
CS	133:	Databases	

Fall	2019	
Lec	9	–	10/03	

SQL	II	
	

Prof.	Beth	Trushkowsky	
	

Plan	for	Today	

•  Continue	to	develop	strategies	for	thinking	
about	conceptual	SQL	query	evaluation	

•  Build	more	expressive	SQL	queries	using	
aggregates	and	JOINs	

•  Gain	foundation	for	tackling	aggregation	and	
HeapFile	mutability	in	Lab	2	

Aggregate	Operators	
•  Extension	of	relational	algebra!	 COUNT	(*)	

	
COUNT	([DISTINCT]	A)	
SUM	([DISTINCT]	A)	
AVG	([DISTINCT]	A)	
MAX	(A)	
MIN	(A)	SELECT AVG (S.age)

FROM Sailors S
WHERE S.rating=10

SELECT COUNT (*)
FROM Sailors S

single	
attribute	SELECT COUNT (DISTINCT R.day)

FROM Reserves R
WHERE R.sid=42;

Aggregates	of	a	field	consider	
only	non-NULL	values!	Aggregate	without	a	GROUP	BY	clause?	

The	whole	relation	is	one	group!	

GROUP	BY:	Intuition	
•  Consider	the	query:	
	
SELECT MIN(S.age)  
FROM Sailors S  
WHERE S.rating = 5;

•  What	if	we	want	the	age	of	the	youngest	sailor	for	
each	rating	level?	
–  If	we	knew	that	all	possible	rating	values	range	1	to	10;	
we	could	write	10	queries	that	look	like	this:	

–  In	general,	we	don’t	know	how	many	rating	levels	
exist,	and	what	the	rating	values	for	these	levels	are!	

SELECT MIN (S.age)
FROM Sailors S
WHERE S.rating = i;

For	i	=	1,	2,	...	,	10:	

GROUP	BY	

•  To	get	youngest	age	per	rating	group:	
	SELECT S.rating, MIN (S.age) AS minAge  
FROM Sailors S
GROUP BY S.rating;

	
•  How	many	tuples	do	we	expect	in	the	output	
relation?	
	

•  What	will	be	true	of	the	rating	field	for	each	
tuple	in	a	particular	group?	

Output	relation	schema:	
rating, minAge

Queries	With	GROUP	BY	

The	target-list	can	contain	
(i)	terms	with	aggregate	operations		
(ii)	list	of	column	names	

	 	Note:	list	of	column	names	(ii)	can	contain	
only	attributes	from	the	grouping-list.			

SELECT								[DISTINCT]		target-list	
FROM								relation-list	
[WHERE							qualification]	
[GROUP	BY		grouping-list]	

•  To	generate	values	for	a	field	based	on	groups	of	tuples,	use	
aggregate	functions	in	SELECT	statements	along	with	the	
GROUP	BY	clause	

WHERE	clause	is	
evaluated	before	

GROUP	BY	

Can	have	multiple	
fields	in	GROUP	BY!	

Third	query	equivalent	
to		second	query	à	
–  in	SQL	92	standard,	
but	not	supported	
in	some	systems.	

SELECT S.sname, MAX (S.age)
FROM Sailors S;

SELECT S.sname, S.age
FROM Sailors S
WHERE S.age =
 (SELECT MAX (S2.age)
 FROM Sailors S2);

SELECT S.sname, S.age
FROM Sailors S
WHERE (SELECT MAX (S2.age)
 FROM Sailors S2)
 = S.age;

Query:	Find	name	and	age	of	oldest	sailors	

What’s	wrong	with	this	query?

Nested	Queries	in	FROM	Clause	

•  Supported	by	most	database	systems	
–  Cannot	use	fields	from	other	relations	in	FROM	

•  Name	and	age	of	oldest	Sailors?	

	

SELECT S.sname, S.age
FROM Sailors S, (SELECT MAX(age) AS oldest

 FROM Sailors) AS MaxAgeRelation
WHERE S.age = MaxAgeRelation.oldest;

		

SELECT		R.bid,		COUNT(*)	
FROM		Reserves	R	
WHERE	R.sid	<>	42	
GROUP	BY		R.bid;	
	

For	each	bid,	find	the	number	of	reservations	that	have	
not	been	reserved	by	sid	42	

More	Examples:	Group	By	

Exercise	(2-4)	
SELECT S.rating, MIN (S.age)
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating;

SELECT B.bid, COUNT(*) AS boatCount
FROM Boats B, Reserves R
WHERE R.bid = B.bid
 AND B.color=‘red’
GROUP BY B.bid;

SELECT R.bid, R.day, COUNT(*) AS reserveCount
FROM Reserves R
GROUP BY R.bid, R.day;

Aggregates:	Iterator	Perspective	

SeqScan	

Aggregate:MAX	
	
	

Tuples,	via	the	HeapFile	Iterator	
and	BufferPool	

Tuples	

Tuples	

Aggregate		
Operator	

Aggregate	calls	next()	
on	its	child	Operator	

to	get	Tuples	

SELECT MAX(age)
FROM Sailors;

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
71 zorba 10 16.0
64 horatio 7 35.0
29 brutus 1 33.0
58 rusty 10 35.0

MaxSoFar	=				

After	processing	first	four	
tuples,	MaxSoFar	is	55.5	

55.5	

MAX(age)	

55.5	

SimpleDb	Aggregate	

The	index	of	the	field	you’ll	be	
aggregating.	Determine	its	Type	to	decide	
whether	to	create	an	IntegerAggregator	

or	a	StringAggregator	

Which	field	you’ll	be	grouping	on,	
or	Aggregator.NO_GROUPING	

The	aggregation	
function,	e.g.,	MAX	

SimpleDb	Aggregator	

Which	field	you’ll	be	grouping	on,	
or	Aggregator.NO_GROUPING	

The	type	of	the	
group	by	field	

Which	field	is	
being	aggregated	

The	aggregate	
function	

Lab	2:	HeapFile	Mutability	

•  Insert	(you’ll	do	the	actual	Insert	operator	later)	
– Will	call	insertTuple()	in	BufferPool	

•  Which	calls	insertTuple()	in	HeapFile	
–  Which	calls	insertTuple()	in	HeapPage	

•  Will	be	adding	more	to	HeapFile	and	HeapPage	
–  Have	to	find	a	page	to	put	the	tuple	(how	to	tell?)	
– When	inserting,	if	no	pages	have	room,	may	need	a	new	
page	–HeapPage.createEmptyPageData()	will	be	useful	

	
–  Pages	will	get	dirty!	
–  BufferPool	will	set	a	page	as	dirty	or	not-dirty	

GROUP	BY	and	HAVING	

•  Use	the		HAVING	clause	with	the	GROUP	BY	clause		
to	restrict	which	group-rows	are	returned	in	the	result	set	

•  Conceptual	evaluation	(after	evaluating	WHERE	clause)	
–  Form	groups	according	to	grouping-list	
–  Then	group-qualification	is	applied	to	eliminate	some	groups.	

SELECT								[DISTINCT]		target-list	
FROM									relation-list	
WHERE								qualification	
GROUP	BY		grouping-list	
HAVING						group-qualification	

Expressions	in	group-qualification	must	have	a	single	value	per	group!	
à	Fields	in	group-qualification	must	either	(1)	appear	in	grouping-list	or	

	(2)	be	part	of	an	aggregation	

Query:	Find	the	age	of	the	youngest	sailor	with	age	≥			
18,	for	each	rating	with	at	least	2	such	sailors	

SELECT S.rating, MIN (S.age)
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) > 1

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
71 zorba 10 16.0
64 horatio 7 35.0
29 brutus 1 33.0
58 rusty 10 35.0rating age

1 33.0
7 45.0
7 35.0
8 55.5
10 35.0

rating age count
1 {33.0} 1
7 {35.0,

45.0}
2

8 {55.0} 1
10 {35.0} 1

rating MIN(age)
7 35.0

Answer	

Query:	Find	the	age	of	the	youngest	sailor	with		
age	≥			18,	for	each	rating	with	at	least	2	such	sailors	

SELECT S.rating, MIN (S.age)
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) > 1

How	could	you	change	this	query	to	
instead	include	only	the	rating	
groups		that	have	rating	greater	
than	the	average	rating	for	all	
sailors?	

One	possibility	is	to	change	the	HAVING	clause	to:	
	
HAVING S.rating >=  

(SELECT AVG(rating) from Sailors)

JOIN	Variety	

SELECT	(column_list)		
FROM		table_name1	
		[INNER	|	NATURAL	|	{LEFT	|RIGHT	|	FULL	}	OUTER]	JOIN		

	table_name2	
				ON	qualification_list	

Choices:	
	

INNER	JOIN	
NATURAL	JOIN	
LEFT	OUTER	JOIN	
RIGHT	OUTER	JOIN	
FULL	OUTER	JOIN	

Inner	and	Natural	Join	
Only	the	rows	that	match	the	search	conditions	are	

returned.	
	SELECT	S.sid,	S.sname,	R.bid	
	FROM	Sailors	S	INNER	JOIN	Reserves	R	
	 	ON	S.sid	=	R.sid;	

Returns	only	those	sailors	who	have	reserved	boats	
	
	
SQL92	also	allows:		
	SELECT	s.sid,	s.sname,	r.bid	
	FROM	Sailors	s	NATURAL	JOIN	Reserves	r	

	
“NATURAL	JOIN”	is	an	equi-join	for	each	pair	of	attributes	

with	the	same	name,	removing	duplicate	columns	

Same	as:	
SELECT	S.sid,	S.sname,	R.bid	
FROM	Sailors	S,	Reserves	R	
WHERE	S.sid	=	R.sid;	

Left	Outer	Join	
	
Left	Outer	Join	returns	all	matched	rows,	and	also	all	
unmatched	rows	from	the	table	on	the	left	of	the	
join	clause	

(uses	NULLs	in	fields	of	non-matching	tuples)	
	
SELECT	s.sid,	s.sname,	r.bid	
FROM	Sailors	s	LEFT	OUTER	JOIN	Reserves	r	
ON	s.sid	=	r.sid	
	
Returns	all	sailors	&	information	on	whether	they	have	
reserved	boats	

SELECT	s.sid,	s.sname,	r.bid	
FROM	Sailors	s	LEFT	OUTER	JOIN	Reserves	r	
ON	s.sid	=	r.sid			

sid sname rating age
22 Dustin 7 45.0
31 Lubber 8 55.5
95 Bob 3 63.5

Left	Outer	Join	

sid	 bid	 day	
22	 101	 10/10/96	

95	 103	 11/12/96	

22	 102	 12/3/97	

sid	 sname	 bid	
22	 Dustin	 101	

22	 Dustin	 102	

31	 Lubber	 null	
95	 Bob	 103	

Exercise	5	:	JOINs	

SELECT S.sid, S.sname, count(R.bid)

FROM Sailors S LEFT OUTER JOIN Reserves R

ON S.sid = R.sid

GROUP BY s.sid,s.sname;

SELECT	s.sid,	s.sname,	b.bid,	b.bname	
FROM	Sailors	s	FULL	OUTER	JOIN	Boats	b	
ON	s.sname	=	b.bname	

		

sid sname rating age
22 Dustin 7 45.0
31 Lubber 8 55.5
95 Bob 3 63.5

sid	 sname	 bid		 bname	
22	 Dustin	 null	 null	
31	 Lubber	 105	 Lubber	
95	 Bob	 null	 null	
null	 null	 101	 Interlake	

bid	 bname	 color	
101	 Interlake	 blue	

105	 Lubber	 purple	

Full	Outer	Join	
Returns	all	(matched	or	unmatched)	rows	from	both	the	tables.	

	 	 	SELECT	r.sid,	s.sname,	b.bid,	b.bname	

FROM	Sailors	s	FULL	OUTER	JOIN	Boats	b	

ON	s.sname	=	b.bname	

	

Types	of	JOINs		

Choices:	
	

INNER	JOIN	
NATURAL	JOIN	
LEFT	OUTER	JOIN	
RIGHT	OUTER	JOIN	
FULL	OUTER	JOIN	Src:	https://www.codeproject.com/Articles/33052/Visual-Representation-of-SQL-Joins	

