CS 133: Databases

Fall 2019
Lec 20 – 11/19
Database Design
Prof. Beth Trushkowsky

Warm-up Exercise

(See exercise sheet. You can start before class.)

Redundant data storage.
A sailor can’t exist without a reservation, same with boats.
Integrity constraints we know should exist, can’t (E.g., sid determines sname)

Goals for Today

• Learn about the process of designing a database to model a real-world application

• Understand how to encode an application in an entity-relationship (ER) diagram

• Reason about translating an ER model to a relational model

Database Design

• Requirements Analysis
 — user needs; what must database do?

• Conceptual Design
 — high level description (often done w/ ER model)

• Logical Design
 — translate ER into DBMS data model

• Schema Refinement
 — consistency, normalization

• Physical Design - indexes, disk layout

• Security Design - who accesses what
Data Models – Describing Data

- A **Database design** encodes some portion of the real world

- A **Data Model** is a set of concepts for thinking about this encoding

Helpful to start with a graphical representation: the **Entity-Relationship model**!

Integrity Constraints (ICs)

- Remember the “C” in ACID (Consistency)

- **Integrity Constraint (IC):** condition that must be true for any instance of the database
 - e.g., *domain constraints, keys and foreign key*
 - ICs are specified when schema is defined.
 - ICs are checked when relations are modified.

- Come from **semantics of the real world**!
 - Should be determined during Requirements Analysis and/or Conceptual Design phases

Entity-Relationship (ER) Model Basics

- **Entity**: Real-world object, distinguishable from other objects. An entity can have a set of **attributes**
 - Each attribute is atomic (not a list or set)

- **Entity Set**: A collection of similar entities. E.g., all employees.
 - All entities in an entity set have the same set of attributes. *(Until we consider hierarchies, anyway)*
 - Each entity set has a key (**underlined**).
 - Each attribute has a **domain**.

ER Model Basics (Contd.)

- **Relationship**: Association among two or more entities. E.g., Alice works in Pharmacy department.
 - Relationships can have their own attributes
 - Relationships uniquely identified only by participating entities, excluding attributes

- **Relationship Set**: Collection of similar relationships
 - An n-ary relationship set R relates n entity sets \(E_1, ..., E_n\); each relationship in R involves entities \(e_j \in E_j, ..., e_n \in E_n\)
ER Model Basics (Cont.)

- Same entity set can participate in different relationship sets, or in different “roles” in the same set.

Key Constraints

An employee can work in many departments; a dept can have many employees.

In contrast, each dept has at most one employee manager, according to the key constraint on Manages.

Weak Entities

A weak entity can be identified uniquely only with the primary key of another (owner) entity.
- Owner entity set and weak entity set must participate in a one-to-many relationship set (one owner, many weak entities).
- Weak entity set must have total participation in this identifying relationship set.

Weak entities have only a “partial key” (dashed underline)
Exercise 2: Interpret E/R diagram

a) Bold edge ➔ Every classroom must be taught in.
Non-bold edge ➔ Not every class has to be taught (in a classroom)
b) No. A relationship is uniquely identified by its participating entities only

Conceptual Design Using the ER Model

• ER modeling can get tricky!
• **Example design choices:**
 – Should a concept be modeled as an entity or an attribute?
 – Should a concept be modeled as an entity or a relationship?
• Note constraints of the ER Model:
 – A lot of data semantics can (and should) be captured
 – But some constraints cannot be captured in ER diagrams
 • We’ll refine things in our logical (relational) design

Entity vs. Attribute

• E.g., capturing employee “Address“:

 • It depends! Semantics and usage
 – Several addresses per employee?
 • must be an entity!
 • atomic attribute types (no set-valued attributes!)
 – Care about structure? (city, street, etc.)
 • must be an entity!
 • atomic attribute types (no tuple-valued attributes!)

Exercise 3

• Example answer:
Logical DB Design: ER to Relational

Entity sets to tables

CREATE TABLE Employees
(ssn CHAR(11),
name CHAR(20),
lot INTEGER, PRIMARY KEY (ssn))

Relationship Sets to Tables

- In translating a many-to-many relationship set to a relation, attributes of the relation must include:
 1) Keys for each participating entity set (as foreign keys).
 This set of attributes forms a super key for the relation. Also a candidate key if no key constraints.
 2) All descriptive attributes for the relationship set.

CREATE TABLE works_in(
 ssn CHAR(1),
did INTEGER,
since DATE, PRIMARY KEY (ssn, did),
FOREIGN KEY (ssn) REFERENCES Employees,
FOREIGN KEY (did) REFERENCES Departments)

Translating ER with Key Constraints

One way to translate the Manages Relationship (one-to-many):

CREATE TABLE Manages
(ssn CHAR(11),
did INTEGER, since DATE, PRIMARY KEY (did),
FOREIGN KEY (ssn) REFERENCES Employees,
FOREIGN KEY (did) REFERENCES Departments
)

Translating ER with Key Constraints (Take 2)

Since each department has a unique manager, we could instead combine Manages and Departments as Dept_Mgr:

CREATE TABLE Dept_Mgr(
did INTEGER, dname CHAR(20), budget REAL, ssn CHAR(11), since DATE, PRIMARY KEY (did),
FOREIGN KEY (ssn) REFERENCES Employees)
Participation Constraints in SQL

- Capturing participation constraints more difficult
- Example involving one entity set in a binary relationship:

\[
\text{CREATE TABLE Dept_Mgr (}
\begin{align*}
\text{did} & \text{ INTEGER,} \\
\text{dname} & \text{ CHAR(20),} \\
\text{budget} & \text{ REAL,} \\
\text{ssn} & \text{ CHAR(11) NOT NULL,} \\
\text{since} & \text{ DATE,} \\
\text{PRIMARY KEY} & \text{ (did),} \\
\text{FOREIGN KEY} & \text{ (ssn) REFERENCES Employees,} \\
& \text{ON DELETE NO ACTION)}
\end{align*}
\]

Exercise 4 (attribute types omitted)

- CREATE TABLE Drinkers (ssn, name, birthday, PRIMARY KEY(ssn))
- CREATE TABLE Friends (friend1, friend2, PRIMARY KEY(friend1,friend2),
 FOREIGN KEY(friend1) REFERENCES Drinkers(ssn),
 FOREIGN KEY(friend2) REFERENCES Drinkers(ssn))
- CREATE TABLE Bars_owns (name, address, phone, ssn_owner NOT NULL, PRIMARY KEY(name),
 FOREIGN KEY(ssn_owner) REFERENCES Drinkers(ssn))

Translating Weak Entity Sets

- Weak entity set and identifying relationship set are translated into a single table.
 - When the owner entity is deleted, all owned weak entities must also be deleted.

\[
\text{CREATE TABLE Dep_Policy (}
\begin{align*}
\text{pname} & \text{ CHAR(20),} \\
\text{age} & \text{ INTEGER,} \\
\text{cost} & \text{ REAL,} \\
\text{ssn} & \text{ CHAR(11) NOT NULL,} \\
\text{PRIMARY KEY} & \text{ (pname, ssn),} \\
\text{FOREIGN KEY} & \text{ (ssn) REFERENCES Employees,} \\
& \text{ON DELETE CASCADE)}
\end{align*}
\]

... and more

- See textbook for a few more details, e.g.,