
CS	133:	Databases	

Fall	2019	
Lec	10	–	10/08	

Query	Evaluation	
	

Prof.	Beth	Trushkowsky	
	

Goals	for	Today	
•  Learn	about	the	components	of	query	processing	
and	idea	of	different	algorithms	for	relational	
operators	

•  Understand	the	importance	of	out-of-core	a.k.a.	
external	sorting	and	hashing	algorithms	

•  Reason	about	the	I/O	cost	of	sorting	or	hashing	
algorithms	given	size	of	relations	and	available	
buffer	pool	space	

Simplified	RDBMS	Architecture	

Data	records	

Disk	management	

Buffer	management	

Access	methods	

Application	

Query	optimizer	

Query	executor	

Query	 Query	results	

Cost-based		
Query	Sub-system	

Cost-based	Query	Sub-System	

		

Query	Plan	Evaluator	

Query	Optimizer	

Query	Plan	
Generator	

Plan	Cost	
Estimator	

Usually	there	is	a	
heuristics-based	
rewriting	step	before	
the	cost-based	steps	

Statistics	

Catalog	Manager	

Schema	

Select *
From Sailors S
Where S.sid = 42;

Queries	

Query	Parser	

Logical	Query	Plan:	Example	

•  Example	SQL	query:	

•  Equivalent	Relational	Algebra	
expression:	

SELECT S.sname
FROM Reserves R, Sailors S
WHERE R.sid=S.sid

AND R.bid=100 AND S.rating>5

Logical	query	plan	tree	
with	relational	operators	

(Reserves	 Sailors)	
sid=sid	bid=100		 rating	>	5	sname	

Reserves	 Sailors	

sid=sid	

bid=100		 rating	>	5	

sname	 •  Logical	query	plan	partially	shows	us	how	to	evaluate	query	
– Missing:	choice	of	specific	algorithm	
	for	executing	operators	

–  Also:	ordering	of	operators	
•  How	to	choose?!		
–  No	one	algorithm	always	best	
–  Cost-based	optimization	
–  Forms	physical	query	plan	

Logical	Plan	to	Physical	Plan	

Reserves	 Sailors	

sid=sid	

bid=100		 rating	>	5	

sname	

Access	path	choice:	
Sequential	scan?	Indexes?	

Join	algorithm	choice:	
•  Simple	nested	loop	
•  Index	nested	loop	
•  Sort-merge?	
•  …	

Selections:	how	to	apply	
multiple	constraints?	

Projections:	duplicate	elim.?		

Implementing	the	Project	Operator	

•  Suppose	we	do	not	care	about	removing	duplicates	

•  How	many	I/Os?	What	would	this	process	look	like	
(with	respect	to	the	disk	and	buffer	pool)?	

SELECT R.attribute FROM R;
	

Read	in	pages	of	R	one	at	a	time,		
remove	unwanted	fields	in	one	pass	over	R	

External	Algorithms:	
Sorting	and	Hashing	

•  In	various	parts	of	a	query	plan,	important	to	get	
“same”	tuples	together	
–  DISTINCT	(duplicate	elimination)	
–  GROUP	BY	(form	the	groups)	
–  Sort-merge	JOIN	algorithm	
–  ORDER	BY	(user	wants	output	sorted)	

•  Problem:	sort	100GB	of	data	with	1GB	of	RAM	

•  Solution:	out-of-core	(external)	algorithms	that	divide	
and	conquer	
–  Idea:	intelligent	use	of	available	buffer	pool	space	

i.e.,	co-resident	in	
memory	(buffer	pool)	

Two-Way	Sort	
•  Algorithm	operates	in	a	sequence	of	passes	
•  Pass	0	--	For	all	pages	in	file:	
–  Read	page,	sort	it	in	RAM,	write	the	sorted	page	to	
disk	(don’t	overwrite	original).	

–  Only	one	buffer	page	is	used	in	this	pass	
–  Each	sorted	page	output	called	a	sorted	run	

	

Pages in Buffer Pool

Page

Disk Disk

Two-Way	Sort:	Passes	1,	2,	…	
	

•  Pass	1,	2,	…,	etc.	(merging):	
– Requires	three	buffer	pages:	two	input,	one	output	
–  Merge	pairs	of	runs	into	runs	twice	as	long	

Pages in Buffer Pool

INPUT 1

INPUT 2

OUTPUT

Disk Disk

Two	runs.	
	
(output	of	
previous	
pass)	

Two-Way	External	Merge	Sort	
•  Each	pass:	read	+	write	each	

page	in	file.	

•  N	pages	in	the	file	=>		
number	of	passes?	

	

•  So	total	cost	is?	
	
		
•  Idea:		Divide,	conquer,	

merge	

⎡ ⎤= +log2 1N

⎡ ⎤()2 12N Nlog +

1-page runs

2-page runs

4-page runs

8-page runs

PASS	0	

PASS	1	

PASS	2	

PASS	3	

Input file 3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,6 2,6 4,9 7,8 1,3 2

2,3 4,6 4,7 8,9 1,3 5,6 2

2,3 4,4 6,7 8,9 1,2 3,5 6

9 1,2 2,3 3,4 4,5 6,6 7,8

General	External	Merge	Sort	

•  To	sort	a	file	with	N	pages	using	B	buffer	frames	
– Pass	0:	use	B	buffer	pages.	Produce														
sorted	runs	of	B	pages	each	

⎡ ⎤N B/

We	have	more	than	3	buffer	frames.		How	can	we	utilize	them?	

B pages in Buffer Pool

INPUT 1

INPUT B

Disk

INPUT 2

. . .

Disk

. }	SORT	IN		MEMORY	

General	External	Merge	Sort:	
Passes	1,	2,	…	

•  In	each	of	Pass	1,	2,	etc.:	merge	B-1	runs	
– Creates	runs	of	(B-1)	*	(size	of	runs	from	previous	pass)	

B pages in Buffer Pool

INPUT 1

INPUT B-1

INPUT 2

. . .

Disk

OUTPUT . . .

Disk

. . .
B-1	runs.	
	
(Note:	B-1	
might	be	
less	than	
the	total	#	
runs	N/B)	

Cost	of	External	Merge	Sort	
•  Cost	=	2N	*	(#	of	passes)	

–  In	each	pass,	read	and	write	each	page	of	file	
–  (N	is	size	of	relation	in	pages)	

•  Try	Exercise	(2-3)	

•  E.g.,	with	5	buffer	pages,	to	sort	108	page	file:	
–  Pass	0:																			=	22	sorted	runs	of	5	pages	each	(last	only	3)		
	

–  Pass	1:																	=	6	sorted	runs	of	20	pages	each	(last	only	8)	
	

–  Pass	2:		yields	2	sorted	runs,	80	pages	and	28	pages	
–  Pass	3:		yields	one	sorted	run	of	108	pages	

•  Number	of	passes:	
–  Formula	check:	1+┌log4	22┐=	1+3	à	4	passes		

⎡ ⎤⎡ ⎤1 1+ −log /B N B

⎡ ⎤108 5/

⎡ ⎤22 4/

Number	of	Passes	with	External	Sort	
(with	B	Buffer	Frames	and	N	pages)	

 N B=3 B=5 B=9 B=17 B=129 B=257
100 7 4 3 2 1 1
1,000 10 5 4 3 2 2
10,000 13 7 5 4 2 2
100,000 17 9 6 5 3 3
1,000,000 20 10 7 5 3 3
10,000,000 23 12 8 6 4 3
100,000,000 26 14 9 7 4 4
1,000,000,000 30 15 10 8 5 4

Algorithm	for	Internal	Sort	
•  Quicksort	is	a	fast	way	to	sort	in	memory.	
•  An	alternative	is	“tournament	sort”	(a.k.a.	“heap	sort”)	

–  Idea:	create	initial	sorted	runs	that	are	longer	than	B	pages	
–  See	book	for	more…	

Average	length	
of	a	run	is	~2B	 Why	would	we	care?	

Sort:	Kind	of	a	Big	Deal	

(source:	sortbenchmark.org)	

	Reasoning	about	Passes	

•  Exercise	4:	
– How	big	of	a	relation	can	we	sort	in	two	passes?	

– B(B-1)	pages	

•  Suppose	Reserves	is	1000	pages,		
sid	and	bid	together	are	25%	of	each	record	

•  Basic	approach	with	sorting:	
1.	Scan	R,	extract	only	the	needed	fields	
2.	Sort	the	resulting	set	
3.	Read	in,	removing	duplicates	which	will	be	adjacent	
		

•  Cost:	Reserves	with	size	ratio	0.25	=	250	pages			
Using	20	buffer	pages	can	sort	in	2	passes,	(ignores	cost	of	final	output):	
	
	 	(1000	+	250)	+	(2	*	2	*	250)	+	250	=	2500	I/Os		
	

•  Can	improve	using	modification	of	external	sort	algorithm...	

SELECT DISTINCT R.sid, R.bid
FROM Reserves R

Projection	(with	Duplicate	Elim.)	 Exercise	5	
•  Can	improve	Duplication	Elimination	by	modifying	external	

sort	algorithm:	
1.  Modify	Pass	0	of	external	sort	to	eliminate	unwanted	fields.			
2.  Modify	merging	passes	to	eliminate	duplicates.	

•  Cost	of	improved	version:		
–  Pass	0:	read	1000	pages,	write	out	250	in	13	runs	of	20	pages	
–  Pass	1:	merge	runs		by	reading	in	250	
–  Total	I/Os:	1000+250+250	=	1500s	

Alternative:	Hashing	

•  	We	do	not	always	require	order	for	tuples	
– Removing	duplicates	
– Forming	groups	

•  Just	need	“like”	things	to	be	together	
– Hashing!	
– But	how	to	build	hash	table	without	staying	in	
RAM?	

External	Hashing:	Divide	and	Conquer	

•  Divide:	Use	a	hash	function	hp	to	separate	
records	into	disk-based	partitions	

•  Conquer:	Read	partitions	into	RAM-based	hash	
table	one	at	a	time	
–  For	each	partition,	hash	with	another	hash	function	hr	

•  Note:	Two	different	hash	functions:		
hp		is	coarser-grained	than	hr	

	

•  Partition	phase:	
•  Read	relation	using	one	input	buffer	frame,	retaining	only	

necessary	fields	for	projection	
•  Hashing	on	hp	to	yield	B-1	partitions		

	

Projection:	DupElim	Based	on	Hashing	

B	main	memory	buffers	 Disk	Disk	

Original		
Relation	 OUTPUT	

2	INPUT	

1	

hash	
function	
hp	 B-1	

Partitions	

1	
2	

B-1	
. . .

Two	tuples	in	different	
partitions	guaranteed	to	
be	distinct		

Projection:	DupElim	Based	on	Hashing	

Partitions
Hash table for partition i

(<= B pages)

B main memory buffers Disk

hash
fn
hr

•  Duplicate	Elimination	phase	
•  For	each	partition:	

–  Read	in	pages	
–  Build	an	in-memory	hash	table,	using	second	hash	function	hr,	
and	eliminating	duplicates	as	you	go	

•  If	a	partition	does	not	entirely	fit	in	buffer	pool,	need	to	
recursively	partition	before	this	phase	

Note:	ignoring	small	
overhead	in	memory	
for	hash	data	structure		

•  Cost	for	Projection	with	DupElim	using	hashing?	
– Assume	each	of	the	partitions	formed	in	first	pass	fits	
in	buffer	pool…	

•  For	Reserves	query:	
–  Read	1000	pages	
– Write	out	partitions	of	projected	tuples		

•  250	pages,	because	25%	of	record	retained	
–  Read	and	do	duplicate	elimination	on	each	partition		

•  total	250	page	reads	
•  Total	:	1000	+	250	+	250	=	1500	I/Os.	

Example:	Hashing	DupElim	

