
CS	133:	Databases	

Fall	2019	
Lec	5	–	09/17	

Tree-based	Indexes	
	

Prof.	Beth	Trushkowsky	

Goals	for	Today	

•  Consider	tradeoffs	when	choosing	indexes	

•  Understand	the	difference	and	tradeoffs	
between	static	and	dynamic	tree-based	
indexes	

•  Learn	the	algorithms	for	search,	insert,	and	
delete	for	both	types	of	tree	indexes	

	

Example:	Indexes	

4,	Carl,	FF	

6,	Frank,	JR		

5,	Alice,	SR	

Students(sid,	name,	class)	

9,	Dina,	SO		

7,	Bob,	FR	

3,	Erin,	JR	

DATA	RECORDS	
(unordered)	

pi	à	“page	i”		

p0		

p1		

Student	relation	organized	as	a	Heap:	

CREATE CLUSTERED index sidIndex  
ON Students(sid)  
USING B-tree;

CREATE Index syntax	(and	options)	
varies	between	DBMSs	!!	

	
(this	is	a	canonical	example)	

In	some	(many?)	systems,	
specifying	CLUSTERED	
implies	Alternative	1	

3,	Erin,	JR	

4,	Carl,	FF	

Students(sid,	name,	class)	

5,	Alice,	SR	

6,	Frank,	JR	

7,	Bob,	FF	

9,	Dina,	SO		

DATA	RECORDS	
(clustered	on	sid)	

Tree	index	on	sid	
(Alternative	1,	clustered)	

pi	à	“page	i”		
p0		

p1		

p2		

5,	

7,	

INDEX	
ENTRIES	

p3		p0		
p1		

p2		

Suppose	want	index	on	name	too!	

•  Cross	off	which	options	are	not	possible	for	the	new	
index	(given	our	existing	Alt	1	tree	index	on	sid)	

•  Clustered	
•  Unclustered	
•  Tree-based	
•  Hash-based	
•  Alt	1	(data	entries	are	data	records)	
•  Alt	2	(data	entries	are	pairs	of	key	à	record	id)	
•  Alt	3	(data	entries	are	pairs	of	key	à	{record	ids})	

Students(sid,	name,	class)	 pi	à	“page	i”		

Alice,	{p1,s0}	

Bob,	{p2,s1}	

Carl,	{p0,s1}	

Dina,	{p2,s1}	

Erin,	{p0,s0}	

Frank,	{p1,s1}	

Dina,	

Tree	Index	on	name	
(Alternative	2,	unclustered)	

DATA	ENTRIES	

INDEX		
ENTRIES	

3,	Erin,	JR	

4,	Carl,	FF	

5,	Alice,	SR	

6,	Frank,	JR	

7,	Bob,	FF	

9,	Dina,	SO		

DATA	RECORDS	
(clustered	on	sid)	

Tree	index	on	sid	
(Alternative	1,	clustered)	

5,	

7,	

INDEX	
ENTRIES	

p0		

p1		

p2		

p3		p0		
p1		

p2		

p00		

p01		

p00		 p02		
p01		

Exercise	2:	Discuss	with	a	Neighbor	

1.  What	are	the	implications	if	Erin	changes	her	name	to	
TheAwesomeErin?		
	
UPDATE Students  
SET name = “TheAwesomeErin”  
WHERE sid=3;  
	
	

2.  Now	consider	adding	two	new	students,		and	suppose	
we	want	to	keep	our	clustered	file	completely	sorted.	
	
Contrast	the	implications	in	these	two	scenarios:	
–  Scenario	1:	Adding	two	students	with	sids	1	and	2	
–  Scenario	2:	Adding	two	students	with	sids	10	and	11	

Tree	Indexes:		
Indexed	Sequential	Access	Method	

•  ISAM	is	an	old-fashioned	idea	
– B+	trees	are	usually	better,	as	we’ll	see	

•  Though	not	always	
•  But,	it’s	a	good	place	to	start	

– Simpler	than	B+	tree,	but	many	of	the	same	
ideas	

•  Summary	
– Don’t	brag	about	being	an	ISAM	expert	
– Do	understand	how	they	work,	and	tradeoffs	
with	B+	trees	

P 0 K 1 P 1 K 2 P 2 K m P m

index entry

Non-leaf
Pages

Pages
Overflow

page
Primary pages

Leaf

ISAM	Tree	Format	

Pointer	Pi	points	
to	sub-tree	with	
search	keys	K,		
Ki	<=	K	<	Ki+1	

P1:	K1	<=	subtree’s	keys	<	K2	

Overflow
page

Example	ISAM	Tree	
•  Index	entries:	<search	key	value,	page	id>		they	
direct	search	to	data	entries	in	leaves.	

•  Example	where	each	node	can	hold	2	entries	

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

Two	entries	on	this	page	

Data Entry
 Pages

ISAM	has	a	STATIC	Index	Structure	

	Index	File	creation:			
1.  Allocate	leaf	pages	sequentially	
2.  Sort	records	by	search	key		
3.  Allocate	and	fill	index	entry	pages	
(now	the	structure	is	ready	for	use)	

4.  Allocate	overflow	pages	as	
needed	

		

	Static	tree	structure:		inserts/deletes	affect	only	
	leaf	nodes	of	tree.	

ISAM File Layout

Index Entry
Pages

Overflow pages

ISAM	Operation	Summary	
•  Search:		Start	at	root;	use	key	comparisons	to	find	leaf	

	N	=	#	leaf	pages	
	F	=	#	entries/page	+	1	(i.e.,	fan-out)	
	 	Cost	=	log	F	N	+	1											
	
	
	

•  Insert:			
–  Search	for	leaf	that	data	entry	belongs	to,	and	put	it	there.	
–  Create	overflow	page	if	necessary.	Sorting	in	overflow	possible	
but	not	usually	done.		
	

•  Delete:			
–  Search	for	leaf;	remove	from	leaf;		
–  If	an	overflow	page	becomes	empty,	can	de-allocate	

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40
Root

	No	need	for	“next-leaf-
page”	pointers		(Why?)	

Example:	Insert	23*,	Delete	51*	

10*	 15*	 20*	 27*	 33*	 37*	 40*	 46*	 51*	 55*	 63*	 97*	

20	 33	 51	 63	

40	

Root	

Overflow	

Pages	

Leaf	

Index	

Pages	

Pages	

Primary	

23*	

After	deletion	51	will	still	appear	in	index	levels,	but	not	in	leaf!	

Exercise:	(3)	on	worksheet	
Insert	21*,	13*,	16*,	32*,	29*	

10*	 15*	 20*	 27*	 33*	 37*	 40*	 46*	 51*	 55*	 63*	 97*	

20	 33	 51	 63	

40	

Root	

Overflow	

Pages	

Leaf	

Index	

Pages	

Pages	

Primary	

23*	13*	 16*	 21*	

32*	 29*	

Insert/delete	at	log	F	N	cost;																																					
keep	tree	height-balanced.		

•  Each	node	(except	for	root)	contains	m	entries:			
d	<=	m	<=	2d	entries.		

•  “d”	is	called	the	order	of	the	tree.			
(so	maintain	50%	min	occupancy)	

•  Supports	equality	and	range-searches	efficiently.	

As	in	ISAM,	all	searches	go	from	root	to	leaves,	but	
structure	is	dynamic.	

B+	Tree:		The	Most	Widely	Used	Index	 Example	B+	Tree	

•  Search	begins	at	root	page,	and	key	comparisons	
direct	it	to	a	leaf	(as	in	ISAM)	

•  Search	for	5*,	15*,	all	data	entries	>=	24*	...	

Based	on	the	search	for	15*,	we	know	it	is	not	in	the	tree!	

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

B+Tree	Insertions	and	Deletions	

•  Important	goals	for	tree	modification:		
	
1.  Maintain	balanced	nature	of	tree!		

(non-leaf	pages	at	least	half-full)	
	

2.  Maintain	correctness	of	pointers	
	

3.  Only	leaf	pages	contain	data	entries	

Example B+ Tree – Inserting 23*

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

23*	

Example B+ Tree - Inserting 8*
Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

2* 3* 5* 7* 8*

2* 3* 7* 5* 8*

	5	

24 30

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13 5

2* 3* 7* 5* 8*

Root

17

Example B+ Tree - Inserting 8*

Notice that root was split, leading to increase in height.

2* 3* 7* 5* 8*

24 30

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13 5

2* 3* 7* 5* 8*

Root

17

•  Find	correct	leaf	L.		

•  Put	data	entry	into	L.	
–  If	L	has	enough	space,	done!	
–  Else,	must	split		L	(into	L	and	a	new	node	L2)	

•  Redistribute	entries	evenly,	copy	up	middle	key.	
•  Insert	index	entry	pointing	to	L2	into	parent	of	L.	

•  This	can	happen	recursively	
–  To	split	index	node,	redistribute	entries	evenly,	but	push	
up	middle	key.		(Contrast	with	leaf	splits.)	

•  Splits	“grow”	tree;	root	split	increases	height.			
–  Tree	growth:	gets	wider	or	one	level	taller	at	top.	

B+Tree:	Inserting	a	Data	Entry	 Leaf vs. Index Page Split  
(from previous example of inserting “8”)

•  Minimum	
occupancy	is	
guaranteed	in	
both	leaf	and	
index	page	
splits	

•  Note	difference	
between	copy-
up	and	push-up;		

5
Entry to be inserted in parent node.
(Note that 5 is
continues to appear in the leaf.)

s copied up and

2* 3* 5* 7* 8* …	
Leaf
Page
Split

2* 3* 5* 7* 8*

5 24 30 13

appears once in the index. Contrast 17
Entry to be inserted in parent node.
(Note that 17 is pushed up and only

this with a leaf split.)

17 24 30 13 Index
Page
Split

5

Root

17

24 30

19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

Example Tree - Delete 19*

�	�	�	

5 13

�	�	�	

Root

17

24 30

20* 22* 24* 27* 29* 33* 34* 38* 39*

Example Tree - Delete 19*

�	�	�	�	�	�	

5 13

Root

17

24 30

20* 22* 24* 27* 29* 33* 34* 38* 39*

Example Tree – Now, Delete 20*

�	�	�	

Under-occupancy!	
Need	to	re-distribute.	

�	�	�	

5 13

Take	from	sibling	

Root

17

27 30

22* 24* 27* 29* 33* 34* 38* 39*

Example Tree – Delete 20*

�	�	�	�	�	�	

5 13

Root

17

27 30

22* 27* 29* 33* 34* 38* 39*

Example Tree – Then Delete 24*

�	�	�	
Too	few	entries!	

24*

Can’t	redistribute,	
Must	merge…	

�	�	�	

5 13

Root

17

30

22* 27* 29* 33* 34* 38* 39*

Example Tree – Delete 24*

�	�	�	

Too	few	entries!	

Root
30 13 5 17

2* 3* 7* 14* 16* 22* 27* 29* 33* 34* 38* 39* 5* 8*

�	�	�	

5 13 Removed	27	

Merge	adjacent	nodes,	pull	down	17	

B+	Tree:	Deleting	a	Data	Entry	

•  Find	correct	leaf	L.	

•  Remove	the	entry.	
–  If	L	is	at	least	half-full,	done!		
–  If	L	has	only	d-1	entries,	

•  Try	to	re-distribute,	borrowing	from	sibling	(adjacent	
node	with	same	parent	as	L).	

•  If	re-distribution	fails,	merge	L	and	sibling.	

•  If	merge	occurred:	
–  If	merging	leaf	pages	must	delete	entry	(pointing	to	L	or	sibling)	from	

parent	of	L.	
–  Else	if	merging	non-leaf	pages,	must	pull	down	parent	entry	

•  Merge	could	propagate	to	root,	decreasing	height.	

Be	sure	to	update	the	
“differentiating	

entry”	between	the	
two	siblings	

HeapPages	in	SimpleDb	

•  Bits	are	just	bits	(zeroes	and	ones)	
–  The	software	we	write	imposes	meaning	on	them	
–  E.g.,	00000110		

•  could	mean	the	number	6	
•  could	mean	slots	1,2	in	a	heap	page	are	occupied!	

– Note	how	we	read	the	bits	from	right	to	left	
•  I.e.,	the	least	significant	bit	is	the	right-most	bit	

•  Header	bytes	in	HeapPage	
Byte	0	

Byte	1	

0th	byte	describes	
slots	0-7	

SimpleDb	HeapPage	

•  Example:	Slot	10’s	bit	would	be	in	the	second	
byte	(byte	1)	
– Generally,	slot	i	in	byte	floor(i / 8)
–  (other	ways	of	computing	this	too)	

•  Bitwise	operators!	
–  	<<,	&	
–  Check	if	a	bit	is	0:	
headerByte & (1 << headerBit) == 0	
	

Java	Exceptions	

•  So	far	in	Lab	1:	
–  Possibly	seen	
java.lang.NullPointerException !!	

–  Followed	documentation	to	throw	exceptions,	e.g.,	
throw new DbException();

•  Coming	up:	
–  May	need	to	catch	exceptions,	e.g.,		
catch (IOException e) {…}  
	

–  In	general,	poor	design	(and	hides	bugs!)	to	catch	
multiple	exceptions	just	by	one	catch	clause	that	
catches	the	parent	class	Exception

