
CS	133:	Databases	

Fall	2019	
Lec	11	–	10/10	

Query	Evaluation	
Prof.	Beth	Trushkowsky	

Administriva	
•  Lab	2	--	Final	version	due	next	Wednesday	

–  Insert/Delete	Operators	
–  BufferPool	eviction	policy	

•  Problem	sets	
–  PSet	5	due	today	
–  No	PSet	out	this	week… optional	practice	problems	instead	(Sakai)	

•  Midterm	
–  In	class	next	Thursday	10/17	
–  Covers	material	through	today’s	lecture	
–  Closed	book,	closed	notes	
–  Allowed:	

•  One	handwritten	cheat	sheet,	8.5x11”	(both	sides)	
•  Calculator	(not	actually	needed)	

Alternative:	Hashing	

•  	We	do	not	always	require	order	for	tuples	
– Removing	duplicates	
– Forming	groups	

•  Just	need	“like”	things	to	be	together	
– Hashing!	
– But	how	to	build	hash	table	without	staying	in	
RAM?	

External	Hashing:	Divide	and	Conquer	

•  Divide:	Use	a	hash	function	hp	to	separate	
records	into	disk-based	partitions	

•  Conquer:	Read	partitions	into	RAM-based	hash	
table	one	at	a	time	
–  For	each	partition,	hash	with	another	hash	function	hr	

•  Note:	Two	different	hash	functions:		
hp		is	coarser-grained	than	hr	

	

•  Partition	phase:	
•  Read	relation	using	one	input	buffer	frame,	retaining	only	

necessary	fields	for	projection	
•  Hashing	on	hp	to	yield	B-1	partitions		

	

Projection:	DupElim	Based	on	Hashing	

B	main	memory	buffers	 Disk	Disk	

Original		
Relation	 OUTPUT	

2	INPUT	

1	

hash	
function	

hp	 B-1	

Partitions	

1	

2	

B-1	
. . .

Two	tuples	in	different	
partitions	guaranteed	to	
be	distinct		

Projection:	DupElim	Based	on	Hashing	

Partitions
Hash table for partition i

(<= B pages)

B main memory buffers Disk

hash
fn
hr

•  Duplicate	Elimination	phase	
•  For	each	partition:	

–  Read	in	pages	
–  Build	an	in-memory	hash	table,	using	second	hash	function	hr,	
and	eliminating	duplicates	as	you	go	

•  If	a	partition	does	not	entirely	fit	in	buffer	pool,	need	to	
recursively	partition	before	this	phase	

Note:	ignoring	small	
overhead	in	memory	
for	hash	data	structure		

•  Cost	for	Projection	with	DupElim	using	hashing?	
– Assume	each	of	the	partitions	formed	in	first	pass	fits	
in	buffer	pool…	

•  For	Reserves	query:	
–  Read	1000	pages	
– Write	out	partitions	of	projected	tuples		

•  250	pages,	because	25%	of	record	retained	
–  Read	and	do	duplicate	elimination	on	each	partition		

•  total	250	page	reads	
•  Total	:	1000	+	250	+	250	=	1500	I/Os.	

Example:	Hashing	DupElim	 Goals	for	Today	

•  Discuss	algorithms	for	implementing	query	plan	
operators:	selection,	joins		

•  Reason	about	factors	influencing	operator	cost	
–  Input	size	(number	of	pages)	
–  Indexes	available	
–  Buffer	pool	space	

	
•  Understand	how	external	sorting	and	hashing	can	
be	used	for	these	algorithms	

	

Simple	Selections	

•  Of	the	form	

•  Size	of	result	approximated	as	size	of	R	*	reduction	factor		
–  “Reduction	factor”	also	called	selectivity	
–  Statistics	in	Catalog	can	help	estimate	

•  How	best	to	execute	a	selection?		Depends	on:	
– What	access	paths	are	available…	any	indexes?	
–  Expected	size	of	the	result		
(in	terms	of	number	of	tuples	and/or	number	of	pages)	

SELECT		*	
FROM					Reserves	R	
WHERE			R.bid	<	100;	σ R attr valueop R. ()

•  A	B+-tree	index	matches	(a	conjunction	of)	terms	if	
the	term(s)	involve	only	attributes	in	a	prefix	of	the	
search	key.	
–  E.g.,	Index	on	<a,	b,	c>		matches	predicate	“a=5	AND	b=	3”,	
but	not	“b=3”	

•  For	Hash	index:	index	must	involve	all	attributes	in	
search	key	

General	Selection	Conditions	
SELECT		*	
FROM					Reserves	R	
WHERE			R.bid	=	103	AND	R.sid	=	42;	

Why?	

•  What	if	several	indexes	exist	that	could	be	used?	

•  Approach	1:	pick	one	index	to	use	
– Find	the	most	selective	access	path,		
retrieve	tuples	using	it,		
then	apply	the	other	conditions	

General	Selections:	Two	Approaches	

Most	selective	access	
path:	Index	estimated	to	
require	fewest	page	I/Os	

Applying	other	conditions	
won’t	impact	number	of	

pages	fetched	

•  Approach	2:	use	multiple	indexes	

•  To	use	two	or	more	matching	indexes		
(Alt	2	or	3	for	data	entries):	
–  Get	sets	of	record	ids	of	data	records	using	each	matching	
index.	

–  Then	intersect	these	sets	of	rids.	
–  Retrieve	the	records	and	apply	any	remaining	conditions	
	

•  Example:	day	>	10/10/2010	AND	bid=103	AND	sid=42	
Suppose	have	B+	tree	index	on	day	and	an	index	on	sid	
–  Intersect:	rids	using	index	on	day	with	rids	using	index	on	sid	
–  Then	check	bid=103	

	

General	Selections:	Two	Approaches	

What	about	day	<	8/9/94	OR	sid=42?	

Exercise	2:	Selection	 Exercise:	Selection	

•  Exercise	2	
	
I.  B+tree	on	<bid,day>	
II.  B+tree	on	<day,	bid>	
III.  Hash	index	on	<day,	bid>	

•  Disjunction:		
–  if	all	conditions	have	an	index,	use	the	union	of	rids!	
–  But	if	even	one	of	them	does	not	have	index,	have	to	
do	sequential	scan	anyway	

•  Joins	are	a	very	common	query	operation!	

•  Joins	can	be	very	expensive:	
–  Consider	an	inner	join	of	R	and	S	each	with	1M	records	
How	many	tuples	in	the	answer	(worst	case)?	

	

•  Two	main	classes	of	JOIN	algorithms:	
– Algorithms	that	enumerate	cross	product	
– Algorithms	that	avoid	cross	product	by	getting	“like”	
partitions	together	

Join	Operators	

•  Relation	info:	
– M	=	1000	pages	in	R,	tR		=100	tuples	per	page.	
– N	=	500	pages	in	S,	tS	=	80	tuples	per	page.	
–  In	examples,	R	is	Reserves	and	S	is	Sailors.	

•  Cost	metric	:		#	of	I/Os	
(We	will	ignore	cost	of	final	output	from	query)	

SELECT *
FROM Reserves R, Sailors S
WHERE R.sid=S.sid

Equality	Joins	on	One	Join	Column	

•  For	each	tuple	in	the	outer	relation	R,	we	scan	
the	entire	inner	relation	S.		
– Cost:	M	+	(tR	*	M)	*	N	
=	100,000*500	+	1000	I/Os.	

•  What	if	smaller	relation	(S)	was	outer?	
– N	+	(ts	*	N)	*M	=	40,000*1000	+	500	I/Os.	

foreach	tuple	r	in	R	do	
	foreach	tuple	s	in	S	do	
	 	if	ri	==	sj		then	add	<r,	s>	to	result	

Simple	Nested	Loops	Join	

•  For	each	page	of	R,	get	each	page	of	S,	and	write	out	
matching	pairs	of	tuples	<r,	s>,	where	r	is	in	R-page	and	S	
is	in	S-page.	

•  What	is	the	cost	of	this	approach?	(Try	Exercise	3)	

•  With	R	as	outer,	cost	=	M*N	+	M=	1000*500	+	1000	
–  If	smaller	relation	(S)	is	outer,	cost	=	500*1000	+	500	

foreach	page	pR	in	R	do	
				foreach	page	pS	in	S	do	
									foreach	tuple	r	in	pR	do	

	 	foreach	tuple	s	in	pSdo	
	 	 	if	ri	==	sj		then	add	<r,	s>	to	output	page	

Page-Oriented	Nested	Loops	Join	

Minimum	buffer	pool	
frames	needed?	

•  Page-oriented	NL	doesn’t	use	all	available	buffer	frames!	

•  Alternative	approach:		
–  Use	one	page	as	an	input	buffer	for	scanning	the	inner	S,		
–  one	page	as	the	output	buffer		
–  and	use	all	remaining	pages	to	hold	block	of	outer	R	

–  For	each	block	of	R,	scan	through	each	page	of	S	for	matches	

.	.	.	

R	&	S	

.	.	.	

block	of	R	tuples	
(<	B-1	pages)	

Input	buffer	for	S	 Output	buffer	

.	.	.	

Join	Result	

Block	Nested	Loops	Join	

.	.	.	

•  Cost:	Scan	of	outer	+		#	outer	blocks	*	scan	of	inner	

•  With	Reserves	(R)	as	outer,	and	100	pages/block:	
–  Scanning	R	is	1000	I/Os;		a	total	of	10	blocks.	
–  Per	block	of	R,	scan	Sailors	(S);		10*500	I/Os.	

•  With	100-page	block	of	Sailors	as	outer:	
–  Cost	of	scanning	S	is	500	I/Os;	a	total	of	5	blocks.	
–  Per	block	of	S,	scan	Reserves:			5*1000	I/Os.	

	

Block	Nested	Loop	Join:	Examples	

#	outer	blocks	=	ceiling(#	pages	of	outer/blocksize)	

How	many	times	would	we	
scan	S	if	the	block	size	was	B	
instead	of	100?	

Avoiding	Cross-product	

•  Simple,	Page-oriented,	and	Block	Nested-loop	
join	algorithms	effectively	enumerate	the	cross-
product	
–  every	pair	of	tuples	is	compared	

•  Next:	algorithms	that	avoid	cross-product		
(for	equality	joins)	
–  tuples	in	the	two	relations	can	be	thought	of	as	
belonging	to	partitions		

•  If	there	is	an	index	on	the	join	column	of	one	relation	(say	S),	
	can	make	that	relation	the	inner	and	use	the	index	
–  Cost:		M	+	((M*tR)	*	cost	of	finding	matching	S	tuples)		

•  Typical	“probe”	costs:	
–  1.2	I/Os	for	hash	index	
–  2-4	I/Os	for	B+	tree	

•  The	cost	of	finding	S	tuples	(assuming	Alt.	(2)	or	(3)	for	data	
entries)	depends	on	if	index	is	clustered	
–  Clustered:		1	I/O	per	page	of	matching	S	tuples.	
–  Unclustered:	up	to	1	I/O	per	matching	S	tuple.	

foreach	tuple	r	in	R	do	
	foreach	tuple	s	in	S	where	s	==	r		do	
	 	add	<r,	s>	to	result	

Index	Nested	Loops	Join	
Index	
probe	

Probe	to	find	matching	
data	entries	

•  Have	Hash-index	(Alt.	2)	on	sid	of	Sailors	(as	inner)	
Scan	Reserves:		1000	page	I/Os,	100*1000	tuples.	
–  For	each	Reserves	tuple:			

•  1.2	I/Os	to	get	data	entry	in	index,		
•  plus	1	I/O	to	get	[the	exactly	one]	matching	Sailors	tuple	
Total	cost:	1000	+	2.2*	100,000	=	221,000	I/Os	

Exercise	4:	Index	Nested	Loops	 Sort-Merge	Join		(R					S)	

•  Sort	R	and	S	on	the	join	column,	then	scan	them	
to	do	a	“merge”	(on	join	field),	and	output	result	
tuples.	

•  Particularly	useful	if	
– one	or	both	inputs	are	already	sorted	on	join	field(s)	
– output	is	required	to	be	sorted	on	join	field(s)	

i=j	

Example	of	Sort-Merge	Join	

•  Suppose	joining	on	sid	=	sid	

•  Cost	for	this	JOIN:		Sort	S	+Sort	R	+	(M+N)	
–  The	cost	of	merging:		typically	M+N	

sid sname rating age
22 dustin 7 45.0
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

sid bid day rname
28 103 12/4/96 guppy
28 103 11/3/96 yuppy
31 101 10/10/96 dustin
31 102 10/12/96 lubber
31 101 10/11/96 lubber
58 103 11/12/96 dustin

(BNL	cost:		2500	to	15000	I/Os)	

Instance	of	Sailors	
(outer)	

Instance	of	Reserves	
(inner)	

Why?	

Hash-Join	
(this	variant:	“Grace	Hash	Join”)	

•  Partition	both	
relations	on	the	join	
attributes	using	hash	
function	h	

•  R	tuples	in	partition	Ri	
will	only	match	S	
tuples	in	partition	Si.	

Partitions	
of	R	&	S	

Input	buffer	
for	Si	

Hash	table	for	partition	
Ri	(<	B-1	pages)	

B	main	memory	buffers	Disk	

Output		
	buffer	

Disk	

Join	Result	

hash	
fn	
h2	

h2	

B	main	memory	buffers	 Disk	Disk	

Original		
Relation	 OUTPUT	

2	INPUT	

1	

hash	
function	

h	 B-1	

Partitions	

1	

2	

B-1	

.	.	.	

•  For	each	partition	i	
–  Read	in	all	of	Ri,		
–  Hash	Ri	on	h2	
–  Scan	through	pages	of	

Si,	probing	hash	table	
for	matches	

