CS 133: Databases

Fall 2019
Lec21-11/21
Database Design
Prof. Beth Trushkowsky

Warm-up Exercise

(See exercise sheet. You can start before class.)
S e
o | oms> s
friend1 friend2 Answer: Doesn’t
enforce that each Bar
@ has a tuple in Owns.

NOT NULL?

CREATE TABLE Owns
(ssn CHAR(11),
bar_name CHAR(20),
PRIMARY KEY (bar_name),
FOREIGN KEY (ssn) REFERENCES Drinkers,
FOREIGN KEY (bar_name) REFERENCES Bars(name))

Goals for Today

e Understand the issues that can occur from a
poorly designed relational schema

* Learn about the goals and process of schema
refinement

* Discuss the role of functional dependencies in
discovering and fixing issues in a design

Review: Database Design

Requirements Analysis

— user needs; what must database do?
Conceptual Design

— high level description (often done w/ER model)

Logical Design

— translate ER into DBMS data model
Schema Refinement

— consistency, normalization

Physical Design - indexes, disk layout
Security Design - who accesses what

Table and Column constraints (SQLite)

o,(:::::) (tapLe)
CREATE TABLE
N N S CED
(remporary)~

D)
(O
() LCWITHOUT}»(ROWID)J [

https://www.sqlite.org/lang_createtable.html

Table and Column constraints (SQLite)
* Column definition

O-PC column-name)—Pﬂ type-name } r: > »0
L—' column-constraint F—j

* Table constraint

CONSTRAINT name Tjj

https://www.sqlite.org/lang_createtable.html

Examples: Create Table

CREATE TABLE Friends (

friendl VARCHAR (40),

friend2 VARCHAR (40),

PRIMARY KEY(friendl,friend2),

CONSTRAINT notSame CHECK (friendl <> friend2)
)i
CREATE TABLE Bar_ Owns (

name VARCHAR(40) PRIMARY KEY,

address VARCHAR(40) NOT NULL,

phone CHAR(12) DEFAULT “555-555-5555",
owner CHAR(11) NOT NULL,

FOREIGN KEY owner REFERENCES Drinkers(ssn)
ON DELETE NO ACTION

)i For cross-relation
constraints, need
assertion statement!

Triggers

» Trigger: procedure that starts automatically if specified
changes occur to the DBMS

* Example, SQL:1999 syntax:

CREATE TRIGGER youngSailorUpdate
AFTER INSERT ON SAILORS
REFERENCING NEW TABLE NewSailors
FOR EACH STATEMENT
INSERT
INTO YoungSailors(sid, name, age, rating)
SELECT sid, name, age, rating
FROM NewSailors N
WHERE N.age <= 18

Combos: Entities and Relationships Schema Refinement

* For one-to-many relationship, combining entity set and « Start with initial relational schema, either
relationship set into one relation helped us capture .
participation constraint from scratch or from E/R modeling

* What about combining Bars and Sells as Bar_Sells?

* Schema refinement objective:
@ could there be issues caused by data
b——’" "—'" redundancy?

Bars Beers

* Next: why redundancy is “bad”

Example: Hourly Emps Redundancy Problems

° i i i . . Update anomaly:
Consider a relation obtained from Hourly_Emps: Hourly_Emps (instance) W
Hourly_Emps (ssn, name, lot, rating, wage_per_hr, hrs_per_wk) S N L |R |W |H | _—1 inthistupleonly?
123-22-3666 |Attishoo |48 |8 |10 [40 - -
Deletion anomaly:
Note on notation: can denote a relation schema 231-31-5368 |Smiley 22 |8 |10 |30 What ifI we dele_tehall
by listing its attributes, e.g., SNLRWH 131-24-3650 |Smethurst (35 |5 |7 |30 T o ns o7
- the set of attributes {S,N,L,R,W,H} 434-26-3751 |Guldu 351517 132
612-67-4134 |Madayan |35 |8 |10 [40

* Assume we know, from application semantics,:
— ssn uniquely identifies an employee (is a key)

— An employee’s rating determines their wage_per_hr Insertion anomaly:

What if we want to insert an employee and
don’t know the hourly wage their rating?
(or we get it wrong?)

Decomposing a Relation

* Redundancy can be removed by “chopping”
the relation into pieces.

S N L [R[H
123-22-3666 |Attishoo |48 |8 |40 R |[W
231-31-5368 |Smiley |22 |8 |30 8 110
131-24-3650 |Smethurst |35 |5 |30
434-26-3751 |Guldu 35 |5 |32 > |7
612-67-4134 |Madayan (35 |8 |40 Wages

Hourly _Emps2

We'll see how a type of integrity constraint, called
functional dependencies, is used to drive this “chopping” process

Taming Schema Redundancy

Integrity constraints, in particular functional
dependencies, can be used to identify schemas
with problems and to suggest refinements

Main refinement technique: decomposition
— E.g., replacing ABCD (via projection) with:

e AB and BCD, or

* ACD and ABD, or

* Etc.

Decomposition should be used judiciously:
— Is there reason to decompose a relation?
— What problems (if any) does the decomposition cause?

Keys (Review)
* A set of fields is a candidate key (shortened as just key) for a
relation if:

1. No two distinct tuples can have the same values in all
candidate key fields, and

2. Thisis not true for any subset of the key’s attributes.
Q. Consider relation R(a,b,c).

For a fixed setting of a and b values, how
many different c values could there be?

* A candidate key is minimal.

If AB is a candidate key, then neither A nor B is a key on its
own.

* A superkey is not necessarily minimal (although it could be)
— If AB is a candidate key, then ABC, ABD, and even AB are superkeys.

Functional Dependencies

Can read “>” as
“determines”

Let X and Y be sets of attributes in a relationR _~
A functional dependency (FD) has the form X > Y

If two tuples in R have same values for all attributes in X,
then they must also have same values for all attributes in Y

1 1 1
| &=X—= | «Y— |

t1| same | also same I |
T T T
1 1 1

tZ] same l also same l |
1 1 1

(More formally): A functional dependency X — Y holds over
relation schema R if, for every allowable instance r of R:

Functional Dependencies (cntd)

* Where do FDs come from?
— Real-world integrity constraints and semantics

* Keys redefined as FDs with set of attributes K and
relation R:

1. if K-> all (other) attributes of R
Kis a “super key”

2. And if no proper subset of K satisfies the above
condition, then

K is minimal (and thus a candidate key)

Exercise 3: Constructing FDs

* What functional dependencies do you think
would make sense for this application?

Bars

Q

Beers

Bar_name - address
beer_name - type
bar_name, beer_name - price

Reasoning About FDs

* Given some FDs, can usually infer additional FDs that are true
E.g., College use case:

profld — profName and profld — dept and
profld — dept dept — building
implies: implies:

profld — profName, dept profld — building

Union rule
(opposite: decomposition)

| Transitivity rule |

* However, building, roomNum — profName
does NOT imply building — profName or roomNum — profName

* A particular FD fis implied by a set of FDs F if f holds
whenever all FDs in F hold

Closure and Rules of Inference

* F*=closure of F isthe set of all FDs that are implied by F
(includes “trivial dependencies”: RHS C LHS)

* Armstrong’s Axioms (X, Y, Z are sets of attributes):
— Reflexivity: If YCX, then X—Y
— Augmentation: If X—Y, then XZ—YZ foranyZ
— Transitivity: If X—=Y and Y —=2, then X—Z

* Some additional rules (that follow from AA):
— Union: IfX—Y and X— 27, then X—=YZ
— Decomposition: fX—=YZ, then X—Y and X—=2Z

Example: Using Inference Rules

* Suppose relation R has three attributes
A,B,C and these FDs:

A—B
B—C
* Using reflexivity Repeatedly applying
A— A, AB— A, etc. these rules to the set
of FDs yields the

* Using transitivity closure of F, which is F*
A—C

 Using augmentation
AC — BC, AB — AC, AB —= BC

Attribute Closure

* |f we just want to check if a particular FD X =Y is in
F*, then:

1) Compute the attribute closure of X (denoted X*)
with respect to F
* X*= Set of all attributes A such that X —= Aisiin F*
* initialize X*:=X
* Repeat until no change to X*:
if U—Vin F such that U is in X*, then add V to X*

2) Check if Yisin X*
Q. How can attribute closure be
used to determine if a set of
attributes is a key for a relation?

Four-way relationship: a
contract for parts
between a supplier and
a department for a

project

Exercise 4

. Contracts(@lsid,jid,did,pid,qty,va/ugand:
Cis the primary key: C— CSIDPQV
Project purchases each part using single contract: JP — C
Dept purchases at most 1 part from a supplier: SD — P

* Show that SDJ is a superkey for Contracts
* JP—-C, C—CSIDPQV imply JP — CSJDPQV
(by transitivity) (shows that JP is a superkey)
* SD—=P implies SDJ— JP
(by augmentation)
e SDJ —JP, JP — CSIDPQV imply SDJ — CSIDPQV
(by transitivity) thus SDJ is a superkey

