CS 133: Databases

Fall 2019
Lec 15 – 10/31
Prof. Beth Trushkowsky

Administrivia

• New regular office hour!
 – Thursdays 3-4pm, starting today
• In-class worksheets
 – Extras hanging in basket hanging outside my office
 – Answers posted inline with slides on course website
• Problem sets answers
 – I will upload “model answer” on Sakai

Goals for Today

• Explore the search space explosion for alternate query plans

• Understand the dynamic programming approach to exploring the (large!) space of query plans

• Reason about the heuristics used by the System R query optimizer to prune the space
 – Discuss some of the corners cut by query optimization algorithms like the System R approach

Query Optimizer algorithm

• Goal: given a a query, the optimizer wants to
 – Enumerate query plans to consider
 – Compare plans and choose the “best” one

• Algorithm
 – Step 1: consider a set of possible plans
 – Step 2: estimate cost for each plan
 – Step 3: choose the plan with lowest cost
Logical Transformations:
Equivalent Relational Algebra Expressions

• Can write the same query multiple ways!
 – These alternate versions are akin to different possible logical query plans

• Good rules of thumb:
 – “Push” down selections
 – Avoid cross-products

Relational Algebra Equivalences

Selections:
\[\sigma_{c_1 \land \ldots \land c_n}(R) \equiv \sigma_{c_1}(\ldots \sigma_{c_n}(R)) \] (Cascade)
\[\sigma_{c_1}(\sigma_{c_2}(R)) \equiv \sigma_{c_2}(\sigma_{c_1}(R)) \] (Commutate)

Projections:
\[\pi_{a_1}(R) \equiv \pi_{a_1}(\ldots(\pi_{a_n}(R)) \ldots) \] (Cascade)
(if \(a_i \) includes \(a_{i-1} \) includes... \(a_1 \))

A projection could commute with a selection, e.g.,
\[\pi_a(\sigma_c(R)) \equiv \sigma_c(\pi_a(R)) \]
... if condition \(c \) acts only on attributes in \(a \)

R.A. Equivalences: Joins

\[(R \bowtie S) \equiv (S \bowtie R) \] (Commutative)
\[R \bowtie (S \bowtie T) \equiv (R \bowtie S) \bowtie T \] (Associative)

If theta join, join condition must involve correct relations

These mean we can switch join outer/inner relations and can do joins in any order!

Selection between attributes of the two arguments of a cross-product converts cross-product to a join:
\[\sigma_{R,a=S,b}(R \times S) \equiv (R\bowtie_{R,a=S,b}S) \]

R.A. Equivalences: Select & Project

• **Selection Push:** selection on attributes of \(R \) commutes with \(R \bowtie S \):
 \[\sigma_c(R \bowtie S) \equiv \sigma_c(R) \bowtie S \]

• **Projection Push:** A projection applied to join of \(R \) and \(S \) can be pushed before the join by:
 – retaining only attributes of \(R \) and \(S \) needed for the join,
 – or are kept by the projection
\[\pi_{R,a,S,b}(R\bowtie_{R,a=S,b}S) \equiv (\pi_{R,a}(R))\bowtie_{R,a=S,b}(\pi_{S,b}(S)) \]
Exercise 2-3

2. Convert cross-product to join with R.a=S.c
 - Commute the select condition R.a > 2 with join
 - Note: cannot push projection R.c before join
 - But could cascade the projection: project R.a,c before join, then project R.c after select

3. Joining Boats and Sailors first would yield a lot of tuples, since this would become a cross-product!

Enumeration of Alternative Plans

- Two main cases:
 - Single-relation plans (unary operators only)
 - Multiple-relation plans

- For unary operators:
 - For a scan, each available access path (sequential scan / index) is considered; one with the least estimated cost is chosen
 - Consecutive Scan, Select, Project and Aggregate operations can be typically pipelined

Enumerating Multi-Relation Plans

- Suppose we have N relations
 - Let’s ignore the space of different join algorithms for a moment
 - Recall: associative and commutative rules mean we can apply joins in any order

- How many join orders? Example: N=3, {A,B,C}
 - How many tree shapes?
 - Given a tree shape, how many leaf orderings?

Exercise 4: Join Orders

- Leaf orderings given a shape? N!

- Tree shapes, for a fixed ordering of 4 relations
 - 1 left-deep and linear
 - 1 right-deep and linear
 - 1 bushy
 - 2 linear

For both tree shapes, can have 6 orderings of relations in the leaves
Number of Join Orders

- Leaf order permutations: $n!$
- Tree shapes: Catalan numbers
 \[C(n) = \frac{1}{n+1} \binom{2n}{n} = \frac{(2n)!}{(n+1)!n!} \]
- Join orders(n) = $n! \times C(n-1)$

<table>
<thead>
<tr>
<th>n</th>
<th>Join orders(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>120</td>
</tr>
<tr>
<td>5</td>
<td>1680</td>
</tr>
<tr>
<td>6</td>
<td>30,240</td>
</tr>
<tr>
<td>7</td>
<td>665,280</td>
</tr>
<tr>
<td>8</td>
<td>17,297,280</td>
</tr>
<tr>
<td>9</td>
<td>518,918,400</td>
</tr>
<tr>
<td>10</td>
<td>17,643,225,600</td>
</tr>
</tbody>
</table>

Dynamic Programming Approach

- Brute-force enumeration approach does not scale
- **Observation**: within the space of all possible plans, many plans share a common *subplan*

 \[\text{Best plan to join } A \text{ and } B \text{ can help us find the best plan to join } A, B, C, \text{ and } D \]

- Dynamic programming!
 - *Cache* best results for plans already considered

System R: Plans to Consider

- Fundamental decision in System R:
 - *only left-deep join trees* considered (1 tree shape)

- Left-deep trees allow us generate all *fully pipelined plans*
 - *Note*: Recall not all left-deep trees are fully pipelined (e.g., Sort-Merge join)

- Selections on a relation processed as part of access path, or on-the-fly with JOINs

More System R heuristics later...

Enumeration: Dynamic Programming (left-deep)

- **Query plans differ by**:
 - order of the N relations,
 - access method for each relation,
 - and the join method for each join

- Plans are enumerated in N passes, considering subsets of the N relations

- For each subset of relations, retain:
 - Cheapest plan overall (possibly unordered)

We’ll also hang onto the cheapest plans for ordered tuples! (Later)
Enumeration: Dynamic Programming (left-deep)

- **Pass 1**: Find best "1-relation" plans for each relation.

- **Pass 2**: Find the best ways to join result of each 1-relation plan as outer to another relation.

- ... For Pass i:

 - Ways to join $(i-1)$ relations

- **Pass N**: Find best ways to join result of a $(N-1)$-relation plan as outer to the N'th relation.

Dynamic Programming Pseudocode

$$ R \leftarrow \text{set of relations to join (e.g., ABCD)} $$

for δ in 1 ... $|R|$:

 for S in [all length δ subsets of R]:

 $$ \text{optjoin}(S) = (S - a) \text{ join } a $$

 // where a is the single relation that minimizes:

 // $\text{cost} (\text{optjoin}(S - a)) +$
 // min. cost to join $(S - a)$ to a +
 // min. access cost for a

 $\text{optjoin}(S - a)$ is cached from previous iteration

DP: Example (left-deep)

<table>
<thead>
<tr>
<th>Subplan</th>
<th>Best choice</th>
<th>Cost</th>
<th>Cardinality</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>index</td>
<td>150</td>
<td>1000</td>
</tr>
<tr>
<td>B</td>
<td>Seq scan</td>
<td>600</td>
<td>5000</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

optjoin(ABCD)

$\delta=1$

- $A =$ best way to access A

 (e.g. sequential scan or index)

- $B =$ best way to access B

- $C =$ best way to access C

- $D =$ best way to access D

DP: Example (left-deep)

<table>
<thead>
<tr>
<th>Subplan</th>
<th>Best choice</th>
<th>Cost</th>
<th>Cardinality</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>index</td>
<td>150</td>
<td>1000</td>
</tr>
<tr>
<td>B</td>
<td>Seq scan</td>
<td>600</td>
<td>5000</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

optjoin(ABCD)

$\delta=2$

- $\{A,B\} =$ AB or BA

 (use pre-computed best way to access A and B)

- $\{A,C\} =$ AC or CA

- $\{A,D\} =$ AD or DA

- $\{B,C\} =$ BC or CB

- $\{B,D\} =$ BD or DB

- $\{C,D\} =$ CD or DC
DP: Example (left-deep)

\[
\begin{array}{|c|c|c|c|}
\hline
\text{Subplan} & \text{Best choice} & \text{Cost} & \text{Cardinality} \\
\hline
A & \text{index} & 150 & 1000 \\
B & \text{Seq scan} & 600 & 5000 \\
\{A,B\} & \text{BA} & \ldots & \ldots \\
\{B,C\} & \text{BC} & \ldots & \ldots \\
\ldots & & & \\
\hline
\end{array}
\]

\[\delta = 3\]

\{A,B,C\} = remove A, compare plans for \{B,C\}
A
remove B, compare plans for \{A,C\}
B
remove C, compare plans for \{A,B\}
C

\{B,C,D\} = ...
\{A,C,D\} = ...
\{A,B,D\} = ...

\[
\begin{array}{|c|c|c|c|}
\hline
\text{Subplan} & \text{Best choice} & \text{Cost} & \text{Cardinality} \\
\hline
A & \text{index} & 150 & 1000 \\
B & \text{Seq scan} & 600 & 5000 \\
\{A,B\} & \text{BA} & \ldots & \ldots \\
\{B,C\} & \text{BC} & \ldots & \ldots \\
\ldots & & & \\
\hline
\end{array}
\]

\[\delta = 4\]

\{A,B,C,D\} = remove A, compare plans for \{B,C,D\}
A
remove B, compare plans for \{A,C,D\}
B
remove C, compare plans for \{A,B,D\}
C
remove D, compare plans for \{A,B,C\}
D

DP Algorithm: Complexity (left-deep)

- Time complexity
 - For each pass \(k\), consider all subsets of relations of size \(k\) \(\Rightarrow\) \(N\ choose \ k\) subsets
 - All subsets for \(N\) relations, less the empty set: \(2^N - 1\)

\[\text{Power Set: the set of all subsets}\]

- For each subset of size \(k\), \(k\) ways to remove 1 join \((k \leq N)\)

\[\text{Time complexity} = O(N2^N)\]

Interesting Orders

- The output relation from a given operator could be ordered
 - How?

- An intermediate result has an “interesting order” if it is returned in order of any of:
 - ORDER BY attributes
 - GROUP BY attributes
 - Join attributes of other joins
 - Why would we care?
System R: Plans Considered (Contd.)

- Only consider left-deep plans
- In DP algorithm, also keep in plan cache cheapest plan for each *interesting order* of the tuples
- Avoid Cross-products if possible
 - An i-1 way plan is not combined with an additional relation unless there is a join condition between them, unless all predicates in WHERE clause have been used up
- ORDER BY, GROUP BY, aggregates etc. handled as a final step, using either an *interestingly ordered* plan or an additional sorting operator

Small Example

```
SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid = R.sid
  AND S.rating > 5
  AND R.bid = 100
```

Pass 1:

Reserves: Clustered B+ tree on *bid* matches *bid=100*, and is cheaper than file scan

Sailors: B+ tree matches *rating>5*, not very selective, and index is unclustered, so *sequential file scan w/ select is likely cheaper*. Also, Sailors.rating is not an interesting order.

Pass 2: We consider each Pass 1 plan as the outer:

Reserves as outer (using B+ Tree selection on bid):
Find lowest-cost join algorithm with Sailors as Inner

Sailors as outer (using Seq. File Scan w/selection on rating):
Find lowest-cost join algorithm with Reserves as Inner

Physical DB Design

- Query optimizer does what it can to use indexes, clustering, and operator implementations
- Database Administrator (DBA) is expected to set up physical design well
 - E.g., consider which indexes to create
 - *Good DBAs understand query optimizers very well!*
- Many DBMSs support a feature called **EXPLAIN**
 - Note: Exact syntax varies by DBMS
- Shows query plan the optimizer would choose
 - Use indexes or sequential scan?
 - Join order? Join algorithms?