
CS	133:	Databases	

Fall	2019	
Lec	8	–	10/01	

SQL	

	

Prof.	Beth	Trushkowsky	

Plan	for	Today	

•  Enhance	understanding	of	semantics	of	

conceptual	query	evaluation	

•  Build	on	understanding	of	the	role	of	primary	

keys	and	NULL	values	in	queries	

•  Practice	reading	and	writing	more	complex	

SQL	queries	

	

SQL:	Structured	Query	Language	

•  Relational	algebra	and	calculus	form	the	basis	for	SQL	

•  SQL	is	the	standard	query	language	supported	by	most	
commercial	DBMS	
–  The	standard	revised	over	time,	e.g.,	“SQL	92”	or	“SQL	99”	

•  Recall	basic	query	syntax	

SELECT								[DISTINCT]		target-list	
FROM											relation-list	
[WHERE							qualification]	
	

	

[ORDER	BY	field(s)	[ASC|DESC]]	
[LIMIT	num_rows]	

Query	Semantics	
•  Semantics	of	an	SQL	query	are	defined	in	terms	of	the	
following	conceptual	evaluation	strategy:	

1.	do	FROM	clause:	compute	cross-product	of	tables		
(e.g.,	Students	and	Enrolled).	

	
2.	do	WHERE	clause:	Check	conditions,	discard	tuples	that	
fail.	(i.e.,	“selection”).	

	
3.	do	SELECT	clause:	Delete	unwanted	fields.	
(i.e.,	“projection”).	

	
4.	If	DISTINCT	specified,	eliminate	duplicate	rows.	

	
Not	necessarily	an	efficient	way	to	compute	a	query!		

–  An	optimizer	will	find	more	efficient	strategies	to	get	the	
same	answer.	



Visualizing	Query	Evaluation	

SELECT		sname	
FROM				Sailors,	Reserves		

WHERE		Sailors.sid=Reserves.sid	AND	bid=103	

sid	 sname	 rating	 age	 sid	 bid	 day	

Some	tuple	

Some	tuple	

Is	this	bid	103?	Join	condition:	are	these	the	same	sid?	

If	all	constraints	met,		

return	this	sname	
Conceptually,	this	happens	

for	all	pairs	of	tuples		

Example	Relation	Instances	

We	will	use	these	
instances	of	
relations	in	our	
examples.	

	

Reserves	

Sailors	

Boats	

bid bname color
101 Interlake blue
102 Interlake red
103 Clipper green
104 Marine red

sid sname rating age
22 Dustin 7 45.0
31 Lubber 8 55.5
95 Bob 3 63.5

sid bid day
22 101 10/10/96
95 103 11/12/96

(Assume	appropriate	foreign	key	constraints	are	used)	

Range	Variables	
•  Can	associate	“range	variables”	with	the	relations	in	

the	FROM	clause	

–  saves	writing,	makes	queries	easier	to	understand	

–  like	an	alias	

•  Needed	when	ambiguity	could	arise	

–  for	example,	if	same	relation	used	multiple	times	

in	same	FROM	clause	(called	a	“self-join”)	

SELECT S.sname 
FROM Sailors S, Reserves R 
WHERE S.sid=R.sid AND bid=103; 

Range	Variables	(cntd)	

•  Example	where	range	variables	are	required		

(self-join	example):	

•  Is	it	possible	for	the	result	to	contain	a	pair	of	
Sailors	that	are	actually	the	same	person?	

SELECT  S1.sname, S1.age, S2.sname, S2.age 
FROM Sailors S1, Sailors S2 
WHERE  S1.age = S2.age  
 AND S1.rating > S2.rating; 



Expressions	

•  Can	use	arithmetic	expressions	in	SELECT	clause		

•  Use	AS	to	provide	column	names	

	

	

	

	

•  Can	also	have	expressions	in	WHERE	clause:	

SELECT S.sname, S.rating % 2 AS evenOrOddRating 
FROM  Sailors S 
WHERE  S.age >= 18; 

SELECT  S1.sname AS name1, S2.sname AS name2 
FROM  Sailors S1, Sailors S2 
WHERE  S1.rating > 2*S2.rating; 

Exercise	2-3:		

Practice	query	interpretation	

2.  Sid,	name,	and	rating	for	sailors	who	have	reserved	
multiple	different	boats	on	the	same	day.	

3.  (a)	Yes.	Without	DISTINCT,	the	cardinality	of	the	
result	is	the	same	as	the	cardinality	of	Reserves;	there	
could	be	duplicates	if	sailors	have	reserved	more	than	
once	

(b)	Could	have	duplicate	names,	which	may	or	may	not	be	
the	same	sailor	

	

(c)	No	results	

Null	Values	
•  Field	values	in	a	tuple	are	sometimes	missing	

–  	unknown	(e.g.,	a	rating	or	grade	has	not	been	
assigned)		

–  inapplicable	(e.g.,	no	spouse’s	name).			

– SQL	provides	a	special	value	null	for	such	situations.	

•  The	presence	of	null	complicates	query	
evaluation.	E.g.:	

–  Is	“rating	>	8”	true	or	false	when	rating	is	null?			
What	about	AND,	OR	and	NOT?	

– You	can	check	if	a	value	is/is	not	null	using	IS	NULL	

Null	Values	–	3	Valued	Logic	

AND T F Null 

T 

F 

NULL 

OR T F Null 

T 

F 

NULL 

(null > 0) 

(null + 1) 

(null = 0) 

null AND true 

unknown 

unknown 

unknown 

unknown 

T 

F Unknown 

T F 

F F 

Unknown 

Unknown F 

F 

T T 

T 

T Unknown Unknown Unknown 

We	need	a	3-valued	logic.	
•  Values:	True,	False	and	Unknown	
•  Meaning	of	clauses	must	be	defined	
carefully	
(e.g.,	WHERE	clause	eliminates	rows	
that	do	not	evaluate	to	true.)	 NOT unknown 

	
unknown 



Query:	Find	sids	of	sailors	who’ve	
reserved	a	red	or	a	green	boat	

UNION:	compute	the	union	of	any	two	union-compatible	sets	
of	tuples	(which	are	themselves	the	result	of	SQL	queries)	

SELECT DISTINCT R.sid 
FROM Boats B,Reserves R 
WHERE R.bid=B.bid  
 AND (B.color=‘red’ OR B.color=‘green’); 

SELECT  R.sid 
FROM Boats B, Reserves R 
WHERE R.bid=B.bid AND B.color=‘red’ 
UNION  
SELECT R.sid 
FROM Boats B, Reserves R 
WHERE  R.bid=B.bid AND         
B.color=‘green’; 

(note:	
UNION	

eliminates	
duplicates		

by	default.	
Override	w/	

UNION	ALL)	

What	is	DISTINCT	
achieving?	 •  If	we	simply	replace	OR	by	AND	in	the	previous	query,	

we	get	the	wrong	answer.		(Why?)	

SELECT DISTINCT R.sid 
FROM Boats B,Reserves R 
WHERE R.bid=B.bid  

 AND (B.color=‘red’ AND B.color=‘green’) 

Query:	Find	sids	of	sailors	who’ve	
reserved	a	red	and	a	green	boat	

•  INTERSECT:	
–  Discussed	in	textbook.		
–  Can	be	used	to	compute	

the	intersection	of	any	two		

union-compatible	sets	of	
tuples.		

	

•  Also	in	textbook:		EXCEPT	
(sometimes	called	MINUS)	

–  Included	in	the	SQL	92	
standard,		

–  but	many	systems	don’t	

support	them.	

SELECT R.sid 
FROM Boats B, Reserves R 
WHERE R.bid=B.bid 
  AND B.color=‘red’ 

INTERSECT 
SELECT R.sid 
FROM Boats B, Reserves R 
WHERE R.bid=B.bid 
     AND B.color=‘green’ 

red	and	a	green	boat	(cntd)…	
•  Can	use	SQL	queries	to	aid	the	evaluation	of	
another	SQL	query	

•  WHERE	clause	can	itself	contain	an	SQL	query!			
– so	can	FROM	and	HAVING	clauses.	

•  Example:	

Nested	Queries	

SELECT  S.sid 
FROM  Sailors S 
WHERE  S.rating > (SELECT AVG(rating) FROM Sailors); 

How	many	results	does	

this	subquery	return?	



•  Subqueries	can	also	be	relations	with	many	tuples	

•  Semantics	of	nested	queries:	
–  Think	of	a	nested	loops	evaluation:		For	each	Sailors	tuple,	
check	the	qualification	by	computing	the	subquery	

	
•  To	find	sailors	who	have	not	reserved	#103,	use	NOT	IN	

Nested	Queries	

SELECT  S.sname 
FROM  Sailors S 
WHERE  S.sid IN ( SELECT R.sid 
                  FROM  Reserves R 
        WHERE  R.bid=103) 

Names	of	sailors	who’ve	reserved	boat	#103:	

For	a	given	tuple	in	the	

outer	query,	check	if	
sid	==	any	result	tuple	
from	the	inner	query	

In	general,	watch	out	for	attributes	that	could	be	NULL!	

More	on	Set-Comparison	Operators	
•  Operators	to	filter	tuples;	applied	to	a	relation	R	to	yield	a	boolean	result	

–  value	IN	R: 	 	 	true	iff	value	is	equal	to	one	of	the	values	in	unary	R	
–  EXISTS	R:	 	 	 	true	iff	R	is	not	empty	

–  UNIQUE	R:		 	 	true	iff	R	has	no	duplicates	(or	is	empty)	
–  value	<op>	ANY	R:	 	true	iff	value	<op>	some	value	in	unary	R	
–  value	<op>	ALL	R:	 	true	iff	value	<op>	all	values	in	unary	R	

•  Another	Example:	

	

SELECT  * 
FROM  Sailors S 
WHERE  S.age > ANY (SELECT  S2.age 
                  FROM  Sailors S2 
                  WHERE S2.sname=‘Horatio’) 

Exercise	4	

SELECT	S.sid	

FROM	Sailors	S	

WHERE	S.rating	>=	ALL	(	SELECT	S2.rating		

	 	 	 	 	 	 	 	 	FROM	Sailors	S2	)		

Nested	Queries	with	Correlation	

•  Subquery	recomputed	for	each	Sailors	tuple.	

– Think	of	subquery	as	a	function	call	that	runs	a	query!	

	

SELECT  S.sname 
FROM  Sailors S 
WHERE EXISTS (SELECT  * 
             FROM  Reserves R 
             WHERE R.bid=103 AND S.sid=R.sid) 

Find	names	of	sailors	who’ve	reserved	boat	#103:	



Nested	Queries	with	Correlation	

•  If	we	change	previous	query	by	replacing	EXISTS	
with	UNIQUE	and	inner	SELECT	*	with	SELECT	
R.bid,	what	does	query	result	mean	now?	

	 SELECT  S.sname 
FROM  Sailors S 
WHERE UNIQUE (SELECT  R.bid 
             FROM  Reserves R 
             WHERE R.bid=103 AND S.sid=R.sid) 

Similarly,	EXCEPT	queries	can	be	re-written	
using	NOT	IN.			

Find	sids	of	sailors	who’ve	reserved	both	a	red	and	a	green	boat:	
SELECT  R.sid 
FROM Boats B, Reserves R 
WHERE R.bid=B.bid  
      AND B.color=‘red’ 
      AND R.sid IN (SELECT R2.sid 
                    FROM  Boats B2, Reserves R2 
                    WHERE  R2.bid=B2.bid 
                    AND  B2.color=‘green’) 

Rewriting	INTERSECT	Queries	Using	IN	

Exercise	5	

SELECT	S.sname	

FROM	Sailors	S	

WHERE		1	>=	(SELECT	COUNT(*)		

	 	 	 	 	FROM	Reserves	R		

	 	 	 	 	WHERE	R.bid=103		

	 	 	 	 	 	AND	S.sid=R.sid);	

	


