
CS	133:	Databases	

Fall	2019	

Lec	6	–	09/24	

Hash-based	Indexes	

	

Prof.	Beth	Trushkowsky	

	

Goals	for	Today	

•  Learn	how	hash-based	indexes	are	
constructed	

•  Understand	how	operations	work	on	static	
and	dynamic	hash	indexes,	and	the	impact	on	

cost	in	I/Os	

•  Reason	about	the	tradeoffs	between	
approaches	to	dynamic	hash	indexes	

Anatomy	of	an	Index:	Hash-based	

•  Apply	a	hash	function	to	search	key	k	to	
determine	which	data	entries	bucket	
– N	number	of	buckets,	find	bucket	as	hash(k)	MOD	N	

•  Note:	unlike	tree,	no	index	entries	necessary		

Primary	bucket	pages	 Overflow	pages	

Data		

Entries	

Data		

Entries	

Data		

Entries	

hash(key)	

MOD	N	
key	

Data		

Entries	

Hashing	Functions	

•  Hash	function	works	on	search	key	field(s)	of	record	
•  Desirable	properties	for	hash	function:	
–  	Uniform	distribution:	the	same	number	of	search	key	

values	map	to	each	bucket,	for	all	possible	values	

	

–  	Random	distribution:	at	any	given	point	in	time,	each	

bucket	has	the	same	number	of	search	key	values	

	

	

•  In	practice	
–  Typically	operate	on	a	binary	representation	of	the	data	
–  Can	tune	hash	function	to	achieve	desirable	properties	
(e.g.,	cryptographic	techniques)	

We’ll	use	integers	in	our	examples,	assume	already	hashed	
	Bucket	#	=	integer	MOD	N	

Static	Hashing	

•  Number	of	primary	bucket	pages	fixed		

– Allocated	sequentially	
– Never	de-allocated;	chain	of	overflow	pages	if	
needed.	

Primary bucket pages Overflow pages

1
0

N-1

hashed	key		

MOD	N	
key	

•  Example:	

– #	buckets	N	=	4	
– Bucket	number	=	hashed	key	MOD	4		

	
	

00 =
01 =
10 =
11 =

Insert	hashed	key	9*	

à	9	MOD	4	=	1	

	

	

	

9*	

ß	One	page	(this	one	fits	4	data	entries)	

à	Trick:	#	buckets	=	22,		
use	lower	2	bits	to	determine	bucket	
	

0
1
2
3

Static	Hashing	

This	mask	lets	us	
inspect	only	the	

last	two	bits	of	9	

Helpful	label,	not	

stored	anywhere	

MOAR	Buckets	

•  Situation:	Bucket	(primary	page)	becomes	full.	

– Want	to	avoid	chains	of	overflow	pages	

•  Solution:	add	more	buckets	(i.e.,	increase	“N”)?	

–  Okay,	but	need	to	rehash	everything!	
–  Doubling	#	of	buckets	makes	rehashing	easier,	just	use	one	

more	bit	to	differentiate	2N	buckets	

	

	

	

•  Two	dynamic	approaches:	

–  Extendible	hashing	
–  Linear	hashing	

Extendible	Hashing	

•  Idea:	add	level	of	indirection!	
•  Use	a	directory	to	point	to	buckets	
•  “Double”	#	of	buckets	by	doubling	the	directory	

–  Directory	much	smaller	than	file,	so	doubling	it	is	much	cheaper	

(might	fit	in	RAM)		

–  When	want	to	“split”	a	bucket,	double	the	directory	

–  Allocate	new	page	only	for	the	split	bucket	

00
01
10
11

0
1

9*	11*	

7*	

7*			(0111)	

9*			(1001)	

11*	(1011)	

DIRECTORY	
(Stored	in	file)	

GLOBAL	DEPTH	
LOCAL	DEPTH	

2	
1	

2	

2	

DATA	ENTRY	PAGES	

Handling	Inserts	

•  Use	global	depth	to	look	up	bucket	in	directory	
•  If	there’s	room,	put	data	entry	there.	

•  Else,	if	bucket	is	full,	split	it:	
–  increment	local	depth	of	original	page	

–  allocate	new	page	with	new	local	depth	
–  re-distribute	records	from	original	page	

–  double	directory	if	necessary	(when	local	>	global)	
–  add	entry	for	the	new	page	to	the	directory	

Example: Insert 21*,19*, 15*  
(before picture)

•  21	=	10101	

•  19	=	10011	

•  15	=	01111	

13*00
01
10
11

2

2

LOCAL DEPTH

GLOBAL DEPTH

DIRECTORY

Bucket A

Bucket B

Bucket C

DATA PAGES

10*

1* 7*

2
4* 12* 32* 16*

5*

we denote key r by h(r).

1
7*

Example: Insert 21*,19*, 15*
•  21	=	10101	

•  19	=	10011	

•  15	=	01111	

13*00
01
10
11

2

2

LOCAL DEPTH

GLOBAL DEPTH

DIRECTORY

Bucket A

Bucket B

Bucket C

2
Bucket D

DATA PAGES

10*

1* 7*

2
4* 12* 32*16*

15*7* 19*

5*

we denote key r by h(r).

12
21*

2
4* 12* 32*16*

Insert 20* (10100): Causes Doubling 
(before picture)

00
01
10
11

2 2

2

2

LOCAL DEPTH

GLOBAL DEPTH
Bucket A

Bucket B

Bucket D

1* 5*21*13*

10*

15*7*19*

2
32*16*

Bucket C

4*12*

2
4* 12* 32*16*

Insert 20* (10100): Causes Doubling 

00
01
10
11

2 2

2

2

LOCAL DEPTH

GLOBAL DEPTH
Bucket A

Bucket B

Bucket C

Bucket D

1* 5* 21*13*

10*

15*7*19*

(`split image'
of Bucket A)

20*
3

Bucket A24* 12*

of Bucket A)

3
Bucket A2

(`split image'
4* 20*12*

2
Bucket B1* 5* 21*13*

10*
2

19*
2

Bucket D15*7*

3
32*16*

LOCAL DEPTH

000
001
010
011
100
101
110
111

3
GLOBAL DEPTH

3
32*16*

Bucket C

Bucket A

Local	vs.	Global	Depth	

Bucket C

of Bucket A)

3
Bucket A2

(`split image'
4* 20*12*

2
Bucket B1* 5* 21*13*

10*
2

19*
2

Bucket D15* 7*

3
32*16*

LOCAL DEPTH

000
001
010
011
100
101
110
111

3
GLOBAL DEPTH Bucket A

Global	depth:	
max	#	bits	to	

determine	bucket	

Local	depth:	
#	bits	that	entries	

in	this	bucket	share	

Local	<	Global:	
When	this	bucket	

splits,	it	will	not	

cause	directory	to	

double	

Extendible	Hashing:	Comments	

•  If	directory	fits	in	memory,	equality	search	

answered	with	one	disk	access;	else	two	
•  Avoids	overflow	pages		
(besides	those	needed	for	duplicates/collisions)	

Delete:			

•  If	removal	of	data	entry	makes	bucket	empty,	

can	be	merged	with	`split	image’	

•  If	each	directory	element	points	to	same	

bucket	as	its	split	image,	can	halve	directory.		

•  Issues	with	Extendible	
– Completion	of	an	insertion	can	take	a	while	if	it	

caused	a	split…	have	to	move	data	around	

•  Linear	Hashing:		
–  Idea:	decouple	what	is	split	from	the	action	that	
triggers	a	split	

– A	dynamic	hashing	scheme	that	handles	the	

problem	of	long	overflow	chains	without	using	a	
directory	

Linear	Hashing	–	a	Lazier	Approach	

Linear	Hashing	Example	

•  Avoids	directory	by:	
–  using	temporary	overflow	pages	and	
choosing	the	bucket	that	is	split	in	a	round-robin	fashion.	

–  For	example,	when	any	bucket	overflows:	
split	the	bucket	that	is	currently	pointed	to	by	the	“Next”	
pointer	and	then	increment	that	pointer	to	the	next	bucket.	

00
01
10
11 7*	11*	

8*	4*	

Next	

Insert	3*	?	

00

000
001
010

100
011 3*	

“Directory”	info	is	

illustration	only,	not	

stored	anywhere	

Linear	Hashing	–	The	Main	Idea	

•  Use	a	family	of	functions	h
0
,	h

1
,	h

2
,	…	

•  h
i
	=	hashed	key	mod(2

i
N)	

–  N	=	initial	#	buckets		(a	power	of	2)	
–  h

i+1	
doubles	the	range	of	h

i	
(similar	to	directory	doubling	in	extendible	hashing)	

•  Note:	at	a	given	time,	could	be	“using”	two	functions:		

one	function	for	buckets	that	have	been	split	vs.	ones	that	haven’t	

00
01
10
11 7*	11*	

8*	

4*	

Next	

00

000
001
010

100
011 3*	

h
0	

h
1	

Linear	Hashing	(Contd.)	

•  Algorithm	proceeds	in	rounds.	Current	round	number	is	Level	
–  There	are	NLevel		=	N	*	2

Level
	buckets	at	the	beginning	of	a	round	(so	N

0
	=	N)	

–  Round	ends	when	all
	
initial	buckets	in	the	round	have	been	split		

(i.e.,	round	ends	after	splitting	bucket	Next	=	Nlevel-1).	
–  The	level	determines	which	hash	function	to	use	

•  To	start	next	round:	

Level++;		

Next	=	0;	

00
01
10
11 7*	11*	

8*	

4*	

Next=1	

00

000
001
010

100
011 3*	

h
0	

h
1	

State	of	bucket	splits:	
Buckets	0	to	Next-1	are	split	

Buckets	Next	to	Nlevel-1	are	not	

	

Linear	Hashing	Search	Algorithm	

To	find	bucket	for	data	entry	k,	first	find	hLevel(k).		
Then:	

If	hLevel(k)	>=	Next	(i.e.,	hLevel(k)	is	a	bucket	that	hasn’t	
been	split	this	round)	then	k	belongs	in	that	bucket	
for	sure.		

	

Else,	k	could	belong	to	bucket	hLevel(k)	or	bucket		
hLevel(k)	+	NLevel	,	must	apply	hLevel+1(k)	to	find	out	

Example:	Search		

44	(11100),	9	(01001)		

0	
h	h	

1	

Level=0,		Next=0,	N=4	

00	

01	

10	

11	

000	

001	

010	

011	

PRIMARY	
PAGES	

44*	 36*	32*	

25*	9*	 5*	

14*	18*	10*	30*	

31*	35*	 11*	7*	

Next=0	

h
Level

(key)	=	key	mod(2
Level

N)	

	

Linear	Hashing	-	Insert	

•  Find	appropriate	bucket,	if	fits,	then	DONE.		
•  Else,	if	no	room:	

– Add	overflow	page	and	insert	data	entry.	
– Split	Next	bucket	and	increment	Next.	
•  This	is	likely	NOT	the	bucket	being	inserted	to!	
•  To	split	a	bucket,	create	a	new	bucket	and	use	
h
Level+1	

to	re-distribute	entries.	

•  Since	buckets	are	split	round-robin,	long	
overflow	chains	don’t	develop!	

Example:	Insert	43		(101011)	

0	
h	h	

1	

Level=0,	Next	=	0	
N=4	

00	

01	

10	

11	

000	

001	

010	

011	

Next=0	

PRIMARY	
PAGES	

44*	 36*	32*	

25*	9*	 5*	

14*	18*	10*	30*	

31*	35*	 11*	7*	

0	
h	h	

1	

Level=0,	

00	

01	

10	

11	

000	

001	

010	

011	

Next=1	

PRIMARY	
PAGES	

OVERFLOW	
PAGES	

00	100	 44*	36*	

32*	

25*	9*	 5*	

14*	18*	10*	30*	

31*	35*	 11*	7*	 43*	

Level=0,	Next	=	1,	N=4	

0	
h	h	

1	

00	

01	

10	

11	

000	

001	

010	

011	

PRIMARY	
PAGES	

OVERFLOW	
PAGES	

00	100	 44*	36*	

32*	

25*	9*	 5*	

14*	18*	10*	30*	

31*	35*	 11*	7*	 43*	

Example:	Search		

44	(11100),	9	(01001)		

For	44*,	use	h
1	

For	9*,	still	use	h
0	

Example:		End	of	a	Round	

0	h	h	1	

22*	

00	

01	

10	

11	

000	

001	

010	

011	

00	100	

Next=3	

01	

10	

101	

110	

Level=0,	Next	=	3	

PRIMARY	
PAGES	

OVERFLOW	
PAGES	

32*	

9*	

5*	

14*	

25*	

66*	 10*	18*	 34*	

35*	31*	 7*	 11*	 43*	

44*	36*	

37*	29*	

30*	

0	h	h	1	

37*	

00	

01	

10	

11	

000	

001	

010	

011	

00	100	

10	

101	

110	

Next=0	

111	

11	

11	

32*	

9*	25*	

66*	 18*	10*	34*	

35*	 11*	

44*	 36*	

5*	 29*	

43*	

14*	 30*	22*	

31*	7*	

50*	

Insert	50	(110010)	

Level=1,	Next	=	0	

PRIMARY	
PAGES	

OVERFLOW	
PAGES	

Extendible	vs.	Linear	

•  Extendible	
– Directory	grows	in	spurts,	and,	if	the	distribution	of	
hash	values	is	skewed,	directory	can	grow	large	

•  Linear	
– Amount	of	storage	space	used	could	be	lower	than	

Extendible	Hashing,	since	splits	not	concentrated	on	

`dense’	data	areas	

	

–  Can	tune	criterion	for	triggering	splits	to	trade-off	
slightly	longer	chains	for	better	space	utilization	

Exercise	5:	Trees	vs.	Hashes	

Relations:	

Professors(pid,	name,	phone)		

Clubs(name,	advisorId,	motto)		

	

JOIN	algorithm:		

for each page of Clubs
 for each tuple on that page

 probe index on Professors.pid to find matching advisorId
 // extract necessary fields, etc.

Query:	

SELECT C.name, P.name, P.phone  
FROM Clubs C, Professors P  
WHERE C.advisorId = P.pid;
	

Which	of	these	two	possible	indexes	on	Professors.pid	would	result	in	
fewer	I/Os	when	evaluating	the	JOIN?		

	

(a).	A	B+Tree	index	with	four	levels.	Only	the	root	node	stays	in	the	
buffer	pool.	

	

(b).	An	Extendible	hash	index.	The	directory	fits	in	memory	and	there	

are	no	overflow	pages.		

Per	Clubs	tuple:	3	I/Os	to	get	leaf	page,	another	1	I/O	to	fetch	record	

Per	Clubs	tuple:	1	I/O	for	bucket,	1	I/O	for	record	

