
CS	133:	Databases	

Fall	2019	

Lec	12	–	10/15	

Prof.	Beth	Trushkowsky	

Administrivia	

•  Midterm	this	Thursday	10/17	

	

•  Assignments	
– Lab	2	ends	tomorrow	night,	don’t	forget	write	up!	

– Lab	3	starts	after	fall	break	
– No	problem	set	out	this	week	

	

Goals	for	Today	

•  Reason	about	the	stages	of	query	optimization	

•  Understand	how	to	estimate	the	cost	of	a	full	
query	plan	
– Pipelining	vs.	materialization	

–  Intermediate	result	sizes	

		
Query	Parser	

Query	Optimizer	

Plan		
Generator	

Plan	Cost		
Estimator	

Query	Plan	Evaluator	

Catalog	Manager	

Usually	there	is	a	
heuristics-based	
rewriting	step	before	
the	cost-based	steps.	

Schema	 Statistics	

Queries	

Cost-based	Query	Sub-System	

What	plans	

are	

considered?	
How	is	the	cost	of	a	

plan	estimated?	

Ideally:	find	the	best	query	plan	
Reality:	avoid	the	worst	plans!	

Query	Optimization	Overview	

SELECT		S.sname	
FROM		Reserves	R,	Sailors	S	
WHERE		R.sid=S.sid	AND		
				R.bid=100	AND	S.rating>5	

Reserves	 Sailors	

sid=sid	

bid=100		 rating	>	5	

sname	

•  Query	converted	to	relational	algebra	expression	
•  Relational	algebra	converted	to	tree,	joins	as	branches	
•  Operators	can	also	be	applied	in	different	order!	

π(sname)σ(bid=100	∧	rating	>	5)	(Reserves	▹◃	Sailors)	

Left	branch	is	the	“outer”	relation	

Each	operator	has	implementation	choices	

à	Choosing	forms	physical	plan	

sid=sid	

Query	Optimizer	algorithm	

•  Goal:	given	a	a	query,	the	optimizer	wants	to		
– Decide	which	query	plans	to	consider	
– Compare	plans	and	choose	the	“best”	one	
(best	=	shortest	time	to	run)	

•  How	about	this	algorithm?	
– Step	1:	enumerate	the	space	of	all	possible	plans	

– Step	2:	run	each	query	plan,	measure	its	runtime	

– Step	3:	choose	the	plan	that	ran	the	fastest!	

Query	Optimizer	algorithm	

•  Goal:	given	a	a	query,	the	optimizer	wants	to		
– Decide	which	query	plans	to	consider	
– Compare	plans	and	choose	the	“best”	one	
(best	=	shortest	time	to	run)	

•  Actual	algorithm		
– Step	1:	consider	a	set	of	possible	plans	
– Step	2:	estimate	cost	for	each	plan	

– Step	3:	choose	the	plan	with	lowest	cost	

Estimating	Cost	

•  Don’t	want	to	execute	a	plan	to	figure	out	its	run-time!	
–  Instead	estimate	cost	of	the	plan	
–  Use	cost	as	a	proxy	for	run-time	

	

•  Cost	of	a	plan	=	sum	of	costs	for	each	operator	in	plan	

Exercise	2:	Reasoning	about	cost	
•  Assume:	

–  Each	relation	is	5	pages	and	stored	as	a	heap	file,	no	indexes	
–  Buffer	pool	has	4	frames	
–  Join	algorithm	is	page-nested-loop-join	(PNLJ)	
–  Order	by	operator	uses	general	external	merge-sort	

	
1.  (Review)	What	is	the	cost	in	I/Os	for	this	plan,	ignoring	cost	of	final	

output?	

2.  Now	what	about	the	cost	of	this	plan?	What	information	are	you	
missing?	

A	 B	

A	 B	

ORDER	BY(A.foo)	

5	+	5*5	

Need	Input	size	to	ORDER	BY,	

determined	by	output	size	of	JOIN	

Pipelined	vs.	Materialized	

•  Each	query	plan	operator’s	output	could	be	generated	
in	either	materialized	or	pipelined	fashion	

•  Materialized	

–  Complete	output	of	an	operator	saved	(typically	written	
back	to	disk)	as	a	temporary	relation	before	its	parent	
reads	it	in	

•  Pipelining	(“on-the-fly”)	
–  Parts	of	output	of	operator	immediately	given	to	parent	
as	input	

Pipelining	

•  Parent	and	child	operators	executing	concurrently	
–  Iterator	model	
–  Parent	calls	next()	on	child/children	
–  (As	needed)	child	calls	next()	on	its	child/children	

•  Savings	compared	to	materialization	to	disk	
–  No	write	I/O	cost	for	child’s	output	
–  No	read	I/O	cost	for	parent’s	input	

•  Operator	algorithm(s)	must	support	pipelining	for	this	
to	work!	

Exercise	3:	Pipelining	

•  Use	Page-Nested-Loop	joins	for	the	join	
algorithm	

•  Some	examples:	
–  (A	join	B)	join	C	

•  Pipelined	

–  C	join	(A	join	B)	
•  Since	(A	join	B)	is	the	inner	relation	for	the	second	join,	need	
to	materialize	it	

Motivating	Example	

•  Suppose	there	are	
–  100	boats	(uniformly	distributed)	
–  10	ratings	(uniformly	distributed	1-10)	

•  Cost:		500	+	500*1000	I/Os	
	

•  Misses	several	opportunities:		
–  Selections	could	have	been	“pushed”	earlier	
–  No	use	is	made	of	any	available	indexes...	

•  Goal	of	optimization:		find	more	efficient		
plans	that	compute	the	same	answer.		

SELECT S.sname
FROM Reserves R, Sailors S
WHERE R.sid=S.sid  

AND R.bid=100 AND S.rating>5

Sailors
(500 pages)

Reserves
(1000 pages)

sid=sid

bid=100 rating > 5

sname

(Page-Oriented
 Nested loops)

(On-the-fly)

(On-the-fly)
Query	Plan:	

500,500	IOs	
(previous	slide)	

Sailors Reserves

sid=sid

bid=100 rating > 5

sname

(Page-Oriented
 Nested loops)

(On-the-fly)

(On-the-fly)

Sailors

Reserves

sid=sid

rating > 5

sname

(Page-Oriented
 Nested loops)

(On-the-fly)

(On-the-fly)

bid=100 (On-the-fly)

250,500	IOs	

Alternative	Plans	–	Push	SELECTs		
(No	Indexes)	

Sailors

Reserves

sid=sid

rating > 5

sname

(Page-Oriented
 Nested loops)

(On-the-fly)

(On-the-fly)

bid=100 (On-the-fly)

250,500	IOs	
(previous	slide)	

Alternative	Plans	–	Push	SELECTs		
(No	Indexes)	

Reserves Sailors

sid=sid

bid=100

sname

(Page-Oriented
 Nested loops)

(On-the-fly)

rating>5
(Scan &
Write to
temp T) (On-the-fly)

4010	IOs	
500	+	1000	+10	+(250	*10)	 6000	IOs	

Sailors

Reserves

sid=sid

rating > 5

sname

(Page-Oriented
 Nested loops)

(On-the-fly)

(On-the-fly)

bid=100

(On-the-fly)

Sailors Reserves

sid=sid

rating > 5

sname

(Page-Oriented
 Nested loops)

(On-the-fly)

bid=100
(Scan &
Write to
temp T) (On-the-fly)

4250	IOs	
1000	+	500+	250	+	(10	*	250)	

Exercise	4-5:	Estimate	I/O	cost	

Sailors Reserves

sid=sid

rating > 5

sname

(Page-Oriented
 Nested loops)

(On-the-fly)

bid=100
(On-the-fly)

(On-the-fly)

6000	IOs	
1000	+	(10	*	500)	

Exercise	5:	Estimate	I/O	cost	
•  Suppose	these	indexes	exist:	

–  Clustered	Alt	1	hash	index	on	bid	of	Reserves	
–  Unclustered	Alt	2	hash	index	on	sid	of	Sailors		

	
	
•  Accessing	Reserves,	bid=100:	

–  Get	100,000/100	boats	
	=	1000	recordsà	1000/100=10	pages	
		

	
	
	

•  Cost:		Selection	on	Reserves	(10	I/Os);		
then,	for	each	tuple,	get	[one]	matching	Sailors	tuple:		
à	1000	tuples	*	(1.2+1)	
	=	2210	I/Os	

(On-the-fly)

(Use Alt 1 hash
Index on bid)

Reserves

Sailors

sid=sid

bid=100

sname

rating > 5

(Index Nested
Loops on sid)

(On-the-fly)

Alternative	Plans:	Indexes	

Due	to	index	on	sid,	
decide	not	to	push	
down	rating	>	5	

Join	column	sid	is	a	
key	for	Sailors!	

Since	using	
clustered	index	

Query	Blocks:	Units	of	Optimization	

•  An	SQL	query	is	parsed	into	a	set	of	query	blocks,	
and	these	are	optimized	one	block	at	a	time	

•  Inner	blocks	are	usually	treated	as	subroutines	
•  Computed:		
–  once	per	query	(for	uncorrelated	sub-queries)	
–  or	once	per	outer	tuple	(for	correlated	sub-queries)	

SELECT		S.sname	
FROM		Sailors	S	
WHERE		S.age	IN		
					(SELECT		MAX	(S2.age)	
							FROM		Sailors	S2	
							GROUP	BY		S2.rating)	
	 Nested	block	

Outer	block	

Pat	Selinger:	https://www-03.ibm.com/ibm/history/witexhibit/wit_fellows_selinger.html	

The	System	R	aka	“Selinger-style”	
Query	Optimizer	

•  Impact:	
–  Inspired	most	optimizers	in	use	today	
–  Works	well	for	small-medium	complexity	queries		
(<	10	joins)	

•  Cost	estimation:	
–  Very	inexact,	but	works	ok	in	practice.	
–  Statistics,	maintained	in	system	catalogs,	used	to	estimate	
cost	of	operations	and	result	sizes.	

–  Considers	a	simple	combination	of	CPU	and	I/O	costs.	

•  Plan	Space:		Too	large,	must	be	pruned!	

Statistics	and	cardinality	estimation	
•  Catalogs	typically	contain	at	least:	

–  #	tuples	(NTuples)	and	#	pages	(NPages)	per	relation	
	
and	for	each	index:	
	

–  #	distinct	key	values	(Nkeys)	
–  low/high	key	values	(Low/High)	
–  Index	height	(Height)		for	each	tree	index.	
–  Index	size	(NPages)	(e.g.,	#	leaf	pages	for	tree)	

•  Statistics	in	catalogs	updated	periodically.	
–  Updating	whenever	data	changes	is	too	expensive;	lots	of	
approximation	anyway,	so	slight	inconsistency	ok.	

Size	Estimation	and	Reduction	Factors	

•  Consider	a	query	block:	

•  Reduction	factor	(RF)	associated	with	each	term	
reflects	the	impact	of	the	term	in	reducing	result	size	

•  RF	is	also	called	“selectivity”	

•  How	to	predict	size	of	output?	
–  Need	to	know/estimate	input	size	
–  Need	to	know/estimate	RFs	
–  Need	to	know/assume	how	terms	are	related	

SELECT		attribute	list	
FROM		relation	list	
WHERE		term1	AND	...	AND	termk	

•  	Result	cardinality	(for	conjunctive	terms)	=					
														#	input	tuples		*		product	of	all	RF’s	

	
Assumptions:		
	1.	Values	are	uniformly	distributed			
			and	terms	are	independent!	

	
	2.	In	System	R,	stats	only	tracked	for	indexed	attributes	
	 	(modern	systems	have	removed	this	restriction)	

Result	Size	Estimation	for	Selections	

Term	 Reduction	Factor	

col	=	value	 1	/	Nkeys(I)	

col	>	value	 (High(I)-value)	/	(High(I)-Low(I))	

Note:	in	System	R,	if	missing	indexes,	assume	RF	=	1/10	

Exercise	6	

•  RF	=	16/40	*	1/10	=	1/25	
– Result	size:	20	pages	or	1600	tuples	

