Warm-up Exercise

(See exercise sheet. You can start before class.)

CS 133: Databases

Fall 2019
lec19-11/14
Recovery
Prof. Beth Trushkowsky

The page is evicted from buffer pool, so is flushed first

Goals for Today Review: The ACID properties

. . . - Atomicity: All actions in the Xact happen, or none
* Consider the implications of the buffer y PP

,) happen.
manager’s strategy for flushing pages on

. - Consistency: If each Xact is consistent, and the DB starts
con5|stency

consistent, it ends up consistent.

e |solation: Execution of one Xact is isolated from that of

* Understand the role of the recovery manager other Xacts.
in achieving xact Atomicity and Durability - Durability: If a Xact commits, its effects persist.
« Reason about Write-Ahead-Logging and the Recovery Manager helps with Atomicity and Durability!

ARIES recovery algorithm

Recovery Manager: Motivation

* Atomicity:
— Transactions may abort and “roll back” their changes.
* Durability:
— What if DBMS stops running and data in memory is lost?

* Example:
| Desired state after system restarts:
e comme CSMYT 11273 should be durable

T . « Abort I * T2, T4 & T5 should be aborted
T2) (effects not seen)

T3 Commit I

T4 |

T5 |

Use a log of actions to help UNDO and REDO changes to data on disk

Assumptions

* Concurrency control is in effect
Strict 2PL, in particular

* Updates are happening “in place”

— i.e., data is overwritten on (deleted from) the actual
page copies (not private copies)
— Writing a page to disk is atomic

» Simple approach for atomicity and durability that
requires no undoing or redoing (and thus no
logging needed)?

Handling the Buffer Pool

No Steal Steal

Easy!

* Force every write to disk
at xact commit time?

— Poor response time
— But provides durability
Force

 Steal buffer-pool frames
from uncommitted xacts?
— If not, hurts concurrency

— If so, how can we ensure
atomicity?

Buffer Management Summary

No Steal Steal No Steal Steal
No Force m No Force
Force | Slowest Force
Exercise 2
Performance Logging/Recovery
Implications Implications

Buffer Management Summary

No Steal Steal
No Force m No Force
Force | Slowest Force No UNDO | UNDO
No REDO [No REDO
Performance Logging/Recovery
Implications Implications

Preferred Policy: Steal/No-Force

* This combination is most complicated but allows for
highest flexibility/performance

* NO FORCE (complicates enforcing Durability)
— Dirty pages not forced to disk when xact commits

— What if system crashes after a transaction commits
but before a modified page written by that transaction
makes it to disk?

\ REDO info: Write just the changes in a
safe place at commit time, just in case
need to redo those modifications.

Preferred Policy: Steal/No-Force

* STEAL (complicates enforcing Atomicity)

— Dirty pages could be written to disk before
transaction commits or aborts

— What if transaction that performed updates aborts?
— What if system crashes before transaction is finished?

\

UNDO info: just in case, remember the
old value of a page to undo the changes

Basic Idea: Logging

* Record REDO and UNDO information, for every
update, in a log.

* Log: An ordered list of REDO/UNDO actions

— Log record contains:
< xactlD, pagelD, offset, length, old data, new data >

\ In our examples we’ll simplify this to

records like “update: T1 writes P2”

— and additional control info (which we’ll see soon)

Write-Ahead Logging (WAL)

* The Write-Ahead Logging Protocol:

1) Must force the log record for an update before the
corresponding data page gets to disk.

'UNDO -> Atomicity despite STEAL

2) Must force all log records for a Xact before commit.
(transaction is not committed until all of its log records
including its “commit” record are on the stable log.)

'REDO - Durability despite NO FORCE |

We’ll be looking at the ARIES algorithm from IBM

WAL & the Log

DB RAM

~—
LSNs pagelLSNs flushedLSN
* Each log record has a unique LOG
Sequence Number (LSN)]
— LSNs always increasing Log records

flushed to disk

* System keeps track of flushedLSN
— max LSN flushed to stable log so far.

* Each data page contains a pagelLSN. fushedLSN
— The LSN of the most recent log record
for an update to that page.

pagelLSN, ’ “Log tail”

* WAL (rule 1): For a pageito be in RAM
written, must flush log at least to Page.
I

the point where:
pageLSN; <= flushedLSN

Log Records

X . prevLSN is the LSN of the previous
LogRecord fields: log record written by this xact \
LSN
XactlD the records for a xact form a
ac linked list backwards in time
prevLSN
type Possible log record types:
pagelD * Update, Commit, Abort
for length * End
update offset — After commit or abort
records before-image — Bookkeeping only, means clean-up
only c-imag is finished
after-image * Checkpoint (for log maintenance)
* Compensation Log Records (CLRs)
— for UNDO actions

Other Log-Related State (in RAM)

* Transaction Table
— One entry per currently active transaction

— Entry removed when Xact ends (after commit or abort)

XactID Status | lastlSN |

Most recent
update/CLR LSN
written by this xact

Running, Committing, or
Aborting

* Dirty Page Table

— One entry per dirty page currently in buffer pool

— Entry removed when page flushed to disk

PagelD ‘ recLSN ‘ LSN of log record that FIRST

dirtied this page

Exercise 3

(a)No. DPT thinks first LSN that dirtied page 5
was LSN 50

(b)Yup. Page 2 is not in dirty page table. It could
have been flushed to disk due to STEAL policy

Checkpointing
After a system

* Conceptually, keep log around for all time crash, will

— this has performance/implementation issues... checkpoint
entry always
* Periodically, the DBMS creates a checkpoint ielf;; entry
— Minimize time taken to recover if system crashes
— Write to log:

* begin_checkpoint record: Indicates when chkpt began.

. en;):ll_checkpoint record: Contains current Xact table and dirty page

table.

— After end_checkpoint, log flushed

Store LSN of most recent
checkpoint record in a safe
place (master record).

* Note: this is a “fuzzy checkpoint’:
— Xacts continue to run; tables accurate only as of the time of the
begin_checkpoint record.

Example Log: Normal Execution

Example Log: Normal Execution (cntd)

Trans |lastLSN | Stat LSN Log prevLSN
T1 |2@20 | RC|10 | Update: T1 write P2 null
T2 [3050 R |20 Update: T1 write P4 10
30 Update: T2 write P3 null
Pageld recLSN 40 ;|'1 commit 20
2 | 10 50 /Update: T2 write P4 30
60 / T1 end peact entry remaved, ot shown) | 40
P4 20
P3 30 Log tail forced to disk on commit.

Ensure flushedLSN >= 40 (WAL Rule #2)

Assumptions: Strict 2PL, WAL, Steal/No-Force

Trans lastLSN Stat LSN Log prevLSN
T1 |2@20 | RC|10 | Update: T1 write P2 null
T2 %%gg KAl 20 Update: T1 write P4 10

30 Update: T2 write P3 null

Pageld | reclSN 40 T1 commit 20

P2 10 50 Update: T2 write P4 30
60 T1 end (xact entry removed, not shown) 40

P4 20
70 T2 abort 50

P3 30
80 CLR: Undo 50, UndoNext=30 |70
Must UNDO 90 CLR: Undo 30, UndoNext = null | 80
changes from T2 ! 100 T2 end (xact entry removed, not shown) 90

More on Abort

* To perform unpo, must have a lock on datal!
— No problem (we’re doing Strict 2PL)!

* Before restoring old value of a page, write a
compensation log record (CLR):
— CLR has one extra field: undoNextLSN

— CLRs are never Undone (but they might be Redone
when repeating history: guarantees Atomicity!)

. Continue logging
* At end of unpo, write an end log record ' hile unDOINg

Crash Recovery: Big Picture

= Start from a checkpoint (on disk)

Oldest log rec. : = Three phases:
:: z(fac:hamve = 1. Analysis - Determine dirty pages

: and active xacts at time of crash
Smallest recLSN - updates tables from checkpoint:
in dirty page — XactTable: which Xacts were
table after - . .
Analysis : active at time of crash.

— Dirty Page Table: which pages

might have been dirty in the
: buffer pool at time of crash.
: 2. REDO all actions to restore state at
CRASH k y time of crash

R U 3. UNDO effects of failed Xacts

Phase 1: Analysis Phase

* Re-establish knowledge of state at checkpoint
— Via Xact table and Dirty Page Table stored in the checkpoint

* Scan log forward from checkpoint:
— For End record: Remove Xact from Xact table.
— For Commit/Abort records: update Xact status

— All other records: Add Xact to Xact table, set lastLSN=LSN,
Also, for Update records: If page P not in Dirty Page Table, Add
P to DPT, set its recLSN=LSN

* At end of Analysis...
— Transaction table has which xacts were active at time of crash.
— Dirty page table has which dirty pages might not be on disk

Phase 2: The REDO Phase

* We repeat History to reconstruct state at crash:
— Reapply all updates (even of aborted Xacts!), redo CLRs.

* Scan forward from log record containing smallest recLSN in
dirty pages table

* For each redoable log record (update or CLR) with a given LSN,
REDO the action unless:

— Affected page is not in the Dirty Page Table, or
— Affected page is in D.P.T., but has recLSN > LSN, or
— pagelSN (on actual page in DB) > LSN. (this last case requires I/0)

* To REDO an action:
— Reapply logged action.
— Set pagelSN to LSN. No additional logging, no forcing

Phase 3: The UNDO Phase

ToUndo= {lastLSNs of all Xacts in the Trans Table}

Repeat:
— Choose (and remove) largest LSN among ToUndo.

— If this LSN is a CLR and undonextLSN==NULL
* Write an End record for this Xact.

— If this LSN is a CLR, and undonextLSN != NULL
* Add undonextLSN to ToUndo

— Else this LSN is an update. Write a CLR, undo the update,,
add prevLSN to ToUndo.

Until ToUndo is empty.

Exercise 4

(a)Xacts: T1, T3, T4, T5,
DPT: P5, P1, P3, P2
(b)Note: start REDO at LSN 40 (smallest in DPT)
so redo: 40, 50, 60, 90, 110, 130, 160, 180
(don’t need to redo 70 since Page 2’s recLSN > 70)

