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Goals	for	Today	
•  Learn	about	the	components	of	query	processing	
and	idea	of	different	algorithms	for	relational	
operators	

•  Understand	the	importance	of	out-of-core	a.k.a.	
external	sorting	and	hashing	algorithms	

•  Reason	about	the	I/O	cost	of	sorting	or	hashing	
algorithms	given	size	of	relations	and	available	
buffer	pool	space	
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Logical	Query	Plan:	Example	

•  Example	SQL	query:	

•  Equivalent	Relational	Algebra	
expression:	

SELECT S.sname
FROM   Reserves R, Sailors S
WHERE  R.sid=S.sid 

AND R.bid=100 AND S.rating>5

Logical	query	plan	tree	
with	relational	operators	

(Reserves	 Sailors)	
sid=sid	bid=100		 rating	>	5	sname	

Reserves	 Sailors	

sid=sid	

bid=100		 rating	>	5	

sname	 •  Logical	query	plan	partially	shows	us	how	to	evaluate	query	
– Missing:	choice	of	specific	algorithm	
	for	executing	operators	

–  Also:	ordering	of	operators	
•  How	to	choose?!		
–  No	one	algorithm	always	best	
–  Cost-based	optimization	
–  Forms	physical	query	plan	

Logical	Plan	to	Physical	Plan	

Reserves	 Sailors	

sid=sid	

bid=100		 rating	>	5	

sname	

Access	path	choice:	
Sequential	scan?	Indexes?	

Join	algorithm	choice:	
•  Simple	nested	loop	
•  Index	nested	loop	
•  Sort-merge?	
•  …	

Selections:	how	to	apply	
multiple	constraints?	

Projections:	duplicate	elim.?		

Implementing	the	Project	Operator	

•  Suppose	we	do	not	care	about	removing	duplicates	

•  How	many	I/Os?	What	would	this	process	look	like	
(with	respect	to	the	disk	and	buffer	pool)?	

SELECT R.attribute FROM R;
	

Read	in	pages	of	R	one	at	a	time,		
remove	unwanted	fields	in	one	pass	over	R	

External	Algorithms:	
Sorting	and	Hashing	

•  In	various	parts	of	a	query	plan,	important	to	get	
“same”	tuples	together	
–  DISTINCT	(duplicate	elimination)	
–  GROUP	BY	(form	the	groups)	
–  Sort-merge	JOIN	algorithm	
–  ORDER	BY	(user	wants	output	sorted)	

•  Problem:	sort	100GB	of	data	with	1GB	of	RAM	

•  Solution:	out-of-core	(external)	algorithms	that	divide	
and	conquer	
–  Idea:	intelligent	use	of	available	buffer	pool	space	

i.e.,	co-resident	in	
memory	(buffer	pool)	



Two-Way	Sort	
•  Algorithm	operates	in	a	sequence	of	passes	
•  Pass	0	--	For	all	pages	in	file:	
–  Read	page,	sort	it	in	RAM,	write	the	sorted	page	to	
disk	(don’t	overwrite	original).	

–  Only	one	buffer	page	is	used	in	this	pass	
–  Each	sorted	page	output	called	a	sorted	run	

	

Pages in Buffer Pool 
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Disk Disk 

Two-Way	Sort:	Passes	1,	2,	…	
	

•  Pass	1,	2,	…,	etc.	(merging):	
– Requires	three	buffer	pages:	two	input,	one	output	
–  Merge	pairs	of	runs	into	runs	twice	as	long	

Pages in Buffer Pool 

INPUT 1 

INPUT 2 

OUTPUT 

Disk Disk 

Two	runs.	
	
(output	of	
previous	
pass)	

Two-Way	External	Merge	Sort	
•  Each	pass:	read	+	write	each	

page	in	file.	

•  N	pages	in	the	file	=>		
number	of	passes?	

	

•  So	total	cost	is?	
	
		
•  Idea:		Divide,	conquer,	

merge	

⎡ ⎤= +log2 1N

⎡ ⎤( )2 12N Nlog +

1-page runs 

2-page runs 

4-page runs 

8-page runs 

PASS	0	

PASS	1	

PASS	2	

PASS	3	

Input file 3,4 6,2 9,4 8,7 5,6 3,1 2 

3,4 5,6 2,6 4,9 7,8 1,3 2 

2,3 4,6 4,7 8,9 1,3 5,6 2 

2,3 4,4 6,7 8,9 1,2 3,5 6 

9 1,2 2,3 3,4 4,5 6,6 7,8 

General	External	Merge	Sort	

•  To	sort	a	file	with	N	pages	using	B	buffer	frames	
– Pass	0:	use	B	buffer	pages.	Produce														
sorted	runs	of	B	pages	each	

⎡ ⎤N B/

We	have	more	than	3	buffer	frames.		How	can	we	utilize	them?	

B pages in Buffer Pool 
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. . . . . . }	SORT	IN		MEMORY	



General	External	Merge	Sort:	
Passes	1,	2,	…	

•  In	each	of	Pass	1,	2,	etc.:	merge	B-1	runs	
– Creates	runs	of	(B-1)	*	(size	of	runs	from	previous	pass)	

B pages in Buffer Pool 
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INPUT B-1 

INPUT 2 

. . . 

Disk 

OUTPUT . . . 

Disk 

. . . 
B-1	runs.	
	
(Note:	B-1	
might	be	
less	than	
the	total	#	
runs	N/B)	

Cost	of	External	Merge	Sort	
•  Cost	=	2N	*	(#	of	passes)	

–  In	each	pass,	read	and	write	each	page	of	file	
–  (N	is	size	of	relation	in	pages)	

•  Try	Exercise	(2-3)	

•  E.g.,	with	5	buffer	pages,	to	sort	108	page	file:	
–  Pass	0:																			=	22	sorted	runs	of	5	pages	each	(last	only	3)		
	

–  Pass	1:																	=	6	sorted	runs	of	20	pages	each	(last	only	8)	
	

–  Pass	2:		yields	2	sorted	runs,	80	pages	and	28	pages	
–  Pass	3:		yields	one	sorted	run	of	108	pages	

•  Number	of	passes:	
–  Formula	check:	1+┌log4	22┐=	1+3	à	4	passes		

⎡ ⎤⎡ ⎤1 1+ −log /B N B

⎡ ⎤108 5/

⎡ ⎤22 4/

Number	of	Passes	with	External	Sort	
(with	B	Buffer	Frames	and	N	pages)	

          N B=3 B=5 B=9 B=17 B=129 B=257
100 7 4 3 2 1 1
1,000 10 5 4 3 2 2
10,000 13 7 5 4 2 2
100,000 17 9 6 5 3 3
1,000,000 20 10 7 5 3 3
10,000,000 23 12 8 6 4 3
100,000,000 26 14 9 7 4 4
1,000,000,000 30 15 10 8 5 4

Algorithm	for	Internal	Sort	
•  Quicksort	is	a	fast	way	to	sort	in	memory.	
•  An	alternative	is	“tournament	sort”	(a.k.a.	“heap	sort”)	

–  Idea:	create	initial	sorted	runs	that	are	longer	than	B	pages	
–  See	book	for	more…	

Average	length	
of	a	run	is	~2B	 Why	would	we	care?	



Sort:	Kind	of	a	Big	Deal	

(source:	sortbenchmark.org)	

	Reasoning	about	Passes	

•  Exercise	4:	
– How	big	of	a	relation	can	we	sort	in	two	passes?	

– B(B-1)	pages	

•  Suppose	Reserves	is	1000	pages,		
sid	and	bid	together	are	25%	of	each	record	

•  Basic	approach	with	sorting:	
1.	Scan	R,	extract	only	the	needed	fields	
2.	Sort	the	resulting	set	
3.	Read	in,	removing	duplicates	which	will	be	adjacent	
		

•  Cost:	Reserves	with	size	ratio	0.25	=	250	pages			
Using	20	buffer	pages	can	sort	in	2	passes,	(ignores	cost	of	final	output):	
	
	 	(1000	+	250)	+	(2	*	2	*	250)	+	250	=	2500	I/Os		
	

•  Can	improve	using	modification	of	external	sort	algorithm...	

SELECT DISTINCT R.sid, R.bid
FROM    Reserves R

Projection	(with	Duplicate	Elim.)	 Exercise	5	
•  Can	improve	Duplication	Elimination	by	modifying	external	

sort	algorithm:	
1.  Modify	Pass	0	of	external	sort	to	eliminate	unwanted	fields.			
2.  Modify	merging	passes	to	eliminate	duplicates.	

•  Cost	of	improved	version:		
–  Pass	0:	read	1000	pages,	write	out	250	in	13	runs	of	20	pages	
–  Pass	1:	merge	runs		by	reading	in	250	
–  Total	I/Os:	1000+250+250	=	1500s	



Alternative:	Hashing	

•  	We	do	not	always	require	order	for	tuples	
– Removing	duplicates	
– Forming	groups	

•  Just	need	“like”	things	to	be	together	
– Hashing!	
– But	how	to	build	hash	table	without	staying	in	
RAM?	

External	Hashing:	Divide	and	Conquer	

•  Divide:	Use	a	hash	function	hp	to	separate	
records	into	disk-based	partitions	

•  Conquer:	Read	partitions	into	RAM-based	hash	
table	one	at	a	time	
–  For	each	partition,	hash	with	another	hash	function	hr	

•  Note:	Two	different	hash	functions:		
hp		is	coarser-grained	than	hr	

	

•  Partition	phase:	
•  Read	relation	using	one	input	buffer	frame,	retaining	only	

necessary	fields	for	projection	
•  Hashing	on	hp	to	yield	B-1	partitions		

	

Projection:	DupElim	Based	on	Hashing	
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Two	tuples	in	different	
partitions	guaranteed	to	
be	distinct		

Projection:	DupElim	Based	on	Hashing	
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Hash table for partition i 

(<= B  pages) 
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•  Duplicate	Elimination	phase	
•  For	each	partition:	

–  Read	in	pages	
–  Build	an	in-memory	hash	table,	using	second	hash	function	hr,	
and	eliminating	duplicates	as	you	go	

•  If	a	partition	does	not	entirely	fit	in	buffer	pool,	need	to	
recursively	partition	before	this	phase	

Note:	ignoring	small	
overhead	in	memory	
for	hash	data	structure		



•  Cost	for	Projection	with	DupElim	using	hashing?	
– Assume	each	of	the	partitions	formed	in	first	pass	fits	
in	buffer	pool…	

•  For	Reserves	query:	
–  Read	1000	pages	
– Write	out	partitions	of	projected	tuples		

•  250	pages,	because	25%	of	record	retained	
–  Read	and	do	duplicate	elimination	on	each	partition		

•  total	250	page	reads	
•  Total	:	1000	+	250	+	250	=	1500	I/Os.	

Example:	Hashing	DupElim	


