CS 133: Databases Fall 2019 Lec 15 - 10/31 Prof. Beth Trushkowsky	Administrivia - New regular office hour! - Thursdays 3-4pm, starting today - In-class worksheets - Extras hanging in basket hanging outside my office - Answers posted inline with slides on course website - Problem sets answers - I will upload "model answer" on Sakai
Goals for Today - Explore the search space explosion for alternate query plans - Understand the dynamic programming approach to exploring the (large!) space of query plans - Reason about the heuristics used by the System R query optimizer to prune the space - Discuss some of the corners cut by query optimization algorithms like the System R approach	Query Optimizer algorithm - Goal: given a a query, the optimizer wants to - Enumerate query plans to consider - Compare plans and choose the "best" one - Algorithm - Step 1: consider a set of possible plans - Step 2: estimate cost for each plan - Step 3: choose the plan with lowest cost

Logical Transformations:
 Equivalent Relational Algebra Expressions

- Can write the same query multiple ways!
- These alternate versions are akin to different possible logical query plans
- Good rules of thumb:
- "Push" down selections
- Avoid cross-products

Relational Algebra Equivalences

Selections:

$$
\begin{aligned}
\sigma_{c 1 \wedge \ldots \wedge c n}(R) & \equiv \sigma_{c 1}\left(\ldots \sigma_{c n}(R)\right) & & \text { (Cascade) } \\
\sigma_{c 1}\left(\sigma_{c 2}(R)\right) & \equiv \sigma_{c 2}\left(\sigma_{c 1}(R)\right) & & \text { (Commute) }
\end{aligned}
$$

Projections:

$$
\pi_{a}(R) \equiv \pi_{a 1}\left(\ldots\left(\pi_{a n}(R)\right)\right) \quad \text { (Cascade) }
$$

A projection could commute with a selection, e.g.,

$$
\pi_{a}\left(\sigma_{c}(R)\right) \equiv \sigma_{c}\left(\pi_{a}(R)\right) \quad \begin{gathered}
\ldots \text { if condition } c \text { acts } \\
\text { only on attributes in } a
\end{gathered}
$$

R.A. Equivalences: Select \& Project

- Selection Push: selection on attributes of R commutes with $R \bowtie S: \quad \sigma_{c}(R \bowtie S) \equiv \sigma_{c}(R) \bowtie S$
- Projection Push: A projection applied to join of R and S can be pushed before the join by:
- retaining only attributes of R and S needed for the join,
- or are kept by the projection

$$
\pi_{R . a, S . b}\left(R \bowtie_{R . a=S . b} S\right) \equiv\left(\pi_{R . a}(R)\right) \bowtie_{\text {R.a=S.b }}\left(\pi_{S . b}(S)\right)
$$

Exercise 2-3

2.

$$
\pi_{R . c}\left(\sigma_{R . a>2 \wedge R . a=S . c}(R \times S)\right)
$$

- Convert cross-product to join with R.a=S.c
- Commute the select condition R.a > 2 with join
- Note: cannot push projection R.c before join
- But could cascade the projection: project R.a,c before join, then project R.c after select

3. Joining Boats and Sailors first would yield a lot of tuples, since this would become a cross-product!

Enumeration of Alternative Plans

- Two main cases:
- Single-relation plans (unary operators only)
- Multiple-relation plans
- For unary operators:
- For a scan, each available access path (sequential scan / index) is considered; one with the least estimated cost is chosen
- Consecutive Scan, Select, Project and Aggregate operations can be typically pipelined

Enumerating Multi-Relation Plans

- Suppose we have N relations
- Let's ignore the space of different join algorithms for a moment
- Recall: associative and commutative rules mean we can apply joins in any order
- How many join orders? Example: $N=3,\{A, B, C\}$
- How many tree shapes?
- Given a tree shape, how many leaf orderings?

For both tree shapes, can have 6 orderings of relations in the leaves

Exercise 4: Join Orders

- Leaf orderings given a shape? N!
- Tree shapes, for a fixed ordering of 4 relations
- 1 left-deep and linear
- 1 right-deep and linear
- 1 bushy
- 2 linear

Number of Join Orders

- Leaf order permutations: n !
- Tree shapes: Catalan numbers $C(n)=\frac{1}{n+1}\binom{2 n}{n}=\frac{(2 n)!}{(n+1)!n!}$
- Join orders(n) $=\mathrm{n}$! * $\mathrm{C}(\mathrm{n}-1)$

$\frac{n}{1}$	Join orders(n)
2	2
3	12
4	120
5	1680
6	30,240
7	665,280
8	$17,297,280$
9	$518,918,400$
10	$17,643,225,600$

Dynamic Programming Approach

- Brute-force enumeration approach does not scale
- Observation: within the space of all possible plans, many plans share a common subplan

$$
\begin{array}{lll}
\mathbf{A} \bowtie \mathbf{B} & (\mathbf{A} \bowtie \mathbf{B}) \bowtie \mathbf{C}) \bowtie D & \begin{array}{l}
\text { Best plan to join } A \\
\text { and } B \text { can help us } \\
\text { find the best plan to } \\
\text { join } A, B, C, \text { and } D
\end{array} \\
& (\mathbf{(A \bowtie B) \bowtie D) \bowtie C}
\end{array}
$$

- Dynamic programming!
- Cache best results for plans already considered

Enumeration: Dynamic Programming (left-deep)

- Query plans differ by:
- order of the N relations,
- access method for each relation,
- and the join method for each join
- Plans are enumerated in N passes, considering subsets of the \mathbf{N} relations
- For each subset of relations, retain:
- Cheapest plan overall (possibly unordered)

[^0]
Enumeration: Dynamic Programming (left-deep)

- Pass 1: Find best "1-relation" plans for each relation
- Pass 2: Find the best ways to join result of each 1-relation plan as outer to another relation.

For Pass i :

Join with ith relation

Ways to join (i-1) relations

- Pass N: Find best ways to join result of a ($\mathrm{N}-1$)-relation plan as outer to the N 'th relation.

DP: Example (left-deep)

Plan Cache

Subplan	Best choice	Cost	Cardinality
A	index	150	1000
B	Seq scan	600	5000
\ldots			

optjoin(ABCD)
$\partial=1$
A = best way to access A
(e.g. sequential scan or index)
$B=$ best way to access B
C = best way to access C
$D=$ best way to access D

Dynamic Programming Pseudocode

$R \leftarrow$ set of relations to join (e.g., $A B C D$)
for ∂ in $\{1 \ldots|R|\}$:
for S in $\{$ all length ∂ subsets of R \}:
optjoin $(S)=(S-a)$ join a \qquad
way to join all relations in S ?
For each a in S, try joining it with the best plan for the other $\mathrm{S}-\mathrm{a}$ relations already joined
// where a is the single relation that minimizes:
// cost(optjoin(S - a)) +
min. cost to join ($\mathrm{S}-\mathrm{a}$) to a +
min. access cost for a
optjoin(S $-a$) is cached from previous iteration

DP: Example (left-deep)

Plan Cache

Subplan	Best choice	Cost	Cardinality
A	index	150	1000
B	Seq scan	600	5000

optjoin(ABCD)
$\partial=2$
$\{A, B\}=A B$ or $B A$
(use pre-computed best way to access A and B)
$\{A, C\}=A C$ or $C A$
$\{A, D\}=A D$ or $D A$
$\{B, C\}=B C$ or $C B$
$\{B, D\}=B D$ or $D B$
$\{C, D\}=C D$ or $D C$

DP: Example (left-deep)
optjoin(ABCD)
$\partial=3$
$\{A, B, C\}=$ remove A, compare plans for $(\{B, C\}) A$ remove B, compare plans for $(\{A, C\}) B$ remove C, compare plans for $(\{A, B\}) C$
$\{B, C, D\}=\ldots$
$\{A, C, D\}=\ldots$
$\{A, B, D\}=\ldots$
DP: Example
(left deep)
optjoin(ABCD)
$\partial=4$

Plan Cache

| Subplan | Best choice | Cost | Cardinality |
| :--- | :--- | :--- | :--- | :--- |
| A | index | 150 | 1000 |
| B | Seq scan | 600 | 5000 |
| $\{A, B\}$ | $B A$ | .. | .. |
| $\{B, C\}$ | $B C$ | . | .. |
| \ldots | | | |
| $\{A, B, C\}$ | $A C B$ | . | .. |
| $\{B, C, D\}$ | $C B D$ | .. | .. |

$\{A, B, C, D\}=$ remove A, compare plans for $(\{B, C, D\}) A$ remove B, compare plans for $(\{A, C, D\}) B$ remove C, compare plans for ($\{A, B, D\}$) C remove D, compare plans for ($\{A, B, C\}$) D

DP Algorithm: Complexity (left-deep)

- Time complexity
- For each pass k, consider all subsets of relations of size $k \rightarrow$ N choose k subsets
- All subsets for N relations, less the empty set: $2^{\mathrm{N}}-1$

- For each subset of size k, k ways to remove 1 join ($k<=N$)

Time complexity $=\mathrm{O}\left(\mathrm{N}^{\mathrm{N}}\right)$

System R: Plans Considered (Contd.)

- Only consider left-deep plans
- In DP algorithm, also keep in plan cache cheapest plan for each interesting order of the tuples
- Avoid Cross-products if possible
- An i-1 way plan is not combined with an additional relation unless there is a join condition between them, unless all predicates in WHERE clause have been used up
- ORDER BY, GROUP BY, aggregates etc. handled as a final step, using either an interestingly ordered plan or an additional sorting operator

Small Example

SELECT S.sname

FROM Sailors S, Reserves R
WHERE S.sid = R.sid
AND S.rating > 5
AND R.bid $=100$

Indexes
Reserves:
Clustered B+ tree on bid
Sailors:
Unclust B+ tree on rating

Pass 1:
Reserves: Clustered B+ tree on bid matches bid $=100$, and is cheaper than file scan

Sailors: B+ tree matches rating>5, not very selective, and index is unclustered, so sequential file scan w/ select is likely cheaper. Also, Sailors.rating is not an interesting order.

Pass 2: We consider each Pass 1 plan as the outer:
Reserves as outer (using B+ Tree selection on bid):
Find lowest-cost join algorithm with Sailors as Inner
Sailors as outer (using Seq. File Scan w/selection on rating):
Find lowest-cost join algorithm with Reserves as Inner

Physical DB Design

- Query optimizer does what it can to use indexes, clustering, and operator implementations
- Database Administrator (DBA) is expected to set up physical design well
- E.g., consider which indexes to create

Good DBAs understand query optimizers very well!

- Many DBMSs support a feature called EXPLAIN

- Shows query plan the optimizer would choose
- Use indexes or sequential scan?
- Join order? Join algorithms?

[^0]: We'll also hang onto the cheapest
 plans for ordered tuples! (Later)

