 S.login	 	S.gpa	 E.SID	 E.CID	 	E.grade	
45		Alice	 alicious	 3.4	 45		CS133	 A	
67		Bob	 bobtastic	 3.9	 45		CS133	 A	
78	Carl	 carl	 2.5	 45		CS133	 A	
45		Alice	 alicious	 3.4	 45		CS121	 B	
67		Bob	 bobtastic	 3.9	 45		CS121	 B	
78	Carl	 carl	 2.5	 45		CS121	 B	
45		Alice	 alicious	 3.4	 78		CS5	 A	
67		Bob	 bobtastic	 3.9	 78		CS5	 A	
78	Carl	 carl	 2.5	 78		CS5	 A	

FROM	Students	S,	Enrolled	E	
	

SELECT	S.name,	E.CID	
FROM	Students	S,	Enrolled	E		
WHERE	S.sid=E.sid	AND	E.grade	=	“B”;		

S.SID	 	S.name	 S.login	 	S.gpa	 E.SID	 E.CID	 	E.grade	

(2)	WHERE:	Discard	tuples	that	fail	conditions	

Students	X	Enrolled	

WHERE	S.sid=E.sid	AND	E.grade=‘B’		
	

S.SID	 	S.name	 S.login	 	S.gpa	 E.SID	 E.CID	 	E.grade	

45		Alice	 alicious	 3.4	 45		CS133	 A	

67		Bob	 bobtastic	 3.9	 45		CS133	 A	

78	Carl	 carl	 2.5	 45		CS133	 A	

45		Alice	 alicious	 3.4	 45		CS121	 B	

67		Bob	 bobtastic	 3.9	 45		CS121	 B	

78	Carl	 carl	 2.5	 45		CS121	 B	

45		Alice	 alicious	 3.4	 78		CS5	 A	

67		Bob	 bobtastic	 3.9	 78		CS5	 A	

78	Carl	 carl	 2.5	 78		CS5	 A	

SELECT	S.name,	E.CID	
FROM	Students	S,	Enrolled	E		
WHERE	S.sid=E.sid	AND	E.grade	=	“B”;		

(3)	SELECT:	Delete	Unwanted	Fields	

S.SID	 	S.name	 S.login	 	S.gpa	 E.SID	 E.CID	 	E.grade	

45		Alice	 alicious	 3.4	 45		CS121	 B	

SELECT	S.name,	E.CID	
	

S.name	 E.CID	

Alice	 CS121	

SELECT	S.name,	E.CID	
FROM	Students	S,	Enrolled	E		
WHERE	S.sid=E.sid	AND	E.grade	=	“B”;		

Exercise	2:	Writing	SQL	

Write	an	SQL	query	that	finds	the	course	cid	for	
only	the	courses	that	gave	at	least	one	A	grade		

Students (sid, name, login, gpa)  
Courses (cid, name)  
Enrolled (sid, cid, grade)

Aggregation	
•  What	does	this	query	produce?	

	
SELECT COUNT(*)  
FROM Enrolled E;

	
•  Built-in	Aggregates:	COUNT,	SUM,	AVG,	MAX,	MIN	

•  What	about	the	count	of	enrollments	per	course?	
	
	

•  Enrollments	for	only	“large”	classes	
	
SELECT COUNT(sid)  
FROM Enrolled E  
GROUP BY cid  
HAVING COUNT(sid) > 50;	

	

SID	 CID	 	grade	
45		CS133	 A	
45		CS121	 B	
67	CS133	 A	
78		CS5	 A	

Enrolled	

cid	 courseCount	

CS133	 2	

CS121	 1	

CS5	 1	

SELECT cid, COUNT(*) courseCount  
FROM Enrolled E  
GROUP BY cid;

[Less]	Basic	Query	Anatomy	

SELECT [DISTINCT] A1, A2, …, An

FROM R1, R2, …, Rn

WHERE condition(s)

GROUP BY A1, A2, …, An

HAVING conditions(s);

	
	
	
	
	

Grouping	list.	
Attributes	from	relation	list.		

Group	qualifications.	
Conditions	on	each	group.	

Query	Semantics	(cntd)	
Conceptual	query	evaluation	steps:	
1.  do	FROM	clause:	cross-product	of	tables	

2.  do	WHERE	clause:	check	conditions,	discard	tuples	
that	fail	

3.  Remove	fields	not	in	SELECT,	GROUP	BY,	or	HAVING	
clauses	

4.  do	GROUP	BY:	partition	into	groups	

5.  do	HAVING:	delete	groups	that	do	not	meet	
conditions	

	 Result:	one	answer	tuple	per	qualifying	group	

Could	do	#3	
after	#5	also	

Simplified	RDBMS	Architecture	

Data	records	

Disk	management	

Buffer	management	

Access	methods	

Application	

Query	optimizer	

Query	executor	

Concerned	with	
concurrency	
control	and	
recovery	

Query	 Query	results	

Let’s	look	at	the	
system	bottom-up!	

Computer	Storage	

•  Primary	storage	
– E.g.,	“main	memory”	a.k.a	random-access	
memory	(RAM)	

– Typically	volatile	

•  Secondary	storage	
– E.g.,	hard	disk	drive	
– Non-volatile	

Where	variable	values	go	when	your	
program	is	running!	

CPU
registers

Cache

RAM
Disk

Tape BIG	and	SLOW	

SMALL	and	FAST	

Why	Not	Keep	All	Data	in	Memory?	

•  Costs	too	much!	
– $100	for	100	GB	of	RAM	or	around	2	TB	of	disk	
– Databases	can	be	in	the	petabyte	(1000	TB)	range	

•  Main	memory	volatile	
– Want	persistence	

A	Typical	Disk	

Photo:	http://i.technet.microsoft.com/dynimg/IC306536.jpg	

•  Moving	parts!	
–  Platters	spin	
– Arms	move	in/out	to	
position	heads	with	track	

–  Tracks	under	heads	make	
conceptual	cylinder	

•  A	block	is	a	unit	of	
transfer	
– made	up	of	one	or	more	
sectors	

J	

In	main	memory,	we’ll	call	
this	chunk	of	data	a	page	

Disk	Access	Time	
•  Time	to	read/write	(an	Input/Output	or	I/O)	a	block		
–  Seek	time	
–  Rotational	Delay	
–  Transfer	time	

•  Seek	time	and	rotational	delay	dominate		
(stats:	wikipedia)	
–  Seek	time:	about	4	to	15msec		
–  Rotational:	avg	4msec	(7200rpm)	
–  Transfer	rate:	<	0.1msec	per	8KB	block	

Reduce	I/O	cost	by	reducing	seek	and	rotation	

Reading	from	disk	to	RAM	

Exercise	3:	Counting	I/Os	
•  Query:	joining	relations	Students	and	Enrolled	

	
•  [Simple]	join	pseudocode:	

For each tuple i of outer relation
For each tuple j of inner relation

Check if i.sid == j.sid

•  Relation	info	
–  Students:	20	pages,	1000	total	tuples	
–  Enrolled:	50	pages,	6000	total	tuples	
–  For	a	given	relation,	pages	on	disk	sequentially	

SELECT S.name, E.CID
FROM Students S, Enrolled E
WHERE S.sid=E.sid;

Exercise:	Counting	I/Os	
•  Think	of	the	simple	algorithm	as	a	nested	for-
loop	like	this:	

	

For	each	page	of	Outer	relation	
	Load	that	page	//	one	I/O	
	For	each	tuple	of	Outer	on	that	page	
	 	For	each	page	of	Inner	relation	
	 	 	Load	that	page	//	one	I/O		
	 	 	 	For	each	tuple	of	Inner	on	that	page	
	 	 	 	 	//	do	tuple	comparison	

	

Inner	loop	executes	once	for	
each	tuple	of		Outer	relation	

Exercise:	Counting	I/Os	
•  Total	I/Os	=	(#	pages	in	outer)	+		

	 	 	 	 	(#	tuples	in	outer)	*	(#	pages	in	inner)	
	
–  Students	outer:	20	+	1000*50	=	50,020	
–  Enrolled	outer:	50	+	6000*20	=	120,050	

•  #	Random	I/Os	=		
(#	pages	in	Outer)	+	(#	tuples	in	Outer)(1)	

	
	
•  #	Sequential	I/Os	=		
(#	pages	in	Inner	–	1)	(#	tuples	in	Outer)	

Reading	the	first	page	of	Inner	will	be	a	
random	I/O	each	time	

Simplified	RDBMS	Architecture	

Data	records	

Disk	management	

Buffer	management	

Access	methods	

Application	

Query	optimizer	

Query	executor	

Concerned	with	
concurrency	
control	and	
recovery	

Disk	Space	Manager	
•  Manages	space	on	disk	
•  Higher	levels	call	on	it	to	
allocate/de-allocate,	and	
read/write	pages	

Next:	the	buffer	manager	

The	Buffer	Manager	

•  Data	must	be	RAM	for	DBMS	to	operate	on	it	
– Too	costly	to	keep	all	data	in	RAM	

•  Buffer	manager	
– Maintain	a	pool	of	space	in	RAM	
– Talks	to	disk	space	manager	to	read/write	pages	
– Higher	levels	do	not	know	what	is	in	RAM	or	not		

Buffer	Pool	

DB	

MAIN	MEMORY	

DISK	

disk	page	

free	frame	

Page	Requests	from	Higher	Levels	

BUFFER	POOL	

choice	of	frame	dictated	
by	replacement	policy	

Important	Terms	

•  Disk	page:	unit	of	transfer	between	disk	and	
memory.	Size	is	DBMS	configuration	
parameter	(e.g.,	4-32	KB).		

•  Frame:	unit	of	memory.	Typically	same	size	as	
disk	page	size.		

•  Buffer	Pool:	collection	of	frames	used	to	
temporarily	keep	data	for	query	processor.		

When	a	Request	Comes	in…	

•  If	requested	page	is	in	the	buffer	pool	
–  Pin	the	page	to	mark	as	in	use	

•  Else,	if	requested	page	is	not	in	buffer	pool	
–  If	there	is	an	available	frame,	put	the	page	in	that	frame	

–  Else,	select	a	frame	for	replacement	using	a	replacement	
policy		
(only	un-pinned	pages	are	eligible	for	replacement)	
•  If	selected	frame	is	dirty,	write	it	back	to	disk	
•  Read	requested	page	into	the	selected	frame	
•  Pin	the	page	

Pin_count	==	0	

Buffer	Replacement	Policy	

•  When	no	available	frames	in	buffer	pool,	need	
to	evict	one	based	on	a	replacement	policy	
– Choice	of	policy	impacts	number	of	disk	I/Os	
– Efficacy	depends	on	access	pattern	of	pages	

What	would	an	optimal	policy	do?	

LRU	Policy	(Least	Recently	Used)	
•  Evict	the	page	that	was	accessed	(pinned)	furthest	in	the	

past,	i.e.,	the	least	recently	used	of	the	pages	in	the	pool	
	
	
•  Example:	

–  Buffer	pool	with	4	frames	
–  Assume	pages	are	immediately	unpinned	after	use	

time	

Access	pattern:	 A	 B	 C	 A	 D	 B	C	E	
A	

B	
C	

D	

E	
B	 #	hits:	2	

#	misses:	6	
Frame	1	

Frame	2	

Frame	3	

Frame	4	

Intuition:	if	a	page	has	not	
been	used	in	a	while,	it	
probably	won’t	again	soon	

