Administrivia

* Lab 1: Part 1 out and due next Wednesday

— Submit your code on Gradescope
CS 133: Databases — This first part graded for effort (P/F)... no slip days
— Lab 1 will be graded in its entirety when complete

Fall 2019
Lec 04 - 09/12

* Looking forward: no class next Thursday
Introduction to Indexes

— Shorter problem set released that day
Prof. Beth Trushkowsky

Goals for Today Simplified RDBMS Architecture

* Understand the structure of tree-based
indexes typically used in relational DBMSs Application

Given a query, the

. . . . Query optimizer T
* See how indexes relate to file organization gpt'mlzercanldgose
. Query executor etween available
Heap fl|'eS, access paths for each
- sorted files, W) | Access methods relation
* Reason about the cost tradeoffs for indexes indexes Buffer management

Sequential scan and
’ Disk management indexes!

Recall: Heap vs. Sorted Files

* Heap File
— Long search time
— Easy to maintain

if Students records sorted by

. name, how to search for a
* Sorted File P particular gpa?

— Use binary search
(1/0s from disk)

— Hard to maintain

What is the tradeoff of
keeping pages not as packed?

Indexes to the Rescue

* Index: a disk-based data structure that speeds up
selections on some search key fields

— Any subset of the fields of a relation can be the search
key for an index on the relation

— Note: search key not necessarily same as candidate
(or primary) key

* Can have multiple indexes on the same relation

— E.g., index on Students.sid and index on
Students.name

Also, can have composite indexes
that involve multiple fields

Indexes: Overview

¢ Anindex
— Contains a collection of data entries

— Supports efficient retrieval of all data entries with a given
search key value k
* textbook refers to these data entries as k*

— Also may contain auxiliary information that directs
searches to the desired data entries

* Many indexing techniques exist
— Tree-based, hash-based, R-trees...

— Not all support range search

* Database administrator (DBA) chooses indexes!

Anatomy of an Index: Hash Example

* Apply a hash function h to search key to
determine which data entries bucket

Data
Entries

key Entries Entries

Data
Entries

Primary bucket pages Overflow pages

Anatomy of an Index: Tree Example

Fast access to data entries at leaf level

Index entries: <search key value, page id>
direct search for data entries

Fan-out (F): avg # children for non-leaf node
— In this example, F =3

Root ~a.
40
Index Levels:
Nodes contain \
“Index Entries”

51/ | 63

Leaf Level:
Nodes contain 10| 15+ | | 20¢| 27¢| | 33+| 37+| | 40
“Data Entries”

/ 1\ /[1\

46 51*| 55* 63*

97*

| Certain tree-based indexes have pointers between leaves |

Exercise 2

How many levels will there be in a tree if there
are B leaf pages and a fan-out of F?

log. B+ 1

/ Leaf Pages \\

Typical Tree Fan-out

Leaf Pages Fanout Levels
1,000 300
10,000 300
100,000 300
1,000,000 300
Non-leaf 10,000,000 300
Pages 100,000,000 300

Keys and pointers to
next level

Data
Entries

Data Data
Entries

Entries

u bbb PP ww

Data Entries

* Whatisin a data entry k* ?
Recall, data entries live on:
— The pages that are leaves of a tree-based index
— The pages that correspond to buckets for hash index

* Three alternatives for data entry:
1. Actual data record with search key value k
2. <k, record id of matching record> pair
3. <k, record ids of matching records> pair

Alternative choice is independent of choice of
indexing technique (e.g., tree vs. hash)!

Alternative 1: k* is a data record

Employee {age, favorite_color, eid}
(tree index on age)

Index Entries

Alternative 1: Index-Organized File

e Actual data records stored in the data entries
— E.g., leaves of tree or buckets of the hash

* Implications

— Index structure becomes file organization for
relation

— Can only have one such index for a given relation

— Less lookup time vs. Alternatives 2 and 3, but
more expensive than them to maintain

|/O Operation Cost

B: The size of the data (in packed pages)

Heap File Sorted File Index-Organized File, Tree

(100% Occupancy) | (% Occupancy)

Scan all B 2

records B 158 (because pages /3 full)

Equality 0.5B | lo 5B+1

Search 0g, B

(1 match) (height + 1 reads)

Range B (log, B) + IOgF:I"S_B_ *

Search selectivity*B selectivity*1.5B

Insert 2 (log,B)+B search +1

(1 record) (if read, write 0.5 file) (1 to write, assume it fits)

Delete 0.5B+1 (log,B)+B

(1 match) (if read, write 0.5 file) same as insert

Data Entries in Alternatives 2 and 3

* Alternative 2
{<k, record id of a matching data record>}

Act as pointers to
where the data records are

* Alternative 3
<k, {records ids of all matching data records}>

* Independent of the data file organization

— If file has one index with alternative 1, all other
indexes must be either alternative 2 or 3

Alternative 2: One pointer per k*

Employee {age, favorite_color, eid}
(tree index on age)

o 1 red] s |

21* |

INDEX 24*]
30°
42*

(30| siuel643_|

Alternative 3: 1 or more pointers per k*

Employee {age, favorite_color, eid}
(tree index on age)

10* b——""" mm

21*

20 2eue] 352 |
INDEX 30*

42+

Clustered vs. Unclustered Index

e For Alts 2 or 3, we have two files — one holds the actual
data records and one is for the index.
— Order of index’s data entries may or may not be same as data

records What about data entries
order for Alternative 1?

¢ Clustered index: order of data records is same as or close
to the order of index’s data entries.

CLUSTERED NCLUSTERED

Index entries

Data entries
(Index File

e M O oD

Data Records

AN CIIen

Data Records

Alt 2: Clustered vs. Unclustered

* Clustered Pros
— More efficient for range searches: scan leaves of tree

* Clustered Cons

— Maintenance cost (pay on the fly or be lazy with
reorganization)

— One clustered index per data file (sorted on one search key)

CLUSTERED NCLUSTERED

Index entries

Data entries
(Index File

e M O oD

Data Records

AN CIIen

Data Records

|/O Operation Cost

‘ Exercise 3(b) and (c)

B: The size of the data (in pages)

Unclustered Alt-2 Tree Index
(Index file: % = 67% occupancy)
(Data file: 100% occupancy)

Clustered Alt-2 Tree Index
(Index and Data files:
% = 67% occupancy)

Scan all B (ignore index... why?) 1.5 B (ignore index)
records
Equality | (log. 0.5B)+1+1 (log;0.5B) +1+1
Search assume an index or data entry is 1/3

size of a record, so # pages at leaf

level =.33 * 1.5B = 0.5B
Range (lOgF OSB) (lOgF O.SB)
Search + selectivity*0.5B +1

+ selectivity*N + selectivity*1.5B
Insert search + 1 + 2 2forr/winheap) |Search+1+2
Delete same as insert same as insert

