CS 133: Databases

Fall 2019
Lec 10 — 10/08
Query Evaluation

Prof. Beth Trushkowsky

Goals for Today

* Learn about the components of query processing
and idea of different algorithms for relational
operators

* Understand the importance of out-of-core a.k.a.
external sorting and hashing algorithms

» Reason about the I/O cost of sorting or hashing
algorithms given size of relations and available
buffer pool space

Simplified RDBMS Architecture

Application
Query Query results
Query optimizer Cost-based
Query executor Query Sub-system

Access methods

Buffer management

Disk management ‘

Data records

Cost-based Query Sub-System

‘Select * i
Queries ' From Sailors S

‘Where S.sid = 42; .
* Usually there is a
< heuristics-based

Query Parser

rewriting step before
the cost-based steps

Query Optimizer

—a

Query Plan Plan Cost Cata|og Manager
Generator Estimator

T |

]

Query Plan Evaluator

Logical Query Plan: Example
]TS ame
* Example SQL query: 1

Logical Plan to Physical Plan

* Logical query plan partially shows us how to evaluate query
— Missing: choice of specific algorithm
for executing operators
— Also: ordering of operators

Selections: how to apply

How to choose?!

multiple constraints?
Projections: duplicate elim.?

SELECT S.sname bid=100 /" rating > 5
FROM Reserves R, Sailors S ‘
WHERE R.sid=S.sid o
AND R.bid=100 AND S.rating>5 sid=sid
Reserves Sailors

* Equivalent Relational Algebra
expression:

Logical query plan tree
with relational operators

1} Reserves il
I sname Cybid=100 Avating > 5l ves><] sailors)

— No one algorithm always best
— Cost-based optimization
— Forms physical query plan

-7

Join algorithm choice: | A
* Simple nested loop bid=100 ' * rating>5
Index nested loop
- ?
Sort-merge? — g
sid=sid
Access path choice: / \
Sequential scan? Indexes? Reserves sailors

Implementing the Project Operator

* Suppose we do not care about removing duplicates

SELECT R.attribute FROM R;

* How many I/Os? What would this process look like
(with respect to the disk and buffer pool)?

Read in pages of R one at a time,
remove unwanted fields in one pass over R

External Algorithms:
Sorting and Hashing

* Invarious parts of a query plan, important to get

“same” tuples together
P 9 .1 e, co-residentin
— DISTINCT (duplicate elimination)
memory (buffer pool)

— GROUP BY (form the groups)
— Sort-merge JOIN algorithm
— ORDER BY (user wants output sorted)

* Problem: sort 100GB of data with 1GB of RAM

* Solution: out-of-core (external) algorithms that divide

and conquer
— Idea: intelligent use of available buffer pool space

Two-Way Sort

» Algorithm operates in a sequence of passes
e Pass 0 -- For all pages in file:

— Read page, sort it in RAM, write the sorted page to
disk (don’t overwrite original).

— Only one buffer page is used in this pass
— Each sorted page output called a sorted run

Disk

=

Pages in Buffer Pool Disk

Two-Way Sort: Passes 1, 2, ...

* Pass 1,2, .., etc. (merging):
— Requires three buffer pages: two input, one output

— Merge pairs of runs into runs twice as long

Two runs.

(output of
previous
pass)

7\

Disk

INPUT 1
OUTPUT |>
‘I] INPUT 2

Pages in Buffer Pool

Disk

Two-Way External Merge Sort

Each pass: read + write each

page in file.

N pages in the file =>
number of passes?
= [log2 N] +1

So total cost is?

2N(|'log2 N'| +1)

Idea: Divide, conquer,
merge

(34 (62 [o4 [87] [5¢] (3] [2] I mputtiie

PASS 0

L S S S T S
3.4 (26 [a9] [z [5] [13] [2] I "P2oerne

PASS 1

N4 7 ~7 ~7
(2] 2page runs

4 ~—~ PASS 2
2 3|4 46 7|§ 9 1,2|3,5 6 - 4-page runs
\ / PASS 3
|1,2|2,3|3,4|4,5| 6,6|7,3“ 8-page runs

General External Merge Sort

We have more than 3 buffer frames. How can we utilize them?

* To sort a file with N pages using B buffer frames

— Pass 0: use B buffer pages. Produce[N / B]
sorted runs of B pages each

INPUT 1
/)
1
INPUT 2 SORTIN _|
© e MEMORY
]
| T—{INPUT B
Disk B pages in Buffer Pool

Disk

General External Merge Sort:
Passes 1, 2, ...

* In each of Pass 1, 2, etc.: merge B-1 runs
— Creates runs of (B-1) * (size of runs from previous pass)

INPUT 1
/

B-1 runs. —

INPUT 2

ourpur || | ———

(Note: B-1 N — e o e
might be | — | E—
less than I ——JINPUT B-1
the total # Disk - Disk
runs N/B) B pages in Buffer Pool

Cost of External Merge Sort
e Cost=2N * (# of passes)
— In each pass, read and write each page of file
— (N is size of relation in pages)

* Try Exercise (2-3)

* E.g., with 5 buffer pages, to sort 108 page file:
- Pass O:[l 08/ 5'|= 22 sorted runs of 5 pages each (last only 3)

- Pass1: |'22 / 4]= 6 sorted runs of 20 pages each (last only 8)

— Pass 2: yields 2 sorted runs, 80 pages and 28 pages
— Pass 3: yields one sorted run of 108 pages

. Number of passes: | + |-10g3_1 [N/ BH

- Formula check: 1+ log, 221=1+3 - 4 passes

Number of Passes with External Sort
(with B Buffer Frames and N pages)

N B=3 B=5 B=9 B=17|B=129 B=257
100 7 4 3 2 1 1
1,000 105 4 3 2 2
10,000 37 5 4 2 2
100,000 7 9 6 5 3 3
1,000,000 |2 10 |7 |5 3 3
10,000,000 |23 12 |8 | 6 4 3
100,000,000 26 (14 |9 | 7 | 4 4
1,000,000,0000 30 |15 | 10 | 8 5 4

Algorithm for Internal Sort

* Quicksort is a fast way to sort in memory.

* An alternative is “tournament sort” (a.k.a. “heap sort”)
— ldea: create initial sorted runs that are longer than B pages
— See book for more...

Average length
ofarunis~2B | == Why would we care?

Sort: Kind of a Big Deal

Daytona

2016, 44.8 TB/min

Tencent Sort
100 TB in 134 Seconds
512 nodes x (2 OpenPOWER 10-core POWERS 2.926 GHz,
Gray 512 GB memory, 4x Huawei ES3600P V3 1.2TB NVMe SSD,
100Gb Mellanox ConnectX4-EN)
Jie Jiang, Lixiong Zheng, Junfeng Pu,
Xiong Cheng, Chonggqing Zhao
Tencent Corporation
Mark R. Nutter, Jeremy D. Schaub

2016, $1.44 / TB

NADSort
100 TB for $144
394 Alibaba Cloud ECS ecs.n1.large nodes x
(Haswell E5-2680 v3, 8 GB memory,
Cloud 40GB Ultra Cloud Disk, 4x 135GB SSD Cloud Disk)
Qian Wang, Rong Gu, Yihua Huang
Nanjing University
Reynold Xin
Databricks Inc.
Wei Wu, Jun Song, Junluan Xia
Alibaba Group Inc.

(source: sortbenchmark.org)

Reasoning about Passes

* Exercise 4:
— How big of a relation can we sort in two passes?

— B(B-1) pages

Projection (with Duplicate Elim.)

SELECT DISTINCT R.sid, R.bid
FROM Reserves R

Suppose Reserves is 1000 pages,
sid and bid together are 25% of each record

Basic approach with sorting:
1. Scan R, extract only the needed fields
2. Sort the resulting set
3. Read in, removing duplicates which will be adjacent

Cost: Reserves with size ratio 0.25 = 250 pages

Using 20 buffer pages can sort in 2 passes, (ignores cost of final output):

(1000 + 250) + (2 * 2 * 250) + 250 = 2500 I/Os

Can improve using modification of external sort algorithm...

Exercise 5

* Can improve Duplication Elimination by modifying external
sort algorithm:
1. Modify Pass 0 of external sort to eliminate unwanted fields.
2. Modify merging passes to eliminate duplicates.

* Cost of improved version:
— Pass 0: read 1000 pages, write out 250 in 13 runs of 20 pages
— Pass 1: merge runs by reading in 250
— Total I/Os: 1000+250+250 = 1500s

Alternative: Hashing

* We do not always require order for tuples
— Removing duplicates
— Forming groups

* Just need “like” things to be together
— Hashing!
— But how to build hash table without staying in
RAM?

External Hashing: Divide and Conquer

* Divide: Use a hash function h, to separate
records into disk-based partitions

* Conquer: Read partitions into RAM-based hash
table one at a time
— For each partition, hash with another hash function h,

* Note: Two different hash functions:

h, is coarser-grained than h,

Projection: DupElim Based on Hashing

* Partition phase:

* Read relation using one input buffer frame, retaining only
necessary fields for projection

* Hashing on h, to yield B-1 partitions

Original —
Relation OUTPUT | Ppartitions Two tuples in different
partitions guaranteed to
O B |1 ~be dist
NPUT 1 be distinct
[hash 00 |2
HI:Ifunctlon ves
.E.] . h,
B-1

~—} N~

Disk B main memory buffers Disk

Projection: DupElim Based on Hashing

* Duplicate Elimination phase
* For each partition:
— Read in pages
— Build an in-memory hash table, using second hash function h,,
and eliminating duplicates as you go

* |f a partition does not entirely fit in buffer pool, need to
recursively partition before this phase

Partitions
Hash table for partition i
hash (<=B pages)
|:||:| fn
OoD [I T
D D o0 0 D

o D D o D Note: ignoring small

L D D -t D overhead in memory

Disk B main memory buffers for hash data structure

Example: Hashing DupElim

* Cost for Projection with DupElim using hashing?

— Assume each of the partitions formed in first pass fits
in buffer pool...

* For Reserves query:
— Read 1000 pages
— Write out partitions of projected tuples
* 250 pages, because 25% of record retained
— Read and do duplicate elimination on each partition
* total 250 page reads

e Total : 1000 + 250 + 250 = 1500 1/Os.

