CS 133: Databases

Fall 2019
Lec 7-09/26
Relational Algebra

Prof. Beth Trushkowsky

Goals for Today

* Learn about how relational algebra operates
on sets of tuples

* Compose the basic relational algebra
operators to form queries on relations

* Understand the goals for Lab 2

— You’re ready for Exercise 1 after class today!

Logical Query Plan Example

* Example: college database

Students(SID, name, gpa)
Enrolled(SID, CID, grade)

SELECT S.name, E.CID
FROM Students S, Enrolled E
WHERE S.SID=E.SID;

When query optimizer forms
Pull out name hysical query plan
A and CID fields physical query plan,
| it will consider available

Sets of tuples implementations

flow upward

Combine and/or choices for the logical
/ \ operators!
Get tuples from Get tuples from
Students Enrolled

Operations on Sets of Tuples

{ * Relational model: data represented as sets
: of tuples (i.e., relations)

“% ° Relational algebra: an algebra on sets of
s Y tuples
0 | |
Edgar F. Codd — Used to express queries about those relations
Turing award, 1981

— l.e., a query language

* Note: Sets != Bags
— Sets: relations have no duplicate tuples
— Bags, aka multi-sets: duplicate tuples possible

Formal Relational Query Languages What is “an Algebra” ??

 Query languages allow manipulation and retrieval of data Mathematical system consisting of:

from a database i / co:srg'cuec(:unfvsvty;ies
— Query languages != programming languages! Variables or /[Operands } [Operators }

constants from given values

* Two mathematical Query Languages form the basis for

“real” languages (e.g., SQL), and for implementation: Ex'amp/e:. T P
— Relational Algebra: More operational, useful for representing Arithmetic Y v
query execution plans.
Relational Relations Let’s see...

— Relational Calculus: Lets users describe what they want, rather
than how to compute it. (Non-operational, declarative.)

An algebra allows us to build expressions by applying
operators to operands and/or other expressions

We’ll see some differences between SQL and relational algebra

N Example Instances Sl lwd | day
Preliminaries P 25 1101 110/10/96
A query is qppl!ed to relation instances, and the result of a query is Sailing Database: Reserves 58 103 |11/12/96
also a relation instance. Boats, Sailors, Reserves ' .
p . sid |sname |rating |age
> Query > :
(e.g., algebra or SQL) m bname COIOI' 22 dU.Stll’l 7 45.0
Relation instance(s) Relation instance 10 1 Interlake blue 31 lubber 8 55.5
102 |Interlake |red 58 |rusty 10 (35.0
Depending on the query, output relation schema may be the same or 103 Clipper green s1
different than input schema 104 |Marine |red . -
soats sid |sname |rating |age
SID name login gpa P 28 yuppy 9 35.0
45 Alice alicious 3.4==2»| Query |=—2» — 31 |lubber 8 55.5
67 Bob bobtastic 3.9 44 guppy 5 35.0
78 Carl carl 2.5 o |58 rusty 10 35.0

Relational Algebra: 5 Basic Operations

* Selection () Selects a subset of rows from
relation (horizontal).

* Projection (JT) Retains only wanted columns from
relation (vertical).

* Cross-product (X) Allows us to combine two
relations.

« Set-difference (=) Tuples in relationl, but not in
relation2.

* Union (U) Tuples in relation1 and/or in relation2.

Since each operation returns a relation,
operations can be composed!

Selection (0) — Horizontal Restriction

» Selects rows that satisfy selection condition.
— Note: not the same thing as SELECT in SQL
— Can have several conditions, combined with V (or), A (and)

* Schema of result is same as that of the input relation.

* Example:

sid [sname |rating |age sid |sname |rating |age

28 |yuppy 9 35.0
31 |lubber | 8 |55.5 | |31 |lubber | 8 |55.5
44 |guppy 5 35.0

o .
(S2) rating=_8

Exercise 2

sid |sname |rating |age
28 |yuppy 9 35.0
31 |lubber | 8 55.5
44 |guppy 5 35.0
58 |rusty 10 [35.0

¥

sid [sname |rating |age
28 |yuppy 9 35.0
58 |rusty 10 |35.0

Projection (r) — Vertical Restriction

. 7 T — (82
Examples: Zg0¢))

* Retains only attributes that are in the “projection list”.

* Schema of result:

— exactly the fields in the projection list, with the same names
that they had in the input relation

* In relational algebra, projection operator eliminates duplicates
— How would duplicates arise?

— Note: real systems typically don’t do duplicate elimination
in SQL unless the user explicitly asks for it (why not?)

Examples: Projection

Composing Operators

sid [sname |rating |age
28 lyuppy | 9 [35.0 e Output of a Relational Algebra operator is a
31 |lubber | 8 [555 relation, so...
44 |guppy | S 35.0 — Can use result as input to another Relational
58 |rusty 10 _135.0 Algebra operator
S2 . 1
sname |rating sid |sname |rating |age sname |rating
2 9 35.0
age ilug;py ’ 3 ‘y:.l‘f‘fe}: 8 565 yuppy |9
35.0 ubber 5 M guppy——5—135-6 rusty |10
guppy |5
55.5 58 |rusty 10 [35.0
rusty |10 <
ﬂag e(SZ) . (S 2 sname, rating(aratin g> 8(52))
sname,rating
Union and Set-Difference Union
sid |sname |rating |age sid |sname |rating |age
¢ Take two input relations, which must be 20 |dustin | 7 450 28 |yuppy | 9 35.0
union-compatible: ' 31 |[lubb 8 55.5
. 31 |lubber | 8 |55.5 -
— Same number of fields 44 | guppy 5 35.0
— “Corresponding” fields have the same type o y :
S2
Will the Union operator have to do duplicate sid |[sname |rating |age
elimination? How about Set-Difference? 2 |dustin |7 45.0
31 |lubber |8 55.5
58 |rusty |10 35.0
44 |guppy |5 35.0
28 |yuppy |9 35.0

S1US2

Set-difference

Cross-Product

* S1 x R1: Each tuple of S1 paired with each tuple of R1

sid |sname |rating |age sid |sname |rating |age _ : .
27 | dustin 7 450 gglg i/ulﬁfy g 22(5) How many tuples will be in the result S1 x R1?
31 |lubber | 8 |55.5 . '
58 |rusty | 10 350 T ojguppy | > 1350
rusty . 58 |rusty 10 |35.0 * Result schema has one field per field of S1 and R1, with
s1 s2 field names “inherited’ if possible.
— May have a naming conflict: When both S1 and R1 have
a field with the same name.
sid |[sname |rating |age sid |sname |rating |age — In this case, can use the renaming operator:
22 [dustin |7 450 | |28 |yuppy | 9 350 0 (C(1=>sid1,5—>sid2), SIxRI)
44 |guppy 5 35.0
S1-82 S2-S81 Rename the first and fifth fields in the
relation that results from S1 x R1
Cross Product Example
_ _ e P Compound Operators
s1 |sid [sname |rating |age R! |sid |bid day
22 |dustin | 7 45.0 22 101 |10/10/96 * In addition to the five basic operators, there are
31 |lubber | 8 555 58 1103 |11/12/96 several additional “Compound Operators”
— These add no computational power to the language,
58 |rusty 10 [35.0 but are useful short-hands
p (C(A—sidl,5—sid2),S1xRl)= — Can be expressed solely with the basic operators
sidl |sname |rating|age |sid2 |bid |day
22 |dustin 7 450 | 22 [101 [10/10/96
22 |dustin | 7 [450 | 58 |103 [11/12/96 * We'll |00k.at .
31 |lubber | 8 |[555 | 22 |101 |10/10/96 — Intersection, Join
31 |lubber | 8 |555 | 58 |[103 [11/12/9 * See .b.o.ok for
58 |rusty 10 (350 | 22 [101 [10/10/96 — Division
58 |rusty 10 [35.0 58 103 |11/12/96

Intersection

Intersection takes two input relations, which must be union-
compatible.
* How to express it using only basic operators?
RNS=R -(R-9S)
sid [sname |rating |age
22 |dustin 7 45.0
31 |lubber 8 55.5

58 |rusty 10 1350 sid |sname |rating |age

51 31 |lubber |8 55.5
sid [sname |rating |age 58 |rusty |10 35.0

28 |yuppy | 9 350
31 |lubber | 8 |55.5 SlﬂSZ
44 \guppy | 5 |35.0
58 |rusty 10 |35.0

Join ()

* Joins are compound operators involving
— cross product,
— selection,
— and (sometimes) projection.

* Most common type of join is a natural join
(bowtie with no annotation)

R><1S conceptually is:

— Compute the cross product R X S

— Select rows where attributes that appear in both relations have
equal values

— Project all unique attributes and one copy of each of the
common ones

S2
Natural Join Example Other Types of Joins
i Lirt sid snan.le rating |age * Condition Join (or “theta-join”):
22 |101 |10/10/96 22 |dustin | 7 45.0 Re<t .S = 0 .(RxS)
58 103 |11/12/96 31 |lubber | 8 555 ¢ ¢
Rl S8 |rusty 10 [35.0 — Result schema same as that of cross-product.
R1P><151 = s1 — (May have fewer tuples than cross-product)

sid |sname |rating |age |bid |day

22 dustin |7 45.0 (101 |10/10/96

58 |rusty |10 35.0 |103 |11/12/96 * Equi-Join: Nickname for case when

How would join result change if R1 also contained the tuple:
sid |bid | day
22 105 | 12/13/96

condition ¢ contains only conjunction of
equalities.

S1

“Theta” Join Example

sid [sname |rating |age sid |[sname |rating |age

22 |dustin 7 45.0 22 |dustin 7 45.0

31 |lubber | 8 555 31 |lubber | 8 555
58 |rusty 10 [35.0 58 |rusty 10 [35.0

S1 S3

P Sl.rating<S3.rating 53 =

| not shown: renaming columns |

sidl [snamel |ratingl |agel [sid2 |[sname2 |rating2 |age2

22 dustin |7 45.0 (31 lubber |8 55.5
22 dustin |7 45.0 (58 rusty 10 35.0
31 |lubber |8 555 |58 rusty 10 35.0

Exercise 5-7:
Relational Algebra using Joins

Find names of sailors who've reserved boat #103

7 sname (T bide103 Reserves) >t Sailors)

Find names of sailors who've reserved a red boat
a o Boats) <t Reserves<i Sailors
sname((color="red'))
Find sailors who've reserved a red and a green boat

p (Tempred, L. d((aco lor <! red" Boats)r<1 Reserves))

p© (Tempgreen, 1 d((G Boats)>< Reserves))

color = green'

7T sname(Tempred () Tempgreen)>< Sailors)

Lab 2: SimpleDb Operators

* Goal: building on Lab 1, be able to perform simple queries
over multiple relations

X
SELECT * left.1 = right.2

FROM tablel, table2 / \

WHERE tablel.fieldl = table2.field2

. Filter SeqScan
AND tablel.id > 5; id>5 table2

SeqScan
tablet

* Three parts! Submit each on Gradescope
— Part 1: Filter and Join: out now, due next Wednesday
— Part 2: Aggregation, HeapFile Mutability
— Final: Insert and Delete, Buffer Pool Eviction

* Operators will implement the interface Dbliterator

Operators are Dblterators

public abstract class Operator implements DbIterator {

hasNext () and next ()
are already written

public boolean hasNext() throws DbException, TransactionAborted

public Tuple next() throws DbException, TransactionAbortedExcep
if (next == null) {

next = fetchNext();

if (next == null) throw new NoSuchElementException();

Calls fetchNext ()

}

Tuple result = next;
next = null;

return result;

}

protected abstract Tuple fetchNext() Your operators will

have to implement this

- Example: Filter

* Filter is an operator that implements a relational select.
*/
public class Filter extends Operator {
/**
* Constructor accepts a predicate to apply

* and a child operator to read tuples to filter from.
*

*
p
* The predicate to filter tuples with
* child
* The child operator
*/

public Filter(Predicate p, DbIterator child) { You will need to call
super.open() and
super.close()

Each tuple will be filtered by A child operator
p.filter() from which to See Project. java
Hint: check out Field.compare() read tuples! as an example

Join
Takes a JoinPredicate:
public JoinPredicate(int fieldl, Predicate.Op op, int field2) {

Which field from Which field from
the tuple from the tuple from
child1 child2

Recall nested-loop algorithm...

Relational Calculus

* Tuple Relational Calculus:
— Variables range over (i.e., get bound to) tuples

— Answer tuples: an assignment of constants to
variables that make an expression evaluate to true

{S | s E Sailors A S.rating > T}

{P |35 E Sailors(S.rating > 7 APname = S.sname APage = S.age)}

Effectively the projected attributes

* Every relational algebra query can be expressed
as a safe calculus query, and vice versa

Check out Section 4.3 in the book for more!

Logical Query Plan Example

* Example: college database

Students(SID, name, gpa)
Enrolled(SID, CID, grade)

SELECT S.name, E.CID

FROM Students S, Enrolled E Relational algebra
WHERE S.SID=E.SID; expresgon?
Pull out name
¥ N and CID fields
Sets of tuples |
flow upward
Combine
Get tuples from Get tuples from
Students Enrolled

