CS 133: Databases

Fall 2019
Lec 17 -11/07
Transactions
Prof. Beth Trushkowsky

Warm-up Exercise

(See exercise sheet. You can start before class.)
S1 and S2 are not conflict-equivalent.

S1is conflict equivalent to the serial schedule
T1,;T2 and is thus conflict serializable.

Goals for Today

* Discuss how to achieve conflict serializable
schedules using locks

* Understand how to manage locks and
deadlock when implementing 2PL or Strict 2PL

. B I . I , | I
o | or deleted

Locks

* We use locks to control access to objects

* Shared (S) locks — multiple transactions can hold
these on a particular object at the same time.

* Exclusive (X) locks —only one of these and no other
locks, can be held on a particular object at a time.

S [X
Lock
Compatibility S |4/ |~
Matrix
X |— |—=

Basic Locking: Attempt
A= 1000, B=2000, Output from T,’s print =?

Two-Phase Locking (2PL)

T1 Lock_X(A) <granted> Lock_S(A) T2

Read(A) 1) Each transaction must obtain:

A=A-50 — a S (shared) or an X (exclusive) lock on object before reading

Write(A) - an X (exclusive) lock on object before writing

Unlock(A) Y <granted> Can upgrade a Shared lock to an
Read(A) eXclusive lock! (when okay?)
Unlock(A) 2) All lock requests must precede all unlock requests!
Lock_S(B) <granted> -> a xact cannot request additional locks once it releases any

Lock _X(B) : e Lock Point!
Read(B) Each transaction 4 T Growing A A

W <granted> Unlock(B) has a “growing 3, | rowing ., Shrinking

PRINT(A+B) phase” followed by 2»2 , Phase : Phase

Read(B) a “shrinking phase” 3 1

Write(B) 12345678 91011121314151617181920

Unlock(B) Time !

Basic Locking: Take 2 Basic Locking: Take 2 (with abort)
A= 1000, B=2000, Output =? A= 1000, B=2000, Output =7?
T1 Lock_X(A) <granted> Lock_S(A) T2 T1 Lock_X(A) <granted> Lock_S(A) T2

Read(A) Read(A)

A=A-50 A=A-50

Write(A) Write(A)

Lock_X(B) <granted> Lock_X(B) <granted>

Unlock(A) <granted> Unlock(A) <granted>
Read(A) Read(A)
Lock_S(B) Lock_S(B)

Read(B) Read(B)

B =B +50 B =B +50

Write(B) Write(B)

Unlock(B) A <granted> Unlock(B) A <granted> (T, has r?ad
Unlock(A) ﬂ ABORT!! Unlock(A) c:::::;mt::sst
Read(B) Read(B) also abort.
Unlock(B) Unlock(B)
PRINT(A+B) PRINT(A+B)

Avoiding Cascading Aborts: Strict 2PL

* Problem with 2PL: cascading aborts

* Another example:
rollback of T1 requires rollback of T2

T1: R(A), W(A), R(B), W(B), Abort
T2: R(A), W(A)

e Solution: Strict Two-phase Locking (Strict 2PL):
— Same as 2PL, except for when locks can be released:

— All'locks held by a transaction are released only when
the transaction completes

N\
\\

Consequence: a writer will block all other
readers until the writer commits or aborts

Exercise 2
a) Yes 2PL, No Strict 2PL

b) Neither (schedule not conflict-serializable)

Checking for this
is NP-complete!

View Serializability

* Schedules S1 and S2 are view equivalent if:

— If T1 reads initial value of A in S1,
then T1 also reads initial value of A in S2

- If T1 reads value of A written by T2 in S1,
then T1 also reads value of A written by T2 in S2

— If T1 writes final value of A in S1,
then T1 also writes final value of A in S2

T1: R(A),W(A)

TLRA) W(A)
T: W(A) |:> T2 W(A)
T3: W(A) T3: W(A)

Lock Management

* Lock/unlock requests are handled by the Lock Manager
— Have table with entry for each currently held lock

* What object is being locked?
— Possibilities: table(s), row(s), page(s)...
— Too coarse-grained limits concurrency!

* Lock table entry
— Object id of object being locked (e.g., table, row, page)
— (Pointer to) list of transactions currently holding the lock
— Type of lock held (shared or exclusive)
— (Pointer to) queue of lock requests

Lock Management (cntd)

* When a lock request arrives
— Check if any xact currently holds a conflicting lock on the

Try Exercise 3

object A S T1
— If not, create an entry and grant the lock D S T1, T3
— Else, put the requesting xact on the wait queue B X T2 1 T4
C S T3 T2
Locking and unlocking have to be atomic operations!
Basic Locking: Example (Take 3)
Lock_X(A) <granted> DeadIOCkS

Lock_S(B) <granted>

Read(B)
Lock_S(A)
Read(A)
A: = A-50
Write(A)
Lock_X(B)

* Deadlock: Cycle of transactions waiting for locks to be
released by each other.

* Can see cycle in a waits-for graph:
— Nodes are transactions

— There is an edge from Ti to Tj if Ti is waiting for Tj to
release a lock

* Two main ways of dealing with deadlocks in DBMS:
— Deadlock prevention
- Deadlock detection

Deadlock Prevention
* Assign priorities based on timestamps

* Suppose Ti wants a lock that Tj holds
Two possible policies:

— Wait-Die: If Ti is older, Ti waits for Tj; otherwise Ti
aborts

- Wound-wait: If Ti is older, Tj aborts (gets “wounded”);
otherwise Ti waits

I In both, the older xact never abortsl

* If a transaction re-starts, make sure it gets its
original timestamp
Why?

Deadlock Detection

* Alternative is to allow deadlocks to happen but to
check for them and fix them if found.

* Periodically check for cycles in the waits-for graph

* If cycle detected — find a transaction whose
removal will break the cycle and kill it

Deadlock Detection (Cntd)

Example:

T1: S(A), S(D), S(B)

T2: X(B) X(C)

T3: S(D), S(C), X(A)
T4: X(B)

)

Deadlock Exercise: 4

Start with sequence 1
Sequence 1:
T2 blocks on T1 on object A
T1 blocks on T3 on object B
When T3 finishes, T1 resumes and gets B
When T1 finishes, T2 resumes and gets A (and
then B)

Sequence 2:

T2 blocks on T1 on object A

T3 blocks on T2 on object B

T1 blocks on T2 on object B
DEADLOCK! Waits-for-graph has cycle
between T1 and T2

Lab 4: Lock-based Concurrency Control

* Goal of Lab 4: add page-level locking to
SimpleDB
— Strict 2PL
— Shared and Exclusive locks

\ Permissions.READ_ONLY

vs READ_WRITE

— Dealing with deadlock

— Dealing with BufferPool eviction
(more in Recovery lecture)

Concurrency: How does it Happen?

* Process: executing instance of an program

* Thread: a path of execution (“control flow”)
within a process
— Can be many threads within a process!

— Threads have shared access to data structures
within the process

Such as, say, a data structure
managing Lock requests

Java: Thread Synchronization

* Thread synchronization in Java
— Uses keyword synchronized

— Synchronize specific block of code:
synchronized(this) { // some code }

— Synchronize entire method:
private synchronized void flushPage(Pageld pid) {
// some code

}

‘ Skeleton code for Lock Manager and Buffer Pool already has these in pIace‘

Lab 4: Skeleton Code

* InBufferPool. java
— Can create instance of Lock Manager class
— Your choice to use skeleton LockManager. java

— Example: BufferPool.getPage() will require
that the transaction acquires a lock first!

* Lock table data structure(s), should be able to:
— Given transactionld, which pages does it have locked?
— Given a page Id, which xacts hold a lock on the page?
— Given a page, which Permissions is it locked with?

