
CS	133:	Databases	

Fall	2019	
Lec	19	–	11/14	

Recovery	
Prof.	Beth	Trushkowsky	

Warm-up	Exercise	

(See	exercise	sheet.	You	can	start	before	class.)	

The	page	is	evicted	from	buffer	pool,	so	is	flushed	first	

Goals	for	Today	

•  Consider	the	implications	of	the	buffer	
manager’s	strategy	for	flushing	pages	on	
consistency	

•  Understand	the	role	of	the	recovery	manager	
in	achieving	xact	Atomicity	and	Durability		

	
•  Reason	about	Write-Ahead-Logging	and	the	
ARIES	recovery	algorithm	

•  Atomicity:		All	actions	in	the	Xact	happen,	or	none	
happen.	

•  Consistency:		If	each	Xact	is	consistent,	and	the	DB	starts	
consistent,	it	ends	up	consistent.	

•  Isolation:		Execution	of	one	Xact	is	isolated	from	that	of	
other	Xacts.	

•  Durability:		If	a	Xact	commits,	its	effects	persist.	
	
Recovery	Manager	helps	with	Atomicity	and	Durability!	

Review:	The	ACID	properties	



Recovery	Manager:	Motivation	
•  Atomicity:		

–  Transactions	may	abort	and	“roll	back”	their	changes.	
•  Durability:	

– What	if	DBMS	stops	running	and	data	in	memory	is	lost?	
	

•  Example:		
crash!	

T1	
T2	
T3	
T4	
T5	

Abort	
Commit	

Commit	

Use	a	log	of	actions	to	help	UNDO	and	REDO	changes	to	data	on	disk	

Desired	state	after	system	restarts:	
•  T1	&	T3	should	be	durable	
•  T2,	T4	&	T5	should	be	aborted	

(effects	not	seen)	

•  Concurrency	control	is	in	effect		
Strict	2PL,	in	particular	

•  Updates	are	happening	“in	place”	
–  i.e.,	data	is	overwritten	on	(deleted	from)	the	actual	
page	copies	(not	private	copies)	

– Writing	a	page	to	disk	is	atomic	

•  Simple	approach	for	atomicity	and	durability	that	
requires	no	undoing	or	redoing	(and	thus	no	
logging	needed)?	

	

Assumptions	

Can	you	think	of	a	simple	approach	that	requires	no	logging	
of	a	xact’s	changes	to	guarantee	Atomicity	&	Durability?!	

Handling	the	Buffer	Pool	

•  Force	every	write	to	disk		
at	xact	commit	time?	
– Poor	response	time	
– But	provides	durability	

•  Steal	buffer-pool	frames		
from	uncommitted	xacts?	
–  If	not,	hurts	concurrency	
–  If	so,	how	can	we	ensure	
atomicity?	

No	Force	

Force	

No	Steal	 Steal	

Easy!	

Desired	

Force	

No	Force	

No	Steal	 Steal	

Slowest	

Fastest	

Performance	
Implications	

Force	

No	Force	

No	Steal	 Steal	

Logging/Recovery	
Implications	

Exercise	2	

Buffer	Management	Summary	



Force	

No	Force	

No	Steal	 Steal	

Slowest	

Fastest	

Performance	
Implications	

Force	

No	Force	

No	Steal	 Steal	

No	REDO	
No	UNDO	 	UNDO	

No	REDO	

	UNDO	
REDO	

No	UNDO	
REDO	

Logging/Recovery	
Implications	

Buffer	Management	Summary	
•  This	combination	is	most	complicated	but	allows	for	
highest	flexibility/performance	

•  NO	FORCE		(complicates	enforcing	Durability)	
– Dirty	pages	not	forced	to	disk	when	xact	commits	

– What	if	system	crashes	after	a	transaction	commits	
but	before	a	modified	page	written	by	that	transaction	
makes	it	to	disk?	

	

Preferred	Policy:	Steal/No-Force	

REDO	info:	Write	just	the	changes	in	a	
safe	place	at	commit	time,	just	in	case	
need	to	redo	those	modifications.	

	

•  STEAL		(complicates	enforcing	Atomicity)	
– Dirty	pages	could	be	written	to	disk	before	
transaction	commits	or	aborts	

– What	if	transaction	that	performed	updates	aborts?	
– What	if	system	crashes	before	transaction	is	finished?	

Preferred	Policy:	Steal/No-Force	

UNDO	info:	just	in	case,	remember	the	
old	value	of	a	page	to	undo	the	changes	

Basic	Idea:	Logging	

•  Record	REDO	and	UNDO	information,	for	every	
update,	in	a	log.	

•  Log:	An	ordered	list	of	REDO/UNDO	actions	
– Log	record	contains:		

<	xactID,	pageID,	offset,	length,	old	data,	new	data	>		

– and	additional	control	info	(which	we’ll	see	soon)	

In	our	examples	we’ll	simplify	this	to	
records	like	“update:	T1	writes	P2”	



•  The	Write-Ahead	Logging	Protocol:	
1)  Must	force	the	log	record	for	an	update	before	the	

corresponding	data	page	gets	to	disk.	
	
	
	
2)		Must	force	all	log	records	for	a	Xact	before	commit.	
(transaction	is	not	committed	until	all	of	its	log	records	
including	its	“commit”	record	are	on	the	stable	log.)	

	
	

We’ll	be	looking	at	the	ARIES	algorithm	from	IBM	

UNDO	à	Atomicity	despite	STEAL	

REDO	à	Durability	despite	NO	FORCE	

Write-Ahead	Logging	(WAL)	 WAL	&	the	Log	
•  Each	log	record	has	a	unique																															
Sequence	Number	(LSN)	
–  LSNs	always	increasing	
	

•  System	keeps	track	of	flushedLSN	
–  max	LSN	flushed	to	stable	log	so	far.	

•  Each	data	page	contains	a	pageLSN.	
–  The	LSN	of	the	most	recent	log	record																																													
for	an	update	to	that	page.	
	

•  WAL	(rule	1):		For	a	page	i	to	be		
written,	must	flush	log	at	least	to		
the	point	where:	
pageLSNi	<=	flushedLSN	

LSNs	

DB	

pageLSNs	

RAM	

flushedLSN	

Log	records	
flushed	to	disk	

�Log	tail�	
		in	RAM	

flushedLSN	

pageLSNi	

Pagei	

LOG	

prevLSN	is	the	LSN	of	the	previous	
log	record	written	by	this	xact	
	
	
	

	
Possible	log	record	types:	
•  Update,	Commit,	Abort	
•  End		

–  After	commit	or	abort	
–  Bookkeeping	only,	means	clean-up	
is	finished	

•  Checkpoint	(for	log	maintenance)	
•  Compensation	Log	Records	(CLRs)		

–  for	UNDO	actions	

LSN	
	
prevLSN	
XactID	

type	

length	
pageID	

offset	
before-image	
after-image	

LogRecord	fields:	

for	
update	
records	
only	

Log	Records	

the	records	for	a	xact	form	a	
linked	list	backwards	in	time	

•  Transaction	Table	
–  One	entry	per	currently	active	transaction	
–  Entry	removed	when	Xact	ends	(after	commit	or	abort)	

	
•  Dirty	Page	Table	
–  One	entry	per	dirty	page	currently	in	buffer	pool	
–  Entry	removed	when	page	flushed	to	disk	

Other	Log-Related	State	(in	RAM)	

XactID	 Status	 lastLSN	

Running,	Committing,	or	
Aborting	

Most	recent	
update/CLR	LSN	

written	by	this	xact	

PageID	 recLSN	
LSN	of	log	record	that	FIRST	

dirtied	this	page	



Exercise	3	

(a) No.	DPT	thinks	first	LSN	that	dirtied	page	5	
was	LSN	50	

(b) Yup.	Page	2	is	not	in	dirty	page	table.	It	could	
have	been	flushed	to	disk	due	to	STEAL	policy	

	

•  Conceptually,	keep	log	around	for	all	time	
–  this	has	performance/implementation	issues…	

•  Periodically,	the	DBMS	creates	a	checkpoint	
–  Minimize	time	taken	to	recover	if	system	crashes		
–  Write	to	log:	

•  begin_checkpoint	record:		Indicates	when	chkpt	began.	
•  end_checkpoint	record:		Contains	current	Xact	table	and	dirty	page	
table.		

–  After	end_checkpoint,	log	flushed	

•  Note:	this	is	a	‘fuzzy	checkpoint’:	
–  Xacts	continue	to	run;	tables	accurate	only	as	of	the	time	of	the	
begin_checkpoint	record.	

Checkpointing	

Store	LSN	of	most	recent	
checkpoint	record	in	a	safe	
place	(master	record).	

After	a	system	
crash,	will	
checkpoint	
entry	always	
be	last	entry	
in	log?		

Example	Log:	Normal	Execution	
Trans	 lastLSN	 Stat	

PageId	 recLSN	

LSN	 Log	 prevLSN	
10	 Update:	T1	write	P2	 null	
20	 Update:	T1	write	P4	 10	
30	 Update:	T2	write	P3	 null	
40	 T1	commit	 20	

60	 T1	end	(xact	entry	removed,	not	shown)	 40	
50	 Update:	T2	write	P4	 30	

T1	

T2	

10	 R	

30	 R	

P2	 10	

20	

P4	 20	

C	

P3	 30	

50	

Assumptions:	Strict	2PL,	WAL,	Steal/No-Force	

Log	tail	forced	to	disk	on	commit.	
Ensure	flushedLSN	>=	40	(WAL	Rule	#2)	

Example	Log:	Normal	Execution	(cntd)	

Trans	 lastLSN	 Stat	

PageId	 recLSN	

LSN	 Log	 prevLSN	
10	 Update:	T1	write	P2	 null	
20	 Update:	T1	write	P4	 10	
30	 Update:	T2	write	P3	 null	
40	 T1	commit	 20	

60	 T1	end	(xact	entry	removed,	not	shown)	 40	
50	 Update:	T2	write	P4	 30	

70	 T2	abort	 50	
80	 CLR:	Undo	50,	UndoNext	=	30		 70	
90	 CLR:	Undo	30,	UndoNext	=	null		 80	
100	 T2	end	(xact	entry	removed,	not	shown)	 90	

T1	

T2	

10	 R	

30	 R	

P2	 10	

20	

50	

P4	 20	

C	

P3	 30	

A	80	
90	

Must	UNDO		
changes	from	T2	!	



More	on	Abort	

•  To	perform	UNDO,	must	have	a	lock	on	data!	
– No	problem	(we’re	doing	Strict	2PL)!	

•  Before	restoring	old	value	of	a	page,	write	a	
compensation	log	record	(CLR):	
–  CLR	has	one	extra	field:	undoNextLSN	
–  CLRs	are	never	Undone	(but	they	might	be	Redone	
when	repeating	history:	guarantees	Atomicity!)	

•  At	end	of	UNDO,	write	an	end	log	record	 Continue	logging	
while	UNDOing	

Crash	Recovery:	Big	Picture	
§  Start	from	a	checkpoint	(on	disk)	
§  Three	phases:	

1.   Analysis	–	Determine	dirty	pages	
and	active	xacts	at	time	of	crash	
à	updates	tables	from	checkpoint:	
– XactTable:	which	Xacts	were	
active	at	time	of	crash.	

– Dirty	Page	Table:	which	pages	
might	have	been	dirty	in	the	
buffer	pool	at	time	of	crash.	

2.	REDO	all	actions	to	restore	state	at	
time	of	crash	

3.	UNDO	effects	of	failed	Xacts	

Oldest	log	rec.	
of	Xact	active	
at	crash	

Smallest	recLSN	
in	dirty	page	
table	after	
Analysis	

Last	chkpt	

CRASH	

A	 R	 U	

•  Re-establish	knowledge	of	state	at	checkpoint	
–  Via	Xact	table	and	Dirty	Page	Table	stored	in	the	checkpoint	

•  Scan	log	forward	from	checkpoint:	
–  For	End	record:	Remove	Xact	from	Xact	table.	
–  For	Commit/Abort	records:	update	Xact	status	
–  All	other	records:	Add	Xact	to	Xact	table,	set	lastLSN=LSN,		
Also,	for	Update	records:	If	page	P	not	in	Dirty	Page	Table,	Add	
P	to	DPT,	set	its	recLSN=LSN	

	

•  At	end	of	Analysis…	
–  Transaction	table	has	which	xacts	were	active	at	time	of	crash.	
–  Dirty	page	table	has	which	dirty	pages	might	not	be	on	disk	

Phase	1:	Analysis	Phase	
•  We	repeat	History	to	reconstruct	state	at	crash:	

–  Reapply	all	updates	(even	of	aborted	Xacts!),	redo	CLRs.	

•  Scan	forward	from	log	record	containing	smallest	recLSN	in	
dirty	pages	table	

•  For	each	redoable	log	record	(update	or	CLR)	with	a	given	LSN,		
REDO	the	action	unless:			
–  Affected	page	is	not	in	the	Dirty	Page	Table,	or	
–  Affected	page	is	in	D.P.T.,	but	has	recLSN	>	LSN,	or	
–  pageLSN	(on	actual	page	in	DB)	>	LSN.	(this	last	case	requires	I/O)	

•  To	REDO	an	action:	
–  Reapply	logged	action.	
–  Set	pageLSN	to	LSN.		No	additional	logging,	no	forcing	

Phase	2:	The	REDO	Phase	



ToUndo=	{lastLSNs	of	all	Xacts	in	the	Trans	Table}	
	
Repeat:	

–  Choose	(and	remove)	largest	LSN	among	ToUndo.	

–  If	this	LSN	is	a	CLR	and	undonextLSN==NULL	
•  Write	an	End	record	for	this	Xact.	

–  If	this	LSN	is	a	CLR,	and	undonextLSN	!=	NULL	
•  Add	undonextLSN	to	ToUndo		

–  Else	this	LSN	is	an	update.	Write	a	CLR,	undo	the	update,,	
add	prevLSN	to	ToUndo.	

Until	ToUndo	is	empty.	

Phase	3:	The	UNDO	Phase	 Exercise	4	

(a) Xacts:	T1,	T3,	T4,	T5,		
DPT:	P5,	P1,	P3,	P2	

(b) Note:	start	REDO	at	LSN	40	(smallest	in	DPT)	
so	redo:	40,	50,	60,	90,	110,	130,	160,	180	
(don’t	need	to	redo	70	since	Page	2’s	recLSN	>	70)	


