CS 133: Databases

Fall 2019
Lec 6 —09/24
Hash-based Indexes

Prof. Beth Trushkowsky

Goals for Today

* Learn how hash-based indexes are
constructed

* Understand how operations work on static
and dynamic hash indexes, and the impact on
cost in 1/Os

* Reason about the tradeoffs between
approaches to dynamic hash indexes

Anatomy of an Index: Hash-based

* Apply a hash function to search key k to
determine which data entries bucket
— N number of buckets, find bucket as hash(k) MOD N

* Note: unlike tree, no index entries necessary

Data

Entries
| bata | ——— Data

Entries Entries

key

Data
Entries

Primary bucket pages Overflow pages

Hashing Functions

* Hash function works on search key field(s) of record
* Desirable properties for hash function:

— Uniform distribution: the same number of search key
values map to each bucket, for all possible values

— Random distribution: at any given point in time, each
bucket has the same number of search key values

* |n practice
— Typically operate on a binary representation of the data

— Can tune hash function to achieve desirable properties
(e.g., cryptographic techniques)

We’'ll use integers in our examples, assume already hashed
Bucket # = integer MOD N

Static Hashing
* Number of primary bucket pages fixed

— Allocated sequentially

— Never de-allocated; chain of overflow pages if
needed.

Primary bucket pages Overflow pages

Static Hashing

* Example:
— # buckets N =4
— Bucket number = hashed key MOD 4

Helpful label, not
stored anywhere

Y
00 = 0|:|€ One page (this one fits 4 data entries)

01=19* Insert hashed key 9*
10=2 2>9MO0OD4=1

-> Trick: # buckets = 22,
use lower 2 bits to determine bucket

MOAR Buckets

* Situation: Bucket (primary page) becomes full.
— Want to avoid chains of overflow pages

* Solution: add more buckets (i.e., increase “N”)?
— Okay, but need to rehash everything!

— Doubling # of buckets makes rehashing easier, just use one
more bit to differentiate 2N buckets

* Two dynamic approaches:
— Extendible hashing
— Linear hashing

Extendible Hashing

* |dea: add level of indirection
* Use a directory to point to buckets

* “Double” # of buckets by doubling the directory

— Directory much smaller than file, so doubling it is much cheaper
(might fit in RAM)

— When want to “split” a bucket, double the directory

— Allocate new page only for the split bucket

1 LOCAL DEPTH
GLOBAL DEPTH
3‘1’ 9% (1001)
11 11* (1011
10 *()
> 7* (0111)
DIRECTORY

(Stored in file) DATA ENTRY PAGES

* Use global depth to look up bucket in directory

Handling Inserts

* If there’s room, put data entry there.

* Else, if bucket is full, split it:
— increment local depth of original page

— allocate new page with new local depth

— re-distribute records from original page

— double directory if necessary (when local > global)

— add entry for the new page to the directory

Example: Insert 21*,19*, 15*
(before picture)

e 21=10101
19=10011
15=01111

LOCAL DEPTH- —>|2
. . ok 4Rk Bucket A
GLOBAL DEPTH / 4" 1232"16
2] 4]

Bucket B
* * T* *
00 4 1* 5* 7" 13
01
10 ~ 2
1 10* Bucket C
DIRECTORY
DATA PAGES

Example: Insert 21*,19*, 15*

. 21=10101 {=m

19=10011
15=01111

GLOBAL DEPTH

LOCAL DEPTH- —>

i

2
4 12+:32116* | PUOetA
2

Bucket B

00 | —1* 52113
01 |
10 ~ 2
Bucket C
1 10*

Dlnecmk

2
7+ 19*15* Bucket D

DATA PAGES

Insert 20* (10100): Causes Doubling
(before picture)

LOCAL DEPTH

GLOBAL DEPTH

1* 5* 214 5} Bucket B

2
10* Bucket C

2

15*7*19* Bucket D

00
01
10
1

om

Insert 20* (10100): Causes Doubling

LOCAL DEPTHWh Bucket A rocar pepra-Z—" 3
GLOBAL DEPTH/‘ 32*16 GLOBAL DEPTH 32* 6*Bucket A
obgn 5 =

00 |11 5*2113BucketB 000 Z 1* 5* 21"13 Bucket B
m <

o1 | —| 001
10 2 010 2
10* Bucket C 011 10* Bucket C
2
15*7*19* Bucket D
Ferrm b"
* * Bucket A2
4* 1220 (‘sglit ima%e' 4* 12'20* | Bucket A2
of Bucket A) SpiLimase’

~
1 —~
\ 100
101
15*7*19* Bucket D

110

\\L2x</\

Local vs. Global Depth

) | Local depth:
GIObZIgfpih' LOCAL DEPTHW% 5761 Bucket A # bits that entries
max its to * ucke . .

GLOBAL DEPTH in this bucket share
determine bucket \ %
3 2]

000 | 1* 5* 21"131 Bucket B
Local < Global:

001 || 7<
010 |~ 2 When this bucket
o1 10 Bucket C splits, it will not
100 cause directory to
101 >< 2 ‘double |
110 15" 7+ 19 Bucket D
m

E

4* 12°20* | Bucket A2

('split image'
of Bucket A)

\\

Extendible Hashing: Comments

* |If directory fits in memory, equality search
answered with one disk access; else two

* Avoids overflow pages
(besides those needed for duplicates/collisions)

Delete:

* If removal of data entry makes bucket empty,
can be merged with “split image’

* |f each directory element points to same
bucket as its split image, can halve directory.

Linear Hashing — a Lazier Approach

* |ssues with Extendible

— Completion of an insertion can take a while if it
caused a split... have to move data around

* Linear Hashing:
— ldea: decouple what is split from the action that
triggers a split
— A dynamic hashing scheme that handles the
problem of long overflow chains without using a
directory

Linear Hashing Example

* Avoids directory by:
— using temporary overflow pages and
choosing the bucket that is split in a round-robin fashion.
— For example, when any bucket overflows:

split the bucket that is currently pointed to by the “Next”
pointer and then increment that pointer to the next bucket.

Next
000/ 00 [8*4* 7 Insert 3* ?
001 01
010/ 10
01111 [7* 114
100/ 00

“Directory” info is
illustration only, not
stored anywhere

Linear Hashing — The Main Idea

* Use a family of functions hy, h, h,, ...
* h, = hashed key mod(2'N)
— N =initial # buckets (a power of 2)

— h;,, doubles the range of h; (similar to directory doubling in extendible hashing)

* Note: at a given time, could be “using” two functions:
one function for buckets that have been split vs. ones that haven’t

hl hO
Next

000/ 00 |8* z/////

001/ 01

010(10

011/ 11 [7*11%=>3* |

100/ 00 [4F

Linear Hashing (Contd.)

* Algorithm proceeds in rounds. Current round number is Leve/
— Thereare N, = N * 2t puckets at the beginning of a round (so N, = N)
— Round ends when allinitial buckets in the round have been split
(i.e., round ends after splitting bucket Next = N,,,.-1).
— The level determines which hash function to use

* To start next round:

Level++;
Next = 0;
’ State of bucket splits:
h h Buckets 0 to Next-1 are split
L g Next=1 Buckets Next to Ny, 1 are not

000/ 00 | 8*

001/ 01
010/ 10

01111 [7511%—>{3* |

100/ 00 (4%

Linear Hashing Search Algorithm

To find bucket for data entry k, first find h,_ (k).

Then:

If h,,,.(k) >= Next (i.e., h,, (k) is a bucket that hasn’t
been split this round) then k belongs in that bucket
for sure.

Else, k could belong to bucket h,, (k) or bucket
h, (k) + N, , mustapply h,,,..,(k) to find out

Example: Search

44 (11100), 9 (01001)
Level=0, Next=0, N=4

h |h
1| 0 | Next=0
000 | 00
oot o1 || (go)estls] |
010 10 [14*]18%10%307
011! 11 35* 7% 11*L

PRIMARY

PAGES

hLeveI(key) = key mOd(ZLeVelN)

Linear Hashing - Insert

* Find appropriate bucket, if fits, then DONE.
* Else, if no room:
— Add overflow page and insert data entry.
— Split Next bucket and increment Next.
* This is likely NOT the bucket being inserted to!
* To split a bucket, create a new bucket and use
h to re-distribute entries.

Level+1

* Since buckets are split round-robin, long
overflow chains don’t develop!

Example: Insert 43 (101011)

Level=0, Next =0
N=4

Level=0, Next=1

000

001

010
011

00

01

10

11

31935%7* [11% 011
i
100
PRIMARY
PAGES PRIMARY OVERFLOW

PAGES PAGES

Example: Search
44 (11100), 9 (01001)

Level=0, Next = 1, N=4

For 44*, use h

h | h 1
1 0
000| 00 \@ZE\Zl For 9%, still use h,
oo1| o1| [9*[257%5* |
00| 10
100/ oo| laafzed [|

PRIMARY OVERFLOW

PAGES PAGES

Example: End of a Round

Level=1, Next =0
Insert 50 (110010)

hy hg
Next=0
Level=0, Next =3 000 | 00 \El
hy | ho 001 | o1 (25]
010 | 10 [66* 18*10*34*] [s0+)
)| !

Next=3
100 00
|l Namew] [[ar 3t |

wo! o preen 1 5% 37* 29*

101 | 01 5% 37%29* 110 | 10

S 14'3092* m | 1 @
PRIMARY OVERFLOW PRIVIARY OVERFLOW
PAGES PAGES PAGES PAGES

Extendible vs. Linear

* Extendible

— Directory grows in spurts, and, if the distribution of
hash values is skewed, directory can grow large

* Linear

— Amount of storage space used could be lower than
Extendible Hashing, since splits not concentrated on
‘dense’ data areas

— Can tune criterion for triggering splits to trade-off
slightly longer chains for better space utilization

Exercise 5: Trees vs. Hashes

Relations: Query:

Professors(pid, name, phone) SELECT C.name, P.name, P.phone

Clubs(name, advisorld, motto) FROM Clubs C, Professors P
WHERE C.advisorId = P.pid;

JOIN algorithm:
for each page of Clubs
for each tuple on that page
probe index on Professors.pid to find matching advisorId
// extract necessary fields, etc.

Which of these two possible indexes on Professors.pid would result in
fewer 1/Os when evaluating the JOIN?

(a). A B+Tree index with four levels. Only the root node stays in the
buffer pool. per Clubs tuple: 3 1/0s to get leaf page, another 1 1/0 to fetch record

(b). An Extendible hash index. The directory fits in memory and there
are no overflow pages. Per Clubs tuple: 1 1/0 for bucket, 1 1/0 for record

