
CS	133:	Databases	

Fall	2019	
Lec	17	–	11/07	

Transactions	

Prof.	Beth	Trushkowsky	

Warm-up	Exercise	

(See	exercise	sheet.	You	can	start	before	class.)	

	

S1	and	S2	are	not	conflict-equivalent.	
	

S1	is	conflict	equivalent	to	the	serial	schedule	

T1;T2	and	is	thus	conflict	serializable.	

Goals	for	Today	

•  Discuss	how	to	achieve	conflict	serializable	
schedules	using	locks	

•  Understand	how	to	manage	locks	and	

deadlock	when	implementing	2PL	or	Strict	2PL	

•  Reason	about	issues	that	can	arise	when	data	
is	inserted	or	deleted	

Talk		about	midterm	next	Tuesday	

•  We	use	locks	to	control	access	to	objects	

•  Shared	(S)	locks	–	multiple	transactions	can	hold	
these	on	a	particular	object	at	the	same	time.	

•  Exclusive	(X)	locks	–	only	one	of	these	and	no	other	
locks,		can	be	held	on	a	particular	object	at	a	time.	

S X

S √ –

X – –

Lock	
Compatibility	

Matrix	

Locks	

A	=	A	–	50	
B	=	B	+	50	

				

print(A+B)	
				

Lock_X(A)			<granted>	 Lock_S(A)	

Read(A)	

A	=	A-50	

Write(A)	

Unlock(A)	 														<granted>	

Read(A)	

Unlock(A)	

Lock_S(B)	<granted>	

Lock_X(B)	

Read(B)	

											<granted>	 Unlock(B)	

PRINT(A+B)	

Read(B)	

B	=	B	+50	

Write(B)	

Unlock(B)	

A=	1000,	B=2000,	Output	from	T2’s	print	=?	

Is	it	a	2PL	schedule?	 No,	and	it	is	not	serializable.	

Basic	Locking:	Attempt	

T1	 T2	
1)	Each	transaction	must	obtain:		

–  a	S	(shared)	or	an	X	(exclusive)	lock	on	object	before	reading		
–  an	X	(exclusive)	lock	on	object	before	writing	

2)	All	lock	requests	must	precede	all	unlock	requests!		
	à	a	xact	cannot	request	additional	locks	once	it	releases	any	
		

0	

1	

2	

3	

4	

1	 2	 3	 4	 5	 6	 7	 8	 9	10	11	12	13	14	15	16	17	18	19	20	

#	
Lo
ck
s	H

el
d	

Time	

Growing	
Phase	

Shrinking	
Phase	

Lock	Point!	

Each	transaction	
has	a	“growing	
phase”	followed	by	

a	“shrinking	phase”	

Two-Phase	Locking	(2PL)	

Can	upgrade	a	Shared	lock	to	an	
eXclusive	lock!	(when	okay?)	

Lock_X(A)		<granted>	 Lock_S(A)	

Read(A)	

A	=	A-50	

Write(A)	

Lock_X(B)		<granted>	

Unlock(A)	 															<granted>	

Read(A)	

Lock_S(B)	

Read(B)	

B	=	B	+50	

Write(B)	

Unlock(B)	 													<granted>	

Unlock(A)	

Read(B)	

Unlock(B)	

PRINT(A+B)	
Is	it	a	2PL	schedule?	

Yes:	so	it	is	serializable.	

A=	1000,	B=2000,	Output	=?	
Basic	Locking:	Take	2	

T1	 T2	
Lock_X(A)		<granted>	 Lock_S(A)	

Read(A)	

A	=	A-50	

Write(A)	

Lock_X(B)		<granted>	

Unlock(A)	 															<granted>	

Read(A)	

Lock_S(B)	

Read(B)	

B	=	B	+50	

Write(B)	

Unlock(B)	 													<granted>	

Unlock(A)	

Read(B)	

Unlock(B)	

PRINT(A+B)	

A=	1000,	B=2000,	Output	=?	
Basic	Locking:	Take	2	(with	abort)	

T1	 T2	

ABORT!!	

T2	has	read	

uncommitted	

changes!	It	must	
also	abort.	

•  Problem	with	2PL:	cascading	aborts	
	

•  Another	example:		
rollback	of	T1	requires	rollback	of	T2	

	

•  Solution:	Strict	Two-phase	Locking	(Strict	2PL):	
–  Same	as	2PL,	except	for	when	locks	can	be	released:	

–  All	locks	held	by	a	transaction	are	released	only	when	
the	transaction	completes	

T1:	 	R(A),	W(A),																										R(B),	W(B),	Abort	

T2: 	 	 									R(A),	W(A)	

	Avoiding	Cascading	Aborts:	Strict	2PL	

Consequence:	a	writer	will	block	all	other	
readers	until	the	writer	commits	or	aborts	

Exercise	2	

a)  Yes	2PL,	No	Strict	2PL	

b)  Neither	(schedule	not	conflict-serializable)	

View	Serializability	

•  Schedules	S1	and	S2	are	view	equivalent	if:	
–  If	T1	reads	initial	value	of	A	in	S1,		
then	T1	also	reads	initial	value	of	A	in	S2	

–  If	T1	reads	value	of	A	written	by	T2	in	S1,		
then	T1	also	reads	value	of	A	written	by	T2	in	S2	

–  If	T1	writes	final	value	of	A	in	S1,		
then	T1	also	writes	final	value	of	A	in	S2	

T1:	R(A) 								W(A)	
T2: 							W(A)	

T3: 	 																					W(A)	

T1:	R(A),W(A)	
T2: 																			W(A)	

T3: 	 																						W(A)	

Checking	for	this	
is	NP-complete!	

•  Lock/unlock	requests	are	handled	by	the	Lock	Manager	

–  Have	table	with	entry	for	each	currently	held	lock	

•  What	object	is	being	locked?	

–  Possibilities:	table(s),	row(s),	page(s)…	
–  Too	coarse-grained	limits	concurrency!	

•  Lock	table	entry	
–  Object	id	of	object	being	locked	(e.g.,	table,	row,	page)	

–  (Pointer	to)	list	of	transactions	currently	holding	the	lock	

–  Type	of	lock	held	(shared	or	exclusive)	

–  (Pointer	to)	queue	of	lock	requests	

Lock	Management	

Lock	Management	(cntd)	

•  When	a	lock	request	arrives	

–  Check	if	any	xact	currently	holds	a	conflicting	lock	on	the	
object	

–  If	not,	create	an	entry	and	grant	the	lock	
–  Else,	put	the	requesting	xact	on	the	wait	queue	

	
Locking	and	unlocking	have	to	be	atomic	operations!	
	

Try	Exercise	3	

ObjectID	 LockType	 Xacts	 XactsWaiting	

A	 S	 T1	

D	 S	 T1,	T3	

B	 X	 T2	 T1,	T4	

C	 S	 T3	 T2	

Lock_X(A) <granted>

Lock_S(B) <granted>

Read(B)

Lock_S(A)

Read(A)

A: = A-50

Write(A)

Lock_X(B)

Locking	Example	(From	last	lecture)	Basic	Locking:	Example	(Take	3)	
Deadlocks	

•  Deadlock:	Cycle	of	transactions	waiting	for	locks	to	be	
released	by	each	other.	

•  Can	see	cycle	in	a	waits-for	graph:	
–  Nodes	are	transactions	

–  There	is	an	edge	from	Ti	to	Tj	if	Ti	is	waiting	for	Tj	to	
release	a	lock	

•  Two	main	ways	of	dealing	with	deadlocks	in	DBMS:	
–  Deadlock	prevention	
–  Deadlock	detection	

Deadlock	Prevention	

•  Assign	priorities	based	on	timestamps	

•  Suppose	Ti	wants	a	lock	that	Tj	holds	
Two	possible	policies:	
–  Wait-Die:	If	Ti	is	older,	Ti	waits	for	Tj;	otherwise	Ti	
aborts	

–  Wound-wait:	If	Ti	is	older,	Tj	aborts	(gets	“wounded”);	
otherwise	Ti	waits	

•  If	a	transaction	re-starts,	make	sure	it	gets	its	
original	timestamp	

Why?	

In	both,	the	older	xact	never	aborts	

Deadlock	Detection	

•  Alternative	is	to	allow	deadlocks	to	happen	but	to	
check	for	them	and	fix	them	if	found.	

	

	

•  Periodically	check	for	cycles	in	the	waits-for	graph	

•  If	cycle	detected	–	find	a	transaction	whose	
removal	will	break	the	cycle	and	kill	it	

Deadlock	Detection	(Cntd)	

Example:	

T1: S(A), S(D), S(B)
T2: X(B) X(C)
T3: S(D), S(C), X(A)
T4: X(B)

T1	 T2	

T4	 T3	

Deadlock	Exercise:	4	

Sequence	1:	
T2	blocks	on	T1	on	object	A	

T1	blocks	on	T3	on	object	B	

When	T3	finishes,	T1	resumes	and	gets	B	

When	T1	finishes,	T2	resumes	and	gets	A	(and	

then	B)	

	
Sequence	2:	

T2	blocks	on	T1	on	object	A	

T3	blocks	on	T2	on	object	B	

T1	blocks	on	T2	on	object	B	

DEADLOCK!	Waits-for-graph	has	cycle	
between	T1	and	T2	

Start	with	sequence	1	

Lab	4:	Lock-based	Concurrency	Control	

•  Goal	of	Lab	4:	add	page-level	locking	to	
SimpleDB	

– Strict	2PL	
– Shared	and	Exclusive	locks	

– Dealing	with	deadlock	
– Dealing	with	BufferPool	eviction		
(more	in	Recovery	lecture)	

Permissions.READ_ONLY	
vs	READ_WRITE	

Concurrency:	How	does	it	Happen?	

•  Process:	executing	instance	of	an	program	

•  Thread:	a	path	of	execution	(“control	flow”)	
within	a	process	

– Can	be	many	threads	within	a	process!	

– Threads	have	shared	access	to	data	structures	
within	the	process	

Such	as,	say,	a	data	structure	
managing	Lock	requests	

Java:	Thread	Synchronization	

•  Thread	synchronization	in	Java	
– Uses	keyword	synchronized	

– Synchronize	specific	block	of	code:	
synchronized(this)	{		//	some	code		}	

– Synchronize	entire	method:	
private	synchronized	void	flushPage(PageId	pid)	{	
	 	//	some	code	

			}	

Skeleton	code	for	Lock	Manager	and	Buffer	Pool	already	has	these	in	place	

Lab	4:	Skeleton	Code	

•  In	BufferPool.java
–  Can	create	instance	of	Lock	Manager	class	
–  Your	choice	to	use	skeleton	LockManager.java
–  Example:	BufferPool.getPage() will	require	
that	the	transaction	acquires	a	lock	first!	

•  Lock	table	data	structure(s),	should	be	able	to:	
– Given	transactionId,	which	pages	does	it	have	locked?	
– Given	a	page	Id,	which	xacts	hold	a	lock	on	the	page?	
– Given	a	page,	which	Permissions	is	it	locked	with?	

