Warm-up Exercise

(See exercise sheet. You can start before class.)

(a) ORDER BY(day), two-way external merge sort

 SELECT(bid=42), on the fly

 SEQ SCAN(Reserves)

(b) $1000 + (0 + 10) + (10 + 10) + (10 + 10) + (10 + 10) + (10 + 0)$

 $= 1080$ I/Os

Adminstrivia

• No class next Tuesday!
 — No office hours Tuesday

• Monday office hours will be moved earlier in day
 — TBD, will post on Piazza

• This week’s problem set is short

Goals for Today

• Continue to reason about estimating the result cardinality for selections and joins
 — System R heuristics
 — More advanced: histograms – Lab 3!
Cost-based Query Sub-System

What plans are considered?

How is the cost of a plan estimated?

Ideally: find the best query plan
Reality: avoid the worst plans!

Queries

Query Parser

Query Optimizer

Plan Generator

Plan Cost Estimator

Catalog Manager

Schema

Statistics

Query Plan Evaluator

Result Size Estimation for Joins

- **General case**: relations have join attributes \(a \) in common, \(a \) is a key for neither
 - *Assume*: set of distinct \(R.a \) values is contained in set of \(S.a \)
 - Let \(N\text{keys}(relation) = \) number of distinct values in \(relation \)
 - *Idea*: each tuple of \(R \) has a \(\frac{1}{N\text{Keys}(S)} \) chance of joining with each tuple in \(S \)

 \[
 \text{NTuples}(R) \times \frac{\text{NTuples}(S)}{N\text{Keys}(S)}
 \]

 - Reversing above yields

 \[
 \frac{\text{NTuples}(S)}{N\text{Keys}(S)} \times \text{NTuples}(R)
 \]

 (use smaller of two if different)

- For equi-join of \(R \) and \(S \) **range of result sizes** (\# tuples)
 - If \(R \) and \(S \) have no join attribute values in common?
 - If join attributes are a **key for** \(S \)?

 - And if the join attributes also comprise a **foreign key** in \(R \)?

Result Size Estimation for Joins

- The best query plan

Exercise 2-3

2. Estimate the result cardinality for this SQL query:

```sql
SELECT *
FROM Sailors NATURAL JOIN Reserves
NATURAL JOIN Boats;
```

Answer: number of tuples in Reserves (1000 pages, with 100 tuples/page)

3. Estimate the cost in I/Os of this query plan:

- **Answer**: total I/O cost = 6000 + 200 = 6200 I/Os

 exercised in page-oriented nested loops
Histograms: Finer-Grained Statistics

- For better reduction factor estimates, many systems use histograms.
- Histogram is an *approximation of a data distribution*.

Histogram Example

- Example: Estimating how many Sailor tuples satisfy a predicate about *rating* (out of 40,000 total tuples)

Uniform distribution similar to histogram with one bucket
Still assume uniform within a bucket

Equi-width vs. Equi-depth Histograms

- Equi-width
 - # values *represented* by each bucket is the same

- Equi-depth
 - # of records in each bucket is about the same

Exercise 4: Histograms

Diagram from Lab 3

Be careful with:
- Bucket size and off-by-one issues
- Selectivity of values outside the min/max.
Exercise 4

a) 41 values into 10 buckets. 4 in each, last one 5

b) Amount within bucket = 0.25*h_b tuples
 → Overall amount = (0.25*h_b tuples) / ntups

c) 0.25*h_b tuples + all tuples from buckets i > b
 → Divide sum by ntups

d) 0

Creating Equi-width histograms

- Suppose you want to be able to estimate the selectivity (reduction factor) for this query:

  ```
  SELECT * FROM Sailors S
  WHERE S.age = 40 AND S.rating > 5;
  ```

- Recall that we assume independence of terms and so the filter’s RF is the product of the terms’ RFs

- Discuss with a neighbor:
 - How many histograms would we need?
 - Suppose you want to create new histogram(s) on an existing relation. Brainstorm what you would need to do. Think of the functionality from Exercise 4.

Lab 3: SimpleDb Optimizer

- Statistics, like the Catalog, are memory-only in SimpleDb
- Generated when Parser initialized

Exercise 1: understand formation of physical query plan in SimpleDb

Exercise 2-3: histogram for statistics, and setting up TableStats