
CS	133:	Databases	

Fall	2019	
Lec	16	–	11/05	
Transactions	

	
Prof.	Beth	Trushkowsky	

Administrivia	

•  Labs:		
– Lab	3	due	tomorrow	midnight	

– Lab	4	starts	Thursday	after	class	

•  Reminder:	new	additional	office	hour	
Thursdays	
– Check	for	me	in	Beckman	B102	if	not	in	B105	

Goals	for	Today	

•  Understand	the	challenges	that	concurrent	access	
to	a	DBMS	pose	for	data	consistency	

•  Reason	about	which	actions	on	data	can	conflict	
and	the	possible	implications	

	

Data	records	

Disk	management	

Buffer	Mgmt	

Access	methods	

Application	

Query	optimizer	

Query	executor	

Concerned	with	
concurrency	
control	and	
recovery	

Query	 Query	
	results	

Querying	a	DBMS		
(Example	Architectures)	

DBMS	

Client-Server	Arch	

DBMS	

Three-Tier	Arch	

Application/		
Web	Server(s)	

SQL	

SQL	 SQL	

HTTP	
request	

HTTP	
request	

Concurrent	execution	

•  Why	not	just	run	queries	one	at	a	time?	

•  Concurrent	execution	is	essential	for	good	DBMS	
performance	

Reading	a	page	
from	disk	

Evaluating	WHERE	
condition(s)	on	
page	in	buffer	pool	

Note:	A	user’s	“program”	may	carry	out	many	operations	on	the	
data	retrieved	from	the	database,	but	the	DBMS	is	only	concerned	
about	what	data	is	read	and	written	from/to	the	database	

Important:	keep	the	
CPU	busy	while	

slow	disk	accesses	
are	occurring	

These	two	can	
happen	at	the	
same	time!	

Transactions	

•  Transaction	(xact):	an	atomic	sequence	of	read/
write	actions	on	the	database	

•  Moves	the	database	from	one	consistent	state	to	
another	

	
	
	
•  Final	action	of	xact	is	commit	or	abort	

consistent	state	1	 consistent	state	2	
transaction	

Example:	Transferring	Money	

•  In	this	example,	consistency	is	based	on	knowledge	
of	banking	semantics	

•  In	general,	up	to	the	writer	of	the	transaction	to	
ensure	a	transaction	preserves	consistency	
–  DBMS	provides	(limited)	automatic	enforcement,	via	
specified	integrity	constraints	
•  e.g.,	account	balances	must	be	>=	0	

checking:	$200	
savings:	$1000	

transaction	 checking:	$300	
savings:	$900	

Example:	Transaction	in	SQL	

UPDATE accounts  
SET balance = balance - 100.00  
WHERE account_num = SavingsAccountNum  

AND user_id= 18;

UPDATE accounts  
SET balance = balance + 100.00  
WHERE account_num = CheckingAccountNum  

AND user_id= 18;

BEGIN; --BEGIN TRANSACTION	

COMMIT; --COMMIT WORK	

Concurrency	in	a	DBMS	

	

•  Concurrency	is	achieved	by	the	DBMS,	which	
interleaves	actions	(reads/writes	of	DB	“objects”)	
of	multiple	transactions	
	

•  Issues:			
–  Effect	of	interleaving	transactions	
–  System	crashes	

I	should	be	able	to	submit	transactions,	and	can	
think	of	each	transaction	as	executing	by	itself	

•  Consider	two	transactions	(xacts):	

	
•  Assume	accounts	A	and	B	initially	each	contain	$1000	
–  Q.	What	is	a	legal	outcome	for	A	and	B	after	running	T1	and	T2?		

	

Example:	Concurrency	Outcomes	

T1: 		
	BEGIN	
	A=A+100	
	B=B-100	
	END	

T2: 		
	BEGIN	
	A=1.06*A	
	B=1.06*B		
	END	

We’ll	often	use	letters	
like	A	and	B	to	refer	to	
database	“objects”	

T1	transfers	$100	from	account	B	to	A	
T2	credits	both	accounts	with	6%	interest	

If	T1	and	T2	submitted	at	the	same	time,	there	is		
no	guarantee	that	T1	will	execute	before	T2	or	vice-versa.		
	
Consistency:	the	net	effect	must	be	equivalent	to	these	two	
transactions	running	serially	in	some	order.	

A+B	should	add	up	to	$2000	*1.06	=	$2120	

•  Consider	a	possible	interleaved	schedule:	
T1: 		A=A+100,			 	 								B=B-100				
T2: 				 													A=1.06*A,		 	 		B=1.06*B	

•  But	what	about:	

T1: 		A=A+100,			 	 						 	 			 				B=B-100				
T2: 				 													A=1.06*A,	B=1.06*B	

T1: 	R(A),	W(A),				 						 																					R(B),	W(B)	
T2: 				 	 				R(A),	W(A),	R(B),	W(B)	

This	is	OK		
(result	same	as	T1;T2)	

	Result:	A=1166,	B=960;	A+B	=	2126	à	Bank	loses	$6!	

•  The	DBMS�s	view	of	the	second	schedule:	
			

Example:	Concurrency	Outcomes	

What	went	
wrong??	

•  A	transaction	ends	in	one	of	two	ways:	
–  It	commits	after	completing	all	its	actions	
– or	it	could	abort	(self-inflicted	or	by	the	DBMS)	
	after	executing	some	actions	

•  User	expectation:	atomic	transactions		
– a	transaction	must	either	execute	all	its	actions,	or	
not	execute	any	actions	at	all	

ACID:	Transaction	Atomicity	

Wait,	what?!	
What	if	the	xact	already	started	
making	changes	to	the	database?		 Later:	logging	and	recovery	

•  Consistency:	the	data	in	the	DBMS	is	accurate	in	
modeling	the	real	world,	follows	appropriate	integrity	
constraints	

•  DBMS	Guarantee:		
if	DBMS	is	consistent	before	transaction,		
it	will	still	be	consistent	after	the	transaction	completes	

•  DBMS	checks	integrity	constraints	and	if	they	fail,	the	
transaction	rolls	back	(i.e.,	is	aborted)	

ACID:	Transaction	Consistency	

The	user	must	ensure	a	transaction	
maintains	consistency!	

•  Transactions	must	be	protected	from	concurrent	access	

•  Isolation:	each	xact	executes	as	if	it	was	running	by	itself	
–  Concurrency	is	achieved	by	DBMS,	which	interleaves	actions	
(reads	and	writes	of	DB	objects)	of	multiple	transactions	

•  Many	techniques	for	isolation,	two	basic	categories:	
–  Pessimistic	–	don’t	let	problems		

	 	 									arise	in	the	first	place	

–  Optimistic	–	assume	conflicts	are	rare,		
	 	 								deal	with	them	after	they	happen	

	

ACID:	Transaction	Isolation	

Image:	http://www.clker.com/cliparts/b/W/I/b/F/8/half-full-half-empty-md.png	

ACID:	Transaction	Durability		
(Recovering	From	a	Crash)	

•  	Failure	scenarios	
–  System	crash	

•  Data/updates	in	memory	are	lost,	hard	disk	is	okay	
•  This	is	the	case	we	will	look	at	when	we	cover	recovery	

– Hard	Disk	crash	
•  L	need	backups,	RAID	and	data	replication	can	help	

•  	Durability:	all	updates	from	committed	
transactions	and	only	those	updates	will	be	
reflected	in	the	database	

A.C.I.D.	Properties	of	Transactions	
Atomicity:			
All	actions	in	the	transaction	happen,	or	none	happen.	
	

Consistency:			
If	each	transaction	is	consistent,	and	the	DB	starts	
consistent,	it	ends	up	consistent.	
	

Isolation:			
Execution	of	one	transaction	is	isolated	from	that	of	all	
others.	
	

Durability:			
If	a	transaction	commits,	its	effects	persist.	

Concurrency	Control	

•  Now:	focus	on	the	“I”	(isolation)	part	

•  Later:	when	we	talk	about	recovery,	we’ll	get	
to	the	“A”	(atomicity)	and	“D”	(durability)	

What	about	“C”	??	
	
If	the	system	can	achieve	guarantees	
for	A,	I,	and	D,	then	we	get	C	for	free!	

•  Serial	schedule:		A	schedule	that	does	not	interleave	the	actions	
of	different	transactions.	
–  i.e.,	transactions	run	serially	(one	at	a	time)	

	
•  Equivalent	schedules:		Given	two	schedules...	for	any	database	

state,	the	effect	(on	the	set	of	objects	in	the	database)	and	
output	of	executing	the	first	schedule	is	identical	to	the	effect	of	
executing	the	second	schedule.	

	
	

Serial	and	Equivalent	Schedules	

T1: 	R(A),		 	 							W(A)	
T2: 	 			R(A),	W(B)	

T1: 	R(A),											W(A)	
T2: 	 			R(A),												W(B)	

T1: 	R(A),	W(A)	
T2: 	 															R(A),	W(B)	

Swap	T1’s	W(A)	
and	T2’s	W(B)?	

Swap	T1’s	W(A)	
and	T2’s	R(A)?	

S1:	

S2:	

S3:	

•  Serializable	schedule:		A	schedule	that	is	equivalent	to	
some	serial	execution	of	the	transactions.	
–  Intuition:	with	a	serializable	schedule	you	only	see	things	
that	could	happen	in	situations	where	you	were	running	
transactions	one-at-a-time.	

	

Serializable	Schedules	

T1: 	R(A),		 	 							W(A)	
T2: 	 			R(A),	W(B)	

T1: 										R(A),												W(A)	
T2:		R(A),											W(B)	

T1: 																						R(A),	W(A)	
T2:		R(A),	W(B)	

Swap	T1’s	R(A)	
and	T2’s	R(A)?	

Swap	T1’s	R(A)	
and	T2’s	W(B)?	

S1:	

S4:	

S5:	

Try	Exercise	2	

(a)	yes,	both	T2,	T1	and	T1,	T2		

(b)	yes,	only	T2,	T1	

(c)	no	

	

All	About	Conflict	
•  Conflicting	actions	

–  Two	actions	from	different	transactions	on	the	same	data	
objects	conflict	if	at	least	one	of	the	actions	is	a	write	

	
	
	
	
•  Two	schedules	are	conflict	equivalent	iff:	

–  They	involve	the	same	actions	of	the	same	transactions		
–  Every	pair	of	conflicting	actions	is	ordered	the	same	way	

•  Schedule	S	is	conflict	serializable	if	S	is	conflict	equivalent	
to	some	serial	schedule	

Order	of	conflicting	actions	matters!	
If	T2’s	R(A)	precedes	T1’s	W(A),		

then	conceptually	T2	should	precede	T1	

Note:	a	pair	of	conflicting	actions	does	not	always	mean	a	“problem”	(or	that	we	care)	

T1: 	R(A),		 	 						 			 	 	 		R(A),	W(A),	Commit	
T2: 	 	 	R(A),	W(A),	Commit	

Unrepeatable	Reads	(RW	conflict):	

Overwriting	Uncommitted	Data:	(“lost	update”,	WW	conflict)	
T1: 	W(A),		 	 					 	 									W(B),	Commit	
T2: 	 					W(A),	W(B),	Commit	

T1:	 	R(A),	W(A),			 																 	 								R(B),	W(B),	Abort	
T2: 	 															R(A),	W(A),	Commit	

Reading	Uncommitted	Data	(“dirty	reads”,	WR	conflict):	
		

		

Anomalies	from	Interleaved	Execution	

Precedence	Graph	

•  Node	=	transaction	
•  Directed	edges:		
– Edge	from	Ti	to	Tj	if	an	action	in	Ti		
precedes	and	conflicts	with	an	action	in	Tj	

•  Theorem:	Schedule	is	conflict	serializable	if	
and	only	if	its	precedence	graph	is	acyclic	

Also	called	a	
dependency	graph	 •  A	schedule	that	is	not	conflict	serializable		

(earlier	banking	example):	

	
•  The	cycle	in	the	graph	reveals	the	problem:	
The	output	of	T1	depends	on	T2,	and	vice-versa	

T1	 T2	

A	

B	

Precedence	graph	

T1: 		R(A),	W(A),			 	 						 								R(B),	W(B)	
T2: 				 	 		
T1: 		R(A),	W(A),			 	 						 								R(B),	W(B)	
T2: 				 	 	R(A),	W(A),	R(B),	W(B)	
T1: 		R(A),	W(A),			 	 						 								R(B),	W(B)	
T2: 				 	 	R(A),	W(A),	R(B),	W(B)	
T1: 		R(A),	W(A),			 	 						 					 	 			R(B),	W(B)	
T2: 				 	 	R(A),	W(A),	R(B),	W(B)	
T1: 		R(A),	W(A),			 	 						 						 	 			R(B),	W(B)	
T2: 				 	 	R(A),	W(A),	R(B),	W(B)	

Example:	Bank	Concurrency	Schedule	

•  A	schedule	that	IS	conflict	serializable:	

	

T1	 T2	

A	

T1: 		R(A),	W(A),			 	 						 								R(B),	W(B)	
T2: 				 	 									 R(B),	R(A),		

R(B),	W(B),		

B	

W(A),	 	W(B)	

Example:	Bank	Concurrency	Schedule	

No	cycle	here!	

Precedence	graph	

Try	Exercise	3	

(a)		
T1	R(A),	T2	W(A)	
T2	R(A),	T1	W(A)	
T1	W(A)	T2	W(A)	
	not	conflict	serializable	

(b)	
T1	R(A)	T3	W(A)	
T2	R(B),	T1	W(B)	
T2	W(B),	T1	R(B)	
T2	W(B),	T1	W(B)	
	is	conflict	serializable	

	

•  Conflict	Serializability	does	not	allow	all	schedules	that	you	
would	consider	correct	
–  This	is	because	it	is	strictly	syntactic;		it	doesn’t	consider	the	
meanings	of	the	operations	or	the	data.	

	
	
	
	
	
	

•  In	practice,	conflict	serializability	is	what	gets	used,	because	
it	can	be	done	efficiently	
–  Note:	in	order	to	allow	more	concurrency,	some	special	cases	do	
get	implemented,	such	as	for	travel	reservations,	etc.	

	
	

Notes	on	Conflict	Serializability	

T1: 		R(A),	A=A-50,W(A)			 	 	 											R(B),	B=B+50,W(B)	 							
T2: 				 	 	 	 			R(B),	B=B-10,W(B)	 	 	 	 	 		R(A),	A=A+10,W(A)		

Same	result	as	the	serial	schedule	T1,	T2	(addition	commutative)	

