
CS	133:	Databases	

Fall	2019	
Lec	03	–	09/10	

Files	and	Records	
	

Prof.	Beth	Trushkowsky	
	

Goals	for	Today	

•  Reason	about	the	tradeoffs	between	different	
ways	to	organize	files,	records,	and	fields	on	
disk	

•  Calculate	the	cost	of	finding	records	within	
different	file	organizations	

•  Discuss	the	role	of	iterators	in	processing	
queries	in	a		relational	DBMS	

Simplified	RDBMS	Architecture	

Data	records	

Disk	management	

Buffer	management	

Access	methods	

Application	

Query	optimizer	

Query	executor	

Abstraction!	

Don’t	worry	
about	how	disk	
storage	works,	
just	ask	me	to	
allocate	pages	

Don’t	worry	about	
which	pages	are	in	
RAM	or	not,	just	
ask	for	a	page	

Don’t	worry	
about	pages,	just	
think	of	data	as	
files	of	records	

File	Organization	

•  File	is	a	logical	
collection	of	pages	

•  Each	page	has	a	set	
of	records	(tuples)	

•  Each	record	has	a	
set	of	fields	

Files	of	Records	

•  Higher	levels	of	DBMS	operate	on	records	and	
files	of	records	

•  File	API	must	support:	
–  insert/delete/modify	record	

–  fetch	a	particular	record	(specified	using	record	id)	
–  scan	all	records	(possibly	with	some	conditions	on	
the	records	to	be	retrieved)	

System	Catalogs	

•  How	do	we	know	which	file	to	look	at	for	a	given	relation?	
–  Catalog	stores	metadata	(“data	about	data”)	

•  For	each	relation:	
–  name,	file	name,	file	organization	(e.g.,	Heap	file)	
–  attribute	name	and	type,	for	each	attribute	
–  index	name,	for	each	index	
–  integrity	constraints	

•  (Plus	statistics,	authorization,	buffer	pool	size,	indexes,	…)	

In	many	DBMSs,	catalog	itself	stored	as	a	relation!	

Record	Data	Types	and	Sizes	
CREATE TABLE Courses (

course_id CHAR(5),
name VARCHAR(100),
units INTEGER,
PRIMARY KEY(course_id)

);

Range	of	data	type	options	varies	by	DBMS	

1	byte	=	8	bits	

Record	Format:		Fixed	Length	

SELECT major FROM Students;
	
Q1.	Suppose	major is	third	field,	how	to	get	it	from	the	record?	
	
Q2.	Implications	of	major	being	blank	(NULL)	for	some	records?	

L1 L2 L3 L4

F1 F2 F3 F4

Fi:	the	ith	field	
Li:	length	of	the	ith	field	in	bytes	

Info	found	in	
system	catalog!	

Record	Format:	Variable	Length	
•  One	possible	format:	

•  Another	format:	

Second	format	offers	direct	access	to	ith	field,	efficient	storage		
of	nulls	(special	don’t	know	value);	some	directory	overhead.		

$	 $	 $	 $	

Fields	Delimited	by	Special	Symbols	

F1																				F2																			F3																				F4	

F1													F2													F3													F4	

Array	of	Field	Offsets	

How	can	we	access		
the	third	field?	

Organizing	Records	on	Pages	

•  Important:	ability	to	locate	individual	records	
by	some	identifier	(id)	
– E.g.,	indexes	may	need	these	ids	

– Typically	the	record	id	is	<page	id,	slot	#>	

record	
record	
record	

record	

Slot	0	
Slot	1	

Slot	N-1	

.	.	.	

N	

PACKED	

Number	of	
records	on	page	

Free	
Space	Slot	M-1	

record	
record	

record	

.	.	.	

M	1	0	.	.	.	

	M-1						…			2	1	0	

UNPACKED,	BITMAP	

Slot	0	
Slot	1	

Free	
Space	

record	Slot	M-1	

1	1	

Number	
of	slots	on	page	
(could	be	stored	
elsewhere)	

0	 1	0	

Page	Formats:	Fixed	length	Records	

What	should	
happen	when	the	
record	in	Slot	5	is	
deleted?	

Page	i	Page	i	

VS.	

Exercise	2:	Fitting	Records	on	a	Page	
	

a).	Each	tuple	has	2	int	and	one	string	field,	so	
4+4+128	=	136	

	

b)	#	bits	for	each	tuple,	including	header:	136*8	+1	

numTuples	=	floor((1024	*	8)	/	(136	*	8	+	1))	=	7	

	

c)	headerBytes	=	ceiling(numTuples	/	8)	=	1	

Check	for	potential	
Java	rounding	issues	

•  Slot	contains:	[offset	(from	start	of	page),	length]	
•  both	in	bytes	

•  Record	id	=	<page	id,	slot	#>	
•  Page	is	full	when	data	space	and	slot	array	meet.	
	

Page	i	
Rid	=	<i,1>	

Rid	=	<i,2>	

Rid	=	<i,0>	

Offset	
to	start	
of	free	
space	

SLOT	ARRAY	

								2													1															0	
3	

#	slots	

Data
Area

Free
Space

[4,20]	[28,16]	 [64,28]	 92	

Page	Format:	Variable-length	Records	

Alternative	File	Organizations	

•  Different	organizations,	tradeoffs	

•  Heap	files	
– Unordered	(not	the	heap	data	structure)	
–  Easy	to	maintain!	
	

•  Sorted	files	
– Great	for	retrieval	in	search	key	order	
–  Expensive	to	maintain	

•  Clustered	files	(with	indexes)	
–  Compromise	between	these	extremes	

Comparing	File	Organizations:		
Cost	Analysis	

•  Average-case	analysis;	based	on	several	simplistic	
assumptions	

•  Ignore	CPU	costs,	for	simplicity:	
–  B:		The	number	of	data	blocks	(pages),	no	wasted	space	

•  Simply	count	number	of	disk	block	I/Os	
–  This	ignores	gains	of	pre-fetching	and	sequential	
access,	so	I/O	cost	is	approximate	

	
Good	enough	to	show	some	overall	trends!	

Heap	Files	(Unordered)	

•  As	file	grows	and	shrinks,	disk	pages	are	allocated	and	de-
allocated	

•  For	cost	analysis,	we’ll	assume:	
–  Insert	always	appends	to	end	of	file	
–  Delete	just	leaves	free	space	in	the	page		
–  Empty	pages	are	not	de-allocated	
–  Dirty	pages	written	back	to	disk	

•  Queries	such	as:	
SELECT * FROM Students WHERE sid=18;
 
SELECT * FROM Students WHERE gpa > 3.0;

INSERT INTO Students VALUES(18, ‘Beth’, 4.0);

DELETE FROM Students WHERE sid=18;

Students(sid, name, gpa)
	

Sorted	Files	

•  Sorted	files	maintain	the	sorted	property	on	
update	

•  Assumptions	for	analysis	
– Keep	pages	fully	packed,	no	gaps	
– Searches	are	on	the	sort	key	field(s)	

Heap	File Sorted	File
Scan	all	
records

Equality	
Search		
(1	match)

Range	Search

Insert	
(1	record)

Delete	
(1	record)

Average	Case	I/O	Counts		
(B	=	#	disk	blocks	in	file)	

B
log2 B (on sort key)

0.5 B (otherwise)

(log2 B) +
selectivity * B

(log2B)+ 2*blocks to

 move
Same cost as Insert

(if close gap)

B

0.5 B

B

2

0.5B+1

Exercise	3(b)	

Iterators!	

•  What	are	they	used	for?	

•  Why	are	they	great?	

SimpleDb:	A	Basic	DBMS	
Goal	of	Lab	1:	Support	queries	like	
SELECT * FROM relation
	
(well,	without	a	nice	user	interface)	

relation	

Sequential	
SCAN	

(user)	

Provides		
“file	of	records”	
abstraction	

next()	

next()	

Each	operator	is	an	
iterator	of	tuples	

SimbleDb:	Module	Diagram	

In	SimpleDb,	Catalog	is	
only	in	memory	

Use	static	instance	of	Database	

TupleDesc	is	the	schema	for	a	Tuple	

For	Tuple	and	TupleDesc:	
	
Classes	to	look	at:	
Type,	Field,	IntField,	StringField	

SimbleDb:	Module	Diagram	

HeapFile	(one	per	relation):	
Provides	a	DbFileIterator	
over	tuples	
	
Should	go	through	its	Pages	
using	BufferPool.getPage()	

BufferPool:	
Given	a	PageId,	should	ask	the	
appropriate	HeapFile	to	read/
write	pages.	
	
Think	about:	given	PageId,	
how	to	know	which	HeapFile?	

HeapPage:	
Has	a	PageId	and	
some	Tuples	
	
A	Tuple	may	have	
a	RecordId			

SimbleDb:	Module	Diagram	

SeqScan:	
Given	a	table	id,	
provides	an	
iterator	over	
tuples	

DbIterator:	
All	Operators	will	be	iterators	over	tuples	
	

(yay	abstraction!)	

