
CS	133:	Databases	

Fall	2019	
Lec	04	–	09/12	

Introduction	to	Indexes	
	

Prof.	Beth	Trushkowsky	

Administrivia	

•  Lab	1:	Part	1	out	and	due	next	Wednesday	
– Submit	your	code	on	Gradescope	
– This	first	part	graded	for	effort	(P/F)…	no	slip	days	
– Lab	1	will	be	graded	in	its	entirety	when	complete	

•  Looking	forward:	no	class	next	Thursday	
– Shorter	problem	set	released	that	day	

Goals	for	Today	

•  Understand	the	structure	of	tree-based	
indexes	typically	used	in	relational	DBMSs	

•  See	how	indexes	relate	to	file	organization	

•  Reason	about	the	cost	tradeoffs	for	indexes	

Simplified	RDBMS	Architecture	

Data	records	

Disk	management	

Buffer	management	

Access	methods	

Application	

Query	optimizer	

Query	executor	Heap	files,	
sorted	files,	
indexes	

Given	a	query,	the	
optimizer	can	choose	
between	available	
access	paths	for	each	
relation	
	
Sequential	scan	and	
indexes!	

Recall:	Heap	vs.	Sorted	Files	

•  Heap	File	
– Long	search	time	
– Easy	to	maintain	

•  Sorted	File	
– Use	binary	search	
(I/Os	from	disk)	

– Hard	to	maintain	

What	is	the	tradeoff	of	
keeping	pages	not	as	packed?	

if	Students	records	sorted	by	
name,	how	to	search	for	a	

particular	gpa?	

Indexes	to	the	Rescue	
•  Index:	a	disk-based	data	structure	that	speeds	up	
selections	on	some	search	key	fields	
– Any	subset	of	the	fields	of	a	relation	can	be	the	search	
key	for	an	index	on	the	relation	

– Note:	search	key	not	necessarily	same	as	candidate	
(or	primary)	key	

	
•  Can	have	multiple	indexes	on	the	same	relation	

–  E.g.,	index	on	Students.sid	and	index	on	
Students.name	

Also,	can	have	composite	indexes	
that	involve	multiple	fields	

Indexes:	Overview	
•  An	index		

–  Contains	a	collection	of	data	entries	
–  Supports	efficient	retrieval	of	all	data	entries	with	a	given	
search	key	value	k	

•  textbook	refers	to	these	data	entries	as	k*	
	

–  Also	may	contain	auxiliary	information	that	directs	
searches	to	the	desired	data	entries	

•  Many	indexing	techniques	exist	
–  Tree-based,	hash-based,	R-trees…		
–  Not	all	support	range	search	

•  Database	administrator	(DBA)	chooses	indexes!	

Anatomy	of	an	Index:	Hash	Example	

•  Apply	a	hash	function	h	to	search	key	to	
determine	which	data	entries	bucket	

Primary	bucket	pages	 Overflow	pages	

Data		
Entries	

Data		
Entries	

Data		
Entries	

hash	key	
Data		
Entries	

Anatomy	of	an	Index:	Tree	Example	
•  Fast	access	to	data	entries	at	leaf	level	
•  Index	entries:	<search	key	value,	page	id>	
direct	search	for	data	entries	

•  Fan-out	(F):	avg	#	children	for	non-leaf	node	
–  In	this	example,	F	=3	

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

Index Levels:
Nodes contain
“Index Entries”

Leaf Level:
Nodes contain
“Data Entries”

Certain tree-based indexes have pointers between leaves

Exercise	2	

How	many	levels	will	there	be	in	a	tree	if	there	
are	B	leaf	pages	and	a	fan-out	of	F?	

logF	B	+	1	
		

Leaf Pages

Non-leaf
Pages

Keys	and	pointers	to	
next	level	

Data	
Entries	

Data	
Entries	

Data	
Entries	

#	Leaf	Pages	 Fanout	 Levels	
1,000	 300	 3	
10,000	 300	 3	
100,000	 300	 4	

1,000,000	 300	 4	
10,000,000	 300	 4	
100,000,000	 300	 5	

16KB	pages,	67%full	and		
100	byte	records	=	approx	100	
recs/page.	
	
so,	can	store	10B	rows	with	5	
levels.		

Note: All pages at
all levels are:
“Slotted Pages”

Typical	Tree	Fan-out	 Data	Entries	

•  What	is	in	a	data	entry	k*	?		
Recall,	data	entries	live	on:	
–  The	pages	that	are	leaves	of	a	tree-based	index	
–  The	pages	that	correspond	to	buckets	for	hash	index	

•  Three	alternatives	for	data	entry:	
1.  Actual	data	record	with	search	key	value	k	
2.  <k,	record	id	of	matching	record>	pair	
3.  <k,	record	ids	of	matching	records>	pair	

Alternative	choice	is	independent	of	choice	of		
indexing	technique	(e.g.,	tree	vs.	hash)!	

Alternative	1:	k*	is	a	data	record	

Index	Entries	

.	

.	

.	

Employee	{age,	favorite_color,	eid}	
(tree	index	on	age)	

10			Blue			105	

10			Green		268		

21			Red 	881	

24		Blue 	952	

30			Blue 	643		

42			Red 	195		

Alternative	1:	Index-Organized	File	

•  Actual	data	records	stored	in	the	data	entries	
– E.g.,	leaves	of	tree	or	buckets	of	the	hash	

•  Implications	
–  Index	structure	becomes	file	organization	for	
relation	

– Can	only	have	one	such	index	for	a	given	relation	
– Less	lookup	time	vs.	Alternatives	2	and	3,	but	
more	expensive	than	them	to	maintain	

I/O	Operation	Cost		
Heap	File	 Sorted	File	

(100%	Occupancy)	
Index-Organized	File,	Tree	
(⅔	Occupancy)	

Scan	all	
records	

B	
B	

	
Equality	
Search		
(1	match)	

0.5	B	
log2	B	

Range	
Search	

B	 (log2	B)	+	
	selectivity*B	

Insert	
(1	record)	

2	 (log2B)+B	
(if	read,	write	0.5	file)	

Delete	
(1	match)	

0.5B+1		 (log2B)+B			
(if	read,	write	0.5	file)	

B:		The	size	of	the	data	(in	packed	pages)	

1.5	B	(because	pages	⅔	full)	
	
logF	1.5B	+	1	
(height	+	1	reads)	
logF1.5B		+	
	selectivity*1.5B	

search	+1	
(1	to	write,	assume	it	fits)	

	
same	as	insert	

Exercise	3(a)	

Data	Entries	in	Alternatives	2	and	3	
•  Alternative	2		
{<k,	record	id	of	a	matching	data	record>}	

•  Alternative	3		
<k,	{records	ids	of	all	matching	data	records}>	

	
	
•  Independent	of	the	data	file	organization	

–  If	file	has	one	index	with	alternative	1,	all	other	
indexes	must	be	either	alternative	2	or	3	

	

Act	as	pointers	to		
where	the	data	records	are	

Alternative	2:	One	pointer	per	k*	

10*

10*

21*

24*

30*

42*

INDEX	

.	

.	

.	

Employee	{age,	favorite_color,	eid}	
(tree	index	on	age)	

10			Blue			105	

10			Green		268		

21			Red 	881	

30			Blue 	643		

42			Red 	195		

24		Blue 	952	

Alternative	3:	1	or	more	pointers	per	k*	

10*

21*

24*

30*

42*

INDEX	

.	

.	

.	

Employee	{age,	favorite_color,	eid}	
(tree	index	on	age)	

10			Blue			105	

10			Green		268		

21			Red 	881	

30			Blue 	643		

42			Red 	195		

24		Blue 	952	

Clustered	vs.	Unclustered	Index	
•  For	Alts	2	or	3,	we	have	two	files	–	one	holds	the	actual	

data	records	and	one	is	for	the	index.	
–  Order	of	index’s	data	entries	may	or	may	not	be	same	as	data	
records	
	
	

•  Clustered	index:	order	of	data	records	is	same	as	or	close	
to	the	order	of	index’s	data	entries.	

Index entries

Data entries
(Index File)
(Data file)

Data Records

CLUSTERED	

Data Records

UNCLUSTERED	

What	about	data	entries	
order	for	Alternative	1?	

Alt	2:	Clustered	vs.	Unclustered	
•  Clustered	Pros	

– More	efficient	for	range	searches:	scan	leaves	of	tree	

•  Clustered	Cons	
– Maintenance	cost	(pay	on	the	fly	or	be	lazy	with	
reorganization)	

–  One	clustered	index	per	data	file	(sorted	on	one	search	key)	

Index entries

Data entries

(Index File)

(Data file)

Data Records

Data entries

Data Records

CLUSTERED UNCLUSTERED

Index entries Index entries

Data entries
(Index File)
(Data file)

Data Records

CLUSTERED	

Data Records

UNCLUSTERED	

I/O	Operation	Cost		
Unclustered	Alt-2	Tree	Index	
(Index	file:	⅔	=	67%	occupancy)	

(Data	file:	100%	occupancy)

Clustered	Alt-2	Tree	Index		
(Index	and	Data	files:	
⅔	=	67%	occupancy)

Scan	all	
records
Equality	
Search	
	

Range	
Search

Insert

Delete

	
B:		The	size	of	the	data	(in	pages)	

1.5	B	(ignore	index)	
	

(logF	0.5B)	+	1	+	1	
	
	
(logF	0.5B)		
+	1	
+	selectivity*1.5B	

search	+	1	+	2	

same	as	insert	

B	(ignore	index…	why?)	
	

(logF	0.5B)	+	1	+	1	
assume	an	index	or	data	entry	is	1/3	
size	of	a	record,	so	#	pages	at	leaf	
level	=	.33	*	1.5B	=	0.5B	

(logF	0.5B)	
+	selectivity*0.5B	
+	selectivity*N	

search	+	1	+	2	(2	for	r/w	in	heap)	

same	as	insert	

Exercise	3(b)	and	(c)	

