
CS	133:	Databases	

Fall	2019	

Lec	15	–	10/31	

Prof.	Beth	Trushkowsky	

Administrivia	

•  New	regular	office	hour!	
–  Thursdays	3-4pm,	starting	today	

•  In-class	worksheets	
–  Extras	hanging	in	basket	hanging	outside	my	office	

– Answers	posted	inline	with	slides	on	course	website	

•  Problem	sets	answers	

–  I	will	upload	“model	answer”	on	Sakai	

Goals	for	Today	

•  Explore	the	search	space	explosion	for	alternate	
query	plans	

•  Understand	the	dynamic	programming	approach	
to	exploring	the	(large!)	space	of	query	plans	

•  Reason	about	the	heuristics	used	by	the	System	R	

query	optimizer	to	prune	the	space	

– Discuss	some	of	the	corners	cut	by	query	optimization	

algorithms	like	the	System	R	approach	

Query	Optimizer	algorithm	

•  Goal:	given	a	a	query,	the	optimizer	wants	to		

– Enumerate	query	plans	to	consider	

– Compare	plans	and	choose	the	“best”	one	

•  Algorithm	

– Step	1:	consider	a	set	of	possible	plans	
– Step	2:	estimate	cost	for	each	plan	
– Step	3:	choose	the	plan	with	lowest	cost	

Logical	Transformations:	

Equivalent	Relational	Algebra	Expressions	

•  Can	write	the	same	query	multiple	ways!	

–  These	alternate	versions	are	akin	to	different	
possible	logical	query	plans	

•  Good	rules	of	thumb:		

–  “Push”	down	selections		
–  	Avoid	cross-products	

	

Why?	

Relational	Algebra	Equivalences	

Selections:																																																									 	 			

	 	 	 	 	 	 	 	 		

	

	

	

	

() () () σ σ σ c cn c cn R R 1 1 ∧ ∧
≡

.

€

σ c1 σ c2 R()()≡ σ c2 σ c1 R()() (Commute)	

Projections:	 πa R() ≡ πa1 ... πan R()()() (Cascade)	

(if	a
n
	includes	a

n-1
	includes…	a

1
)	

(Cascade)	

π a σ c R()() ≡ σ c π a R()() …	if	condition	c	acts	
only	on	attributes	in	a	

A	projection	could	commute	with	a	selection,	e.g.,	

R.A.	Equivalences:	Joins	

Joins:	
(R								S)					(S						R)		 (Commutative)	

These	mean	we	can	switch	join	outer/inner	relations	
and	can	do	joins	in	any	order!	

Selection	between	attributes	of	the	two	arguments	of	a	cross-

product	converts	cross-product	to	a	join:	

σ R.a=S.b(R× S) ≡ (R×R.a=S.b S)

R							(S						T)						(R							S)						T		 (Associative)	

If	theta	join,	join	condition	must	

involve	correct	relations	

•  Selection	Push:	selection	on	attributes	of	R	
commutes	with	R							S:			σ

c
(R							S)	≡	σ

c
(R)						S	

•  Projection	Push:	A	projection	applied	to	join	of	R	
and	S	can	be	pushed	before	the	join	by:	

–  	retaining	only	attributes	of	R	and	S	needed	for	the	join,		
– or	are	kept	by	the	projection	

π R.a,S.b R×R.a=S.b S() ≡ π R.a (R)()×R.a=S.b π S.b(S)()

R.A.	Equivalences:	Select	&	Project	

Exercise	2-3	

2.	

•  Convert	cross-product	to	join	with	R.a=S.c	
•  Commute	the	select	condition	R.a	>	2	with	join	

•  Note:	cannot	push	projection	R.c	before	join	
–  But	could	cascade	the	projection:	project	R.a,c	before	join,	
then	project	R.c	after	select	

3.	Joining	Boats	and	Sailors	first	would	yield	a	lot	of	

tuples,	since	this	would	become	a	cross-product!	

π R.c σ R.a>2∧R.a=S.c (R× S)()

Enumeration	of	Alternative	Plans	

•  Two	main	cases:	

–  Single-relation	plans	(unary	operators	only)	
–  Multiple-relation	plans	

•  For	unary	operators:	
–  For	a	scan,	each	available	access	path	(sequential	
scan	/	index)	is	considered;	one	with	the	least	

estimated	cost	is	chosen	
–  Consecutive	Scan,	Select,	Project	and	Aggregate	
operations	can	be	typically	pipelined		

Enumerating	Multi-Relation	Plans	

•  Suppose	we	have	N	relations	
–  Let’s	ignore	the	space	of	different	join	algorithms	for	a	moment	

–  Recall:	associative	and	commutative	rules	mean	we	can	apply	

joins	in	any	order			

•  How	many	join	orders?	Example:	N=3,	{A,B,C}	

–  How	many	tree	shapes?	

–  Given	a	tree	shape,	how	many	leaf	orderings?	

For	both	tree	shapes,		

can	have	6	orderings	of		

relations	in	the	leaves	

Exercise	4:	Join	Orders	

•  Leaf	orderings	given	a	shape?	N!	

•  Tree	shapes,	for	a	fixed	ordering	of	4	relations	
– 1	left-deep	and	linear	
– 1	right-deep	and	linear	
– 1	bushy	
– 2	linear	

Number	of	Join	Orders		

Source:	http://www.necessaryandsufficient.net/2009/06/query-optimisation-plan-space-and-catalan-numbers/	

n 	Join	orders(n)	

1 	1	

2 	2	

3 	12	

4 	120	

5 	1680	

6 	30,240	

7 	665,280	

8 	17,297,280	

9 	518,918,400	

10 	17,643,225,600	

•  Leaf	order	permutations:	n!	

•  Tree	shapes:	Catalan	numbers	

•  Join	orders(n)	=	n!	*	C(n-1)	
	

	

•  Brute-force	enumeration	approach	does	not	scale	

	

•  Observation:	within	the	space	of	all	possible	plans,	
many	plans	share	a	common	subplan	

•  Dynamic	programming!	

–  Cache	best	results	for	plans	already	considered	

Dynamic	Programming	Approach	

A	 B	 Best	plan	to	join	A	

and	B	can	help	us	

find	the	best	plan	to	

join	A,	B,	C,	and	D	

((A	 B)	 C)	 D	

((A	 B)	 D)	 C	

System	R:	Plans	to	Consider	

•  Fundamental	decision	in	System	R:	

–  	only	left-deep	join	trees	considered	(1	tree	shape)	

•  Left-deep	trees	allow	us	generate	all	fully	pipelined	plans	
–  Note:	Recall	not	all	left-deep	trees	are	fully	pipelined		

(e.g.,	Sort-Merge	join)	

•  Selections	on	a	relation	processed	as	part	of	access	path,	or	on-the-fly	with	

JOINs	

B A

C

D

B A

C

D

C D B A

Why	do	

we	care?	

More	System	R	heuristics	later…	

•  Query	plans	differ	by:	
–  	order	of	the	N	relations,	
–  	access	method	for	each	relation,		

– and	the	join	method	for	each	join	

	

•  Plans	are	enumerated	in	N	passes,	considering	
subsets	of	the	N	relations	

•  For	each	subset	of	relations,	retain:	
–  Cheapest	plan	overall	(possibly	unordered)	

Enumeration:	Dynamic	Programming	

(left-deep)	

We’ll	also	hang	onto	the	cheapest	

plans	for	ordered	tuples!	(Later)	

•  Pass	1:		Find	best	“1-relation”	plans	for	each	relation	

•  Pass	2:		Find	the	best	ways	to	join	result	of	each		
1-relation	plan	as	outer	to	another	relation.	

•  …	

•  Pass	N:		Find	best	ways	to	join	result	of	a		
(N-1)-relation	plan	as	outer	to	the	N’th	relation.			

Enumeration:	Dynamic	Programming	

(left-deep)	

For	Pass	i:	

Ways	to	join	(i	-1)	relations	

Join	with	ith	relation	

…	

Dynamic	Programming	Pseudocode	

R	ß	set	of	relations	to	join	(e.g.,	ABCD)	

	

for	∂	in	{1	...|R|}:		

	for	S	in	{all	length	∂	subsets	of	R}:	

	 	optjoin(S)	=	(S	–	a)	join	a	
	 		

	

	 	//	where	a	is	the	single	relation	that	minimizes:	

	 	//	cost(optjoin(S	-	a))	+		
	 	 	min.	cost	to	join	(S	-	a)	to	a	+	

	 	 	min.	access	cost	for	a	

	

optjoin(S	–	a)	is	cached	from	previous	iteration	

	

	

	

Best	way	to	join	all	relations	in	S?	

	

For	each	a	in	S,	try	joining	it	with	

the	best	plan	for	the	other	S-a	

relations	already	joined	

DP:	Example	

(left-deep)	

optjoin(ABCD)		

	

∂=1	

	A	=	best	way	to	access	A	

	 	(e.g.	sequential	scan	or	index)	

	B	=	best	way	to	access	B	

	C	=	best	way	to	access	C	

	D	=	best	way	to	access	D	

Subplan	 Best	choice	 Cost	 Cardinality	
A	 index	 150	 1000	

B	 Seq	scan	 600	 5000	

…	

Plan	Cache	 DP:	Example	

(left-deep)	

optjoin(ABCD)		

	

∂=2	

	{A,B}	=	AB	or	BA	

	 	(use	pre-computed	best	way	to	access	A	and	B)	

	{A,C}	=	AC	or	CA	

	{A,D}	=	AD	or	DA	

	{B,C}	=	BC	or	CB	

	{B,D}	=	BD	or	DB	

	{C,D}	=	CD	or	DC	

	

	

Subplan	 Best	choice	 Cost	 Cardinality	
A	 index	 150	 1000	

B	 Seq	scan	 600	 5000	

{A,B}	 BA		

{B,C}	 BC		

…	

Plan	Cache	

DP:	Example	

(left-deep)	

optjoin(ABCD)		

	

∂=3	

	{A,B,C}	=	remove	A,	compare	plans	for	({B,C})	A 	 	

	 	 					remove	B,	compare	plans	for	({A,C})	B	

		 	 					remove	C,	compare	plans	for	({A,B})	C	

	{B,C,D}	=	…	

	{A,C,D}	=	…	

	{A,B,D}	=	…	

	

Subplan	 Best	choice	 Cost	 Cardinality	
A	 index	 150	 1000	

B	 Seq	scan	 600	 5000	

{A,B}	 BA		

{B,C}	 BC		

…	

{A,B,C}	 ACB		

{B,C,D}	 CBD		

Plan	Cache	

Subplan	 Best	choice	 Cost	 Cardinality	
A	 index	 150	 1000	

B	 Seq	scan	 600	 5000	

{A,B}	 BA		

{B,C}	 BC		

…	

{A,B,C}	 ACB		

{B,C,D}	 CBD		

DP:	Example	

(left	deep)	

optjoin(ABCD)		

	

∂=4	

	{A,B,C,D}	=	remove	A,	compare	plans	for	({B,C,D})	A

	 	 	 					remove	B,	compare	plans	for	({A,C,D})	B	

	 	 	 					remove	C,	compare	plans	for	({A,B,D})	C	

	 	 	 					remove	D,	compare	plans	for	({A,B,C})	D	

	

	

Plan	Cache	

DP	Algorithm:	Complexity	(left-deep)	

•  Time	complexity	

–  For	each	pass	k,	consider	all	subsets	of	relations	of	size	k	à	
	N	choose	k	subsets	

–  All	subsets	for	N	relations,	less	the	empty	set:	2N-1	

–  For	each	subset	of	size	k,	k	ways	to	remove	1	join	(k	<=	N)	

	

	

Power	Set:	the	set	

of	all	subsets	

Time	complexity	=	O(N2
N
)	

•  The	output	relation	from	a	given	operator	could	be	

ordered	

	

	

•  An	intermediate	result	has	an	“interesting	order”	if	it	
is	returned	in	order	of	any	of:	

– ORDER	BY	attributes	
– GROUP	BY	attributes	
–  Join	attributes	of	other	joins	

	Interesting	Orders	

How?	

Why	would	we	

care?	

•  Only	consider	left-deep	plans	

•  In	DP	algorithm,	also	keep	in	plan	cache	cheapest	plan	for	

each	interesting	order	of	the	tuples	

•  Avoid	Cross-products	if	possible	
–  An	i-1	way	plan	is	not	combined	with	an	additional	relation	unless	

there	is	a	join	condition	between	them,	unless	all	predicates	in	

WHERE	clause	have	been	used	up	

•  ORDER	BY,	GROUP	BY,	aggregates	etc.	handled	as	a	final	
step,	using	either	an	interestingly	ordered	plan	or	an	
additional	sorting	operator	

System	R:	Plans	Considered	(Contd.)	

			Pass	1:	

Reserves:		Clustered	B+	tree	on	bid	matches	bid=100,	and	is	
cheaper	than	file	scan	

	
Sailors:		B+	tree	matches	rating>5,		not	very	selective,	and	index	is	
unclustered,	so	sequential	file	scan	w/	select	is	likely	cheaper.		
Also,	Sailors.rating	is	not	an	interesting	order.	

		

Indexes	

Reserves:	

	Clustered	B+	tree	on	bid	

Sailors:	

	Unclust	B+	tree	on	rating	

Pass	2:	We	consider	each	Pass	1	plan	as	the	outer:	
				Reserves	as	outer	(using	B+	Tree	selection	on	bid):		

Find	lowest-cost	join	algorithm	with	Sailors	as	Inner	

				Sailors	as	outer	(using	Seq.	File	Scan	w/selection	on	rating):		

Find	lowest-cost	join	algorithm	with	Reserves	as	Inner	

	

SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid = R.sid
 AND S.rating > 5
 AND R.bid = 100

Small	Example	

Physical	DB	Design	

•  Query	optimizer	does	what	it	can	to	use	indexes,	clustering,	

and	operator	implementations	

	

•  Database	Administrator	(DBA)	is	expected	to	set	up	

physical	design	well	

–  E.g.,	consider	which	indexes	to	create	

Good	DBAs	understand	query	optimizers	very	well!	

•  Many	DBMSs	support	a	feature	called	EXPLAIN

•  Shows	query	plan	the	optimizer	would	choose	

–  Use	indexes	or	sequential	scan?	
–  Join	order?	Join	algorithms?	

Note:	Exact	syntax	

varies	by	DBMS	

