CS 133: Databases

Fall 2019
Lec 15-10/31
Prof. Beth Trushkowsky

Administrivia

* New regular office hour!
— Thursdays 3-4pm, starting today

* In-class worksheets
— Extras hanging in basket hanging outside my office
— Answers posted inline with slides on course website

* Problem sets answers
— | will upload “model answer” on Sakai

Goals for Today

* Explore the search space explosion for alternate
query plans

* Understand the dynamic programming approach
to exploring the (large!) space of query plans

* Reason about the heuristics used by the System R
guery optimizer to prune the space

— Discuss some of the corners cut by query optimization
algorithms like the System R approach

Query Optimizer algorithm
* Goal: given a a query, the optimizer wants to

— Enumerate query plans to consider
— Compare plans and choose the “best” one

* Algorithm

— Step 1: consider a set of possible plans

— Step 2: estimate cost for each plan

— Step 3: choose the plan with lowest cost

Logical Transformations:
Equivalent Relational Algebra Expressions

* Can write the same query multiple ways!

— These alternate versions are akin to different
possible logical query plans

* Good rules of thumb:
— “Push” down selections
— Avoid cross-products

Relational Algebra Equivalences

Ornen(R) = 0,(... 0,(R)) (Cascade)
of (Oc2 (R))E 0, (Gcl (R)] (Commute)

Selections:

Projections: ™ (R)= T ("'(”an (R))) (Cascade)

(if a, includes a,; includes... a,)

A projection could commute with a selection, e.g.,

T, (Uc (R)) =0, (”a (R)) ... f condition ¢ acts

only on attributes in a

R.A. Equivalences: Joins

(R 1X]S) = (SIXIR)
RDI(SIT) = (R DXIS)DAT

(Commutative)
Joins:

(Associative)

If theta join, join condition must
involve correct relations

These mean we can switch join outer/inner relations
and can do joins in any order!

Selection between attributes of the two arguments of a cross-
product converts cross-product to a join:

O sy (RXS8) = (R 5, S)

R.A. Equivalences: Select & Project

* Selection Push: selection on attributes of R
commutes with R PX|S: o (RPXIS) = o (R)IX S

* Projection Push: A projection applied to join of R
and S can be pushed before the join by:

— retaining only attributes of R and S needed for the join,
— or are kept by the projection

'T[R.a,S.b (RNR,a=S.b S) = ('T[R.a (R)) Mk a=5.b (ﬂS.b (S))

Exercise 2-3

ﬂR.c (GR.a>2AR.a=S.c (R X S))

Convert cross-product to join with R.a=S.c
Commute the select condition R.a > 2 with join

Note: cannot push projection R.c before join

— But could cascade the projection: project R.a,c before join,
then project R.c after select

3. Joining Boats and Sailors first would yield a lot of
tuples, since this would become a cross-product!

Enumeration of Alternative Plans

* Two main cases:
- Single-relation plans (unary operators only)
— Multiple-relation plans

* For unary operators:

- For a scan, each available access path (sequential
scan / index) is considered; one with the least
estimated cost is chosen

- Consecutive Scan, Select, Project and Aggregate
operations can be typically pipelined

Enumerating Multi-Relation Plans

* Suppose we have N relations
— Let’s ignore the space of different join algorithms for a moment

— Recall: associative and commutative rules mean we can apply
joins in any order

* How many join orders? Example: N=3, {A,B,C}

— How many tree shapes?
— Given a tree shape, how many leaf orderings?

For both tree shapes,

/N (N amoesosse
ANCO O
O O O O

Exercise 4: Join Orders

* Leaf orderings given a shape? N!

* Tree shapes, for a fixed ordering of 4 relations
— 1 left-deep and linear
— 1 right-deep and linear
— 1 bushy
— 2 linear

Number of Join Orders

* Leaf order permutations: n! % M
e Tree shapes: Catalan numbers |2 2
o - 3 12
cln) = L 1(2'1) =- (2'1)‘ ' 4 120
n+1lvn. n+ 1)in! 5 1680
. 6 30,240
* Join orders(n) = n! * C(n-1) 7 665.280
8 17,297,280
9 518,918,400
10 17,643,225,600

Source: http://www.necessaryandsufficient.net/2009/06/query-optimisation-plan-space-and-catalan-numbers/

Dynamic Programming Approach

* Brute-force enumeration approach does not scale

* Observation: within the space of all possible plans,
many plans share a common subplan

AD><IB ((A ><UB)><IC)><ID |Best plantojoin A
and B can help us
((A ><1B)><1D)><IC |find the best plan to
joinA, B,C,and D

* Dynamic programming!

— Cache best results for plans already considered

System R: Plans to Consider

* Fundamental decision in System R:
— only left-deep join trees considered (1 tree shape)

* Left-deep trees allow us generate all fully pipelined plans ~—

— Note: Recall not all left-deep trees are fully pipelined Why do
(e.g., Sort-Merge join)

we care?

* Selections on a relation processed as part of access path, or on-the-fly with
JOINs

More System R heuristics later...

Enumeration: Dynamic Programming
(left-deep)

* Query plans differ by:
— order of the N relations,
— access method for each relation,
— and the join method for each join

* Plans are enumerated in N passes, considering
subsets of the N relations

* For each subset of relations, retain:
— Cheapest plan overall (possibly ungrdered)

We’'ll also hang onto the cheapest
plans for ordered tuples! (Later)

Enumeration: Dynamic Programming
(left-deep)

Pass 1: Find best “1-relation” plans for each relation

Pass 2: Find the best ways to join result of each
1-relation plan as outer to another relation.

B>

For Pass i: /\ /\ Join with ith relation
/l><\ >
® o

N

Ways to join (i -1) relations

Pass N: Find best ways to join result of a
(N-1)-relation plan as outer to the N’th relation.

Dynamic Programming Pseudocode

R € set of relations to join (e.g., ABCD)

forain{l1...|R|}:
for Sin {all length 9 subsets of R}:
optjoin(S) = (S—a) joina —___|

Best way to join all relations in S?

For each ain S, try joining it with
the best plan for the other S-a
relations already joined

// where a is the single relation that minimizes:
// cost(optjoin(S - a)) +

min. cost to join (S-a)toa +

min. access cost for a

optjoin(S — a) is cached from previous iteration

DP: Example Plan Cache

(| eft_d ee p) Subplan Bestchoice Cost Cardinality
A index 150 1000
B Seq scan 600 5000

optjoin(ABCD)

0=1
A = best way to access A
(e.g. sequential scan or index)
B = best way to access B
C = best way to access C
D = best way to access D

DP: Example Plan Cache

(| eft_d ee p) Subplan Bestchoice Cost Cardinality
A index 150 1000
B Seq scan 600 5000

optjoin(ABCD)

0=2
{A,B} = AB or BA
(use pre-computed best way to access A and B)

{A,C}=ACorCA
{A,D}=AD or DA
{B,C}=BCorCB

{B,D}=BD or DB
{C,D}=CD or DC

DP: Example Plan Cache
(| eft_d ee p) Subplan Bestchoice Cost Cardinality
A index 150 1000
B Seq scan 600 5000
{A,B} BA
{B,C} BC
optjoin(ABCD)

0=3
{A,B,C} = remove A, compare plans for|({B,C})|A
remove B, compare plans for ({A,C})
remove C, compare plans for ({A,B}) C
{B,C,D}=...
{A,C,D}=...
{A,B,D}=...

DP: Example Plan Cache

(| eft d ee p) Subplan Best choice Cost Cardinality
A index 150 1000
B Seq scan 600 5000
{A,B} BA

{B,C} BC

optjoin(ABCD)

{A.B.C} ACB

0=4 {B,C,D} CBD

{A,B,C,D} = remove A, compare plans for ({B,C,D}] A
remove B, compare plans for ({A,C,D}) B

remove C, compare plans for ({A,B,D}) C
remove D, compare plans for ({A,B,C}) D

DP Algorithm: Complexity (left-deep)

* Time complexity
— For each pass k, consider all subsets of relations of size k 2
N choose k subsets

— All subsets for N relations, less the empty set: 2N-1

Power Set: the set
of all subsets

— For each subset of size k, k ways to remove 1 join (k <= N)

Time complexity = O(N2N)

Interesting Orders

* The output relation from a given operator could be

ordered

* Anintermediate result has an “interesting order” if it
is returned in order of any of:

— ORDER BY attributes Why would we
— GROUP BY attributes care?

— Join attributes of other joins

System R: Plans Considered (Contd.)

Only consider left-deep plans

In DP algorithm, also keep in plan cache cheapest plan for
each interesting order of the tuples

Avoid Cross-products if possible

— An i-1 way plan is not combined with an additional relation unless
there is a join condition between them, unless all predicates in
WHERE clause have been used up

ORDER BY, GROUP BY, aggregates etc. handled as a final
step, using either an interestingly ordered plan or an
additional sorting operator

Small Example

SELECT S.sname Indexes
FROM Sailors S, Reserves R Reserves:
WHERE S.sid = R.sid Clustered B+ tree on bid

AND S.rating > 5 Sailors:
AND R.bid = 100 Unclust B+ tree on rating

Pass 1:

Reserves: Clustered B+ tree on bid matches bid=100, and is
cheaper than file scan

Sailors: B+ tree matches rating>5, not very selective, and index is
unclustered, so sequential file scan w/ select is likely cheaper.
Also, Sailors.rating is not an interesting order.

Pass 2: We consider each Pass 1 plan as the outer:
Reserves as outer (using B+ Tree selection on bid):
Find lowest-cost join algorithm with Sailors as Inner
Sailors as outer (using Seq. File Scan w/selection on rating):

Find lowest-cost join algorithm with Reserves as Inner

Physical DB Design

Query optimizer does what it can to use indexes, clustering,
and operator implementations

Database Administrator (DBA) is expected to set up
physical design well

— E.g., consider which indexes to create

Good DBAs understand query optimizers very well!

Many DBMSs support a feature called EXPLAIN

™~ Note: Exact syntax

varies by DBMS

Shows query plan the optimizer would choose
— Use indexes or sequential scan?
— Join order? Join algorithms?

