

Combos: Entities and Relationships

- For one-to-many relationship, combining entity set and relationship set into one relation helped us capture participation constraint
- What about combining Bars and Sells as Bar_Sells?

Schema Refinement

- Start with initial relational schema, either from scratch or from E/R modeling
- Schema refinement objective: could there be issues caused by data redundancy?
- Next: why redundancy is "bad"

Example: Hourly_Emps

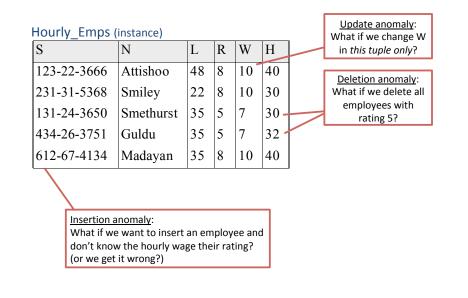
 Consider a relation obtained from Hourly_Emps: Hourly_Emps (<u>ssn, name, lot, rating, wage_per_hr, hrs_per_wk</u>)

Note on notation: can denote a relation schema by listing its attributes, e.g., SNLRWH

→ the *set* of attributes {S,N,L,R,W,H}

- Assume we know, from application semantics,:
 - ssn uniquely identifies an employee (is a key)
 - An employee's *rating* determines their *wage_per_hr*

Redundancy Problems



Decomposing a Relation

R W

8

5 7

Wages

10

• Redundancy can be removed by "chopping" the relation into pieces.

S	Ν	L	R	Н
123-22-3666	Attishoo	48	8	40
231-31-5368	Smiley	22	8	30
131-24-3650	Smethurst	35	5	30
434-26-3751	Guldu	35	5	32
612-67-4134	Madayan	35	8	40

Hourly_Emps2

We'll see how a type of *integrity constraint*, called **functional dependencies**, is used to drive this "chopping" process

Keys (Review)

- A set of fields is a candidate key (shortened as just key) for a relation if:
 - 1. No two distinct tuples can have the same values in *all* candidate key fields, and
 - 2. This is not true for any subset of the key's attributes.

Q. Consider relation $R(\underline{a, b}, c)$. For a fixed setting of a and b values, how many different c values could there be?

• A candidate key is minimal.

If AB is a candidate key, then neither A nor B is a key on its own.

- A superkey is not necessarily minimal (although it could be)
 - If AB is a candidate key, then ABC, ABD, and even AB are superkeys.

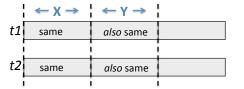
Taming Schema Redundancy

- Integrity constraints, in particular *functional dependencies*, can be used to identify schemas with problems and to suggest refinements
- Main refinement technique: <u>decomposition</u>
 - E.g., replacing ABCD (via projection) with:
 - AB and BCD, or
 - ACD and ABD, or
 - Etc.
- Decomposition should be used judiciously:
 - Is there reason to decompose a relation?
 - What problems (if any) does the decomposition cause?

Functional Dependencies

Can read "→" as "determines"

- Let X and Y be sets of attributes in a relation R
- A functional dependency (FD) has the form $X \rightarrow Y$
- If two tuples in R have same values for all attributes in X, then they must **also** have same values for all attributes in Y



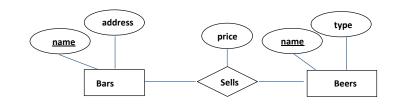
• (More formally): A <u>functional dependency</u> $X \rightarrow Y$ holds over relation schema R if, for every allowable instance r of R: $t1 \in r, t2 \in r, \pi_X(t1) = \pi_Y(t2)$ implies $\pi_Y(t1) = \pi_Y(t2)$

Functional Dependencies (cntd)

- Where do FDs come from?
 Real-world integrity constraints and semantics
- Keys redefined as FDs with set of attributes K and relation R:
 - if K → all (other) attributes of R K is a "super key"
 - And if no proper subset of K satisfies the above condition, then
 K is minimal (and thus a candidate key)

Exercise 3: Constructing FDs

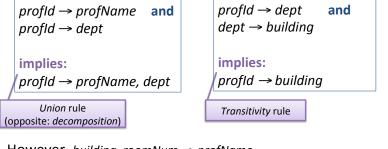
• What functional dependencies do you think would make sense for this application?



Bar_name \rightarrow address beer_name \rightarrow type bar_name, beer_name \rightarrow price

Reasoning About FDs

• Given some FDs, can usually infer additional FDs that are true E.g., *College* use case:



- However, building, roomNum → profName does NOT imply building → profName or roomNum → profName
- A particular FD *f* is *implied by* a set of FDs *F* if *f* holds whenever all FDs in *F* hold

Closure and Rules of Inference

- F⁺ = <u>closure of F</u> is the set of all FDs that are implied by F (includes "trivial dependencies": RHS ⊆ LHS)
- Armstrong's Axioms (X, Y, Z are sets of attributes):
 - <u>Reflexivity</u>: If $Y \subseteq X$, then $X \rightarrow \overline{Y}$
 - <u>Augmentation</u>: If $X \rightarrow Y$, then $XZ \rightarrow YZ$ for any Z
 - $\underline{Transitivity}: \text{ If } X \rightarrow Y \text{ and } Y \rightarrow Z, \text{ then } X \rightarrow Z$
- Some additional rules (that follow from AA):
 - Union: If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$
 - Decomposition: If $X \rightarrow YZ$, then $X \rightarrow Y$ and $X \rightarrow Z$

Attribute Closure **Example: Using Inference Rules** • If we just want to check if a particular FD $X \rightarrow Y$ is in • Suppose relation R has three attributes F⁺, then: A,B,C and these FDs: $A \rightarrow B$ 1) Compute the *attribute closure* of X (denoted X⁺) $B \rightarrow C$ with respect to F • X^+ = Set of all attributes A such that $X \rightarrow A$ is in F^+ • Using reflexivity **Repeatedly applying** • initialize X⁺ := X $A \rightarrow A, AB \rightarrow A, etc.$ these rules to the set Repeat until no change to X⁺: if $U \rightarrow V$ in F such that U is in X⁺, then add V to X⁺ of FDs yields the Using transitivity closure of F, which is F⁺ $A \rightarrow C$ 2) Check if Y is in X⁺ Q. How can attribute closure be used to determine if a set of Using augmentation attributes is a key for a relation? $AC \rightarrow BC, AB \rightarrow AC, AB \rightarrow BC$ Four-way relationship: a contract for parts **Exercise** 4 between a supplier and a *department* for a project • Contracts(*cid*,*sid*,*jid*,*did*,*pid*,*qty*,*value*), and: C is the primary key: $C \rightarrow CSJDPQV$ Project purchases each part using single contract: $JP \rightarrow C$ Dept purchases at most 1 part from a supplier: $SD \rightarrow P$ • Show that SDJ is a superkey for Contracts • JP \rightarrow C, C \rightarrow CSJDPQV *imply* JP \rightarrow CSJDPQV (by transitivity) (shows that JP is a superkey) • SD \rightarrow P *implies* SDJ \rightarrow JP (by augmentation) • SDJ \rightarrow JP, JP \rightarrow CSJDPQV *imply* SDJ \rightarrow CSJDPQV (by transitivity) thus SDJ is a superkey