
CS	133:	Databases	

Fall	2019	
Lec	18	–	11/12	
Transactions	

Prof.	Beth	Trushkowsky	

Warm-up	Exercise	

(See	exercise	sheet.	You	can	start	before	class.)	

	

	
Sequence	2:	
T2	blocks	on	T1	on	object	A	
T3	blocks	on	T2	on	object	B	
T1	blocks	on	T2	on	object	B	
DEADLOCK!	Waits-for-graph	has	cycle	between	T1	and	T2	

Goals	for	Today	

•  Discuss	the	“phantom	problem”	and	options	
for	Isolation	levels	in	a	DBMS	

•  Understand	how	optimistic	concurrency	
control	techniques	decide	if	an	interleaved	
schedule	could	have	caused	consistency	issues	
	

“Dynamic”	Databases	

•  Database	is	a	static	set	of	objecs!	

•  With	Insert	and	Delete	possible,	even	Strict	
2PL	(on	individual	objects)	will	not	assure	
serializability	

The	“Phantom”	Problem	–	Example	1	

•  Consider	T1	–	“Find	oldest	sailor”	

•  The	sailor	with	age	96	is	a	“phantom	tuple”	from	
T1’s	point	of	view	---	first	it’s	not	there,	then	it	is	

T1	locks	all	Sailor	records,	
finds	oldest	sailor	(age	=	71)	

T2	inserts	a	new	sailor;	age	=	96	
commits	

T1	checks	again	for	the	oldest	sailor,	
finds	oldest	sailor	(age	=	96)	

No	serial	execution	where	
T1’s	result	could	happen!	

•  Consider	T3	–	“Find	oldest	sailor	for	each	rating”	

•  T3	saw	only	part	of	T4’s	effects!	

The	“Phantom”	Problem	–	Example	2	

No	serial	execution	where	
T3’s	result	could	happen!	

T3	locks	all	pages	containing	
sailor	records	with	rating	=	1	
finds	oldest	sailor	(age	=	71)	

T4	inserts	a	new	sailor	(new	page);	rating	=	1,	age	=	96	
T4	also	deletes	oldest	sailor	with	rating	=	2	,	age	=	80	
commits	

T3	now	locks	all	pages	containing	sailor	records	
with	rating	=	2,	and	finds	oldest	(age	=	63).	

The	Problem	in	“Phantom	Problem”	

•  How	do	you	lock	something	that	does	not	yet	exist??	

•  T1	and	T3	implicitly	assumed	that	they	had	locked	the	
set	of	all	sailor	records	satisfying	a	predicate.	
–  Assumption	only	holds	if	no	sailor	records	are	added	while	
they	are	executing!	

–  Need	some	mechanism	to	enforce	this	assumption,	e.g.,	
index	locking	(an	implementation	of	predicate	locking)	

•  Conflict	serializability	on	reads	and	writes	of	individual	
objects	guarantees	serializability	only	if	the	set	of	
objects	is	fixed	

Isolation	Levels	in	SQL	Standard	

•  Idea:	Give	users	control	over	locking	overhead	
incurred	by	their	xacts	

•  Xacts	can	be	specified	with	desired	Isolation	Level	
–  Also,	can	sometimes	access	mode	like	“read-only”	only	
gets	S	locks	

Isolation	Levels	in	SQL	Standard	
•  SQL	Standard	defines	levels	based	on	what	
anomalies	can	be	observed	

•  Implementation	of	levels	varies!	

No	No	No	Serializable	

Maybe	No	No	Repeatable	Read	

Maybe	Maybe	No	Read	Committed	

Maybe	Maybe	Maybe	Read	Uncommitted	

Phantom		
Problem	

Unrepeatable	
Read	

Dirty	
Read	

Isolation	Level	

Strict	2PL.	Gets	locks	before	
read/write,	including	on		
sets	of	objects	(index	locks)	

Strict	2PL.	Locks	before	read	&	
write,	on	individual	objects	

Write	locks	held	to	commit.		
Get	read	locks,	but	release		
those	right	away	

Does	not	get	read	locks,	
	(not	allowed	to	write	objects)	

Possible	implementation	

Exercise	2	
•  T1: 	 	 	S(B)R(B)X(A)W(A) U(A)commit

•  T2: S(A)	R(A) U(A) 	 	 	 	 	S(A)	R(A)U(A)commit	

Optimistic	CC:	Motivation	

Locking	is	a	conservative	approach	in	which	conflicts	
are	prevented.	Disadvantages:	

•  Lock	management	overhead	
• Deadlock	detection/resolution	
•  Lock	contention	for	heavily	used	objects	

•  Locking	is	“pessimistic”	because	it	assumes	that	
conflicts	will	happen.	

•  If	conflicts	are	rare,	we	might	get	better	
performance	by	not	locking,	and	instead	checking	
for	conflicts	at	commit	

OCC:	Kung-Robinson	Model	

•  Xacts	have	three	phases:	
	
–  READ:		Xacts	read	from	the	database,	but		
make	changes	to	private	copies	of	objects.	

– VALIDATE:		Check	for	conflicts	with	other		Xacts	

– WRITE:	Make	local	copies	of	changes	public	

ROOT	

old	

new	

Key	idea:	check	in	validate	phase	if	the	Xact	has	behaved	
in	a	serializable	manner…	e.g.,	backwards	validation	

Confusing	name!	
Both	reads	and	
writes	happen,	
but	on	private	
copy	of	data	

OCC:	Validate	Phase	

	
•  Each	Xact	is	assigned	a	numeric	id	

–  Just	use	a	timestamp		
–  Timestamps	are	assigned	at	end	of	READ	phase,	just	
before	validation	begins	
	

– Main	question:	is	the	timestamp-ordering	of	xacts	
equivalent	to	some	serial	ordering?	

	
•  Check	for	conflicts	regarding:	

–  ReadSet(Ti):		Set	of	objects	read	by	Xact	Ti	
– WriteSet(Ti):		Set	of	objects	modified	by	Ti	

The	DBMS	also	keeps	track	of	timestamp	when	
each	Xact	starts	and	finishes	

What	Can	Go	Wrong:	Example	1	

•  Serial	order	for	T1	and	T2	determined	by	order	they	start	validate	phase	
–  Can	think	of	each	xact	executing	instantaneously	when	its	validation	starts	

	
•  T2	read	A	in	read	phase,	which	could	have	happened	before	T1	wrote	A	

(as	shown	above)	
–  We	have	to	abort	T2	just	in	case	it	didn’t	see	T1’s	change		

(violating	the	presumed	serial	order	of	T1,T2)	

T1	start	 T2	start	 T1	validating	 T2	validating	

T2	reads	A	 T1	writes	A	

time	

T1	write	
finishes	

What	Can	Go	Wrong:	Example	2	

•  Presumed	serial	order:	T1,	T2	
–  Final	value	of	A	should	be	T2’s	version	

•  If	we	let	T2	validate,	T2	could	write	A	before	T1	does	
–  (violating	the	presumed	serial	order)	
–  Must	abort	T2	

T1	start	 T2	start	 T1	validating	 T2	validating	

T2	writes	A	 T1	writes	A	

time	

T1	write		
finishes	

Validate	Phase:	Checking	for	Conflicts	

•  In	both	examples,	serial	order	should	be:	T1,	T2	

•  Example	1	issue:	
–  T1	was	in	write	phase	while	T2	was	reading,	and	
– WriteSet(T1)	overlaps	ReadSet(T2)		

•  Example	2	issue:	
–  T1	was	in	write	phase	while	T2	tried	validating,	and	
– WriteSet(T1)	overlaps	WriteSet(T2)	

Need	a	test	to	use	to	check	when	
validation	will	be	okay!	

Test	1	–	Applicable	when	have		
non-overlapping	xacts	

•  For	all	i	and	j	such	that	Ti	<	Tj,	test	passes	if	
Ti	completes	before	Tj	begins.	

Ti	
Tj	R	 V	 W	

R	 V	 W	

Tj	sees	changes	made	by	Ti,	ok	since	Ti	happened	serially	before	it	

Test	2	–	Applicable	when	Xacts	overlap	
but	have	no	write	phase	overlap	

•  If	Ti	completes	before	Tj	begins	its	Write	
phase,	passes	if:	
WriteSet(Ti)	∩	ReadSet(Tj)		is	empty.	

Ti	

Tj	
R	 V	 W	

R	 V	 W	

Does	Tj	read	dirty	data?	Does	Ti	overwrite	Tj’s	writes?	

Exercise	3	

a)  No,	since	Tj	does	not	read	anything	Ti	wrote	
b)  No,	since	Tj	only	read	data	that	Ti	didn’t	

write,	Ti	didn’t	change	a	value	that	Tj	read	
multiple	times	

c)  No,	since	Ti	finishes	writing	before	Tj	starts	
writing	

Test	3	–	Applicable	when	Xacts	have		
overlapping	write	phases	

•  If	Ti	completes	Read	phase	before	Tj	does,	passes	if:		
WriteSet(Ti)	∩	ReadSet(Tj)		is	empty	
AND	WriteSet(Ti)	∩	WriteSet(Tj)		is	empty.	

Ti	

Tj	
R	 V	 W	

R	 V	 W	

Does	Tj	read	dirty	data	or	have	unrepeatable	reads?		
Does	Ti	overwrite	Tj’s	writes?	

Minimum	criteria	to	consider	Ti	<	Tj	

Exercise	4	
start	with	(a)	

(a) 	Both	will	commit	

(b) 	T2	will	abort,	since	its	ReadSet	overlaps	T1’s	
WriteSet	

Implementing	OCC	
•  	Backwards	serial	validation	for	a	xact	Tv:	

– Make	sure	serializability	not	violated	with	respect	to	all	
xacts	Ti	that	committed	after	Tv	started	

T1	finished	before	Tv	started!	

•  In	practice,	a	xact’s	validate	and	write	phases	
implemented	together	in	a	critical	section	
–  Only	one	xact	can	be	executing	its	critical	section	at	a	time	

Serial	Validation:	Applying	Tests	1	&	2	
(backwards	validation)	

•  To	validate	Xact	Tv:			
valid	=	true;	
//	S	=	set	of	Xacts	that	committed	after	Start(Tv)	
//				(above	definition	implements	Test	1)	
//	The	following	is	done	in	critical	section	
<	foreach		Ts	in	S	do	{	
			if	ReadSet(Tv)	intersects	WriteSet(Ts)	
			 	then	valid	=	false;	
			}	
			if	valid	then	{	install	updates;	//	Write	phase	

															Commit	T	}	>	
																	else	Abort	T	

start	
of	
critical	
section	

end	of	critical	section	

Why	not	Test	3?	

