
CS	133:	Databases	

Fall	2019	
Lec	21	–	11/21	
Database	Design	

Prof.	Beth	Trushkowsky	

Warm-up	Exercise	

(See	exercise	sheet.	You	can	start	before	class.)	

birthday	

name	 address	

name	

Bars	Drinkers	

ssn	

Owns	

phone	

Friends	

friend1	 friend2	

	CREATE TABLE Owns
 (ssn CHAR(11),

bar_name CHAR(20),
PRIMARY KEY (bar_name),
FOREIGN KEY (ssn) REFERENCES Drinkers,
FOREIGN KEY (bar_name) REFERENCES Bars(name))

NOT NULL	?	

Answer:	Doesn’t	
enforce	that	each	Bar	
has	a	tuple	in	Owns.	

Goals	for	Today	

•  Understand	the	issues	that	can	occur	from	a	
poorly	designed	relational	schema	

•  Learn	about	the	goals	and	process	of	schema	
refinement	

•  Discuss	the	role	of	functional	dependencies	in	
discovering	and	fixing	issues	in	a	design	

Review:	Database	Design	

•  Requirements	Analysis	
–  	user	needs;	what	must	database	do?	

•  Conceptual	Design	
–  	high	level	description	(often	done	w/ER	model)	

•  Logical	Design	
–  	translate	ER	into	DBMS	data	model	

•  Schema	Refinement		
–  	consistency,	normalization	

•  Physical	Design	-	indexes,	disk	layout	
•  Security	Design	-	who	accesses	what	

Table	and	Column	constraints	(SQLite)	

https://www.sqlite.org/lang_createtable.html	

Table	and	Column	constraints	(SQLite)	
•  Column	definition	

•  Table	constraint	

https://www.sqlite.org/lang_createtable.html	

Examples:	Create	Table	
CREATE TABLE Friends (
 friend1 VARCHAR(40),
 friend2 VARCHAR(40),

 PRIMARY KEY(friend1,friend2),
 CONSTRAINT notSame CHECK (friend1 <> friend2)
);
CREATE TABLE Bar_Owns(
 name VARCHAR(40) PRIMARY KEY,
 address VARCHAR(40) NOT NULL,

 phone CHAR(12) DEFAULT “555-555-5555”,
 owner CHAR(11) NOT NULL,

 
 FOREIGN KEY owner REFERENCES Drinkers(ssn)  
 ON DELETE NO ACTION

); For	cross-relation	
constraints,	need	
assertion	statement!	

Triggers	

•  Trigger:	procedure	that	starts	automatically	if	specified	
changes	occur	to	the	DBMS	

•  Example,	SQL:1999	syntax:	

CREATE TRIGGER youngSailorUpdate
AFTER INSERT ON SAILORS
REFERENCING NEW TABLE NewSailors
FOR EACH STATEMENT

INSERT
INTO YoungSailors(sid, name, age, rating)
SELECT sid, name, age, rating
FROM NewSailors N
WHERE N.age <= 18

Combos:	Entities	and	Relationships	

•  For	one-to-many	relationship,	combining	entity	set	and	
relationship	set	into	one	relation	helped	us	capture	
participation	constraint	

•  What	about	combining	Bars	and	Sells	as	Bar_Sells?	

address	 type	

beer_name	

Beers	Bars	

bar_name	

Sells	

price	

Redundancy!	

Schema	Refinement	

•  Start	with	initial	relational	schema,	either	
from	scratch	or	from	E/R	modeling	

•  Schema	refinement	objective:		
could	there	be	issues	caused	by	data	
redundancy?	

•  Next:	why	redundancy	is	“bad”	

Intuitively,	redundancy	arises	when	a	
relational	schema	forces	an	association	
between	attributes	that	is	not	natural		

•  Consider	a	relation	obtained	from	Hourly_Emps:	
			Hourly_Emps	(ssn,	name,	lot,	rating,	wage_per_hr,	hrs_per_wk)	

•  Assume	we	know,	from	application	semantics,:	
–  ssn	uniquely	identifies	an	employee	(is	a	key)	

–  An	employee’s	rating	determines	their	wage_per_hr	

Example:		Hourly_Emps	

Note	on	notation:	can	denote	a	relation	schema	
by	listing	its	attributes,	e.g.,		SNLRWH	
	
à	the	set	of	attributes	{S,N,L,R,W,H}	

Hourly_Emps	(instance)	
S N L R W H
123-22-3666 Attishoo 48 8 10 40
231-31-5368 Smiley 22 8 10 30
131-24-3650 Smethurst 35 5 7 30
434-26-3751 Guldu 35 5 7 32
612-67-4134 Madayan 35 8 10 40

Redundancy	Problems	

Update	anomaly:	
What	if	we	change	W	
in	this	tuple	only?	

Deletion	anomaly:	
What	if	we	delete	all	
employees	with	

rating	5?	

Insertion	anomaly:	
What	if	we	want	to	insert	an	employee	and	
don’t	know	the	hourly	wage	their	rating?	
(or	we	get	it	wrong?)	

Decomposing	a	Relation	

•  Redundancy	can	be	removed	by	“chopping”	
the	relation	into	pieces.	

Hourly_Emps2	

Wages	

S N L R H
123-22-3666 Attishoo 48 8 40
231-31-5368 Smiley 22 8 30
131-24-3650 Smethurst 35 5 30
434-26-3751 Guldu 35 5 32
612-67-4134 Madayan 35 8 40

R W
8 10
5 7

We’ll	see	how	a	type	of	integrity	constraint,	called	
functional	dependencies,	is	used	to	drive	this	“chopping”	process	

Taming	Schema	Redundancy	

•  Integrity	constraints,	in	particular	functional	
dependencies,	can	be	used	to	identify	schemas	
with	problems	and	to	suggest	refinements	

	
•  Main	refinement	technique:		decomposition		
–  E.g.,	replacing	ABCD	(via	projection)	with:	

•  AB	and	BCD,	or		
•  ACD	and	ABD,	or	
•  Etc.	

•  Decomposition	should	be	used	judiciously:	
–  Is	there	reason	to	decompose	a	relation?	
– What	problems	(if	any)	does	the	decomposition	cause?	

•  A	set	of	fields	is	a	candidate	key	(shortened	as	just	key)	for	a	
relation	if:	
1.  No	two	distinct	tuples	can	have	the	same	values	in	all	

candidate	key	fields,	and	
2.  This	is	not	true	for	any	subset	of	the	key’s	attributes.	
	 		

	
	
	

•  A	candidate	key	is	minimal.	
If	AB	is	a	candidate	key,	then	neither	A	nor	B	is	a	key	on	its	
own.	

•  A	superkey	is	not	necessarily	minimal	(although	it	could	be)	
–  If	AB	is	a	candidate	key,	then	ABC,	ABD,	and	even	AB	are	superkeys.	

Q.	Consider	relation	R(a,b,c).		
For	a	fixed	setting	of	a	and	b	values,	how	
many	different	c	values	could	there	be?	

Keys	(Review)	 Functional	Dependencies	

•  Let	X	and	Y	be	sets	of	attributes	in	a	relation	R	
•  A	functional	dependency	(FD)	has	the	form	X	→	Y		

•  If	two	tuples	in	R	have	same	values	for	all	attributes	in	X,	
then	they	must	also	have	same	values	for	all	attributes	in	Y	

	
	
	

•  (More	formally):	A	functional	dependency	X	→	Y	holds	over	
relation	schema	R	if,	for	every	allowable	instance	r	of	R:	
						
t1 ∈ r, t2 ∈ r, πX (t1) = πX (t2) implies πY (t1) = πY (t2)	

Can	read	“à”	as	
“determines”	

t1	

t2	

X	 Y	
same	

same	

also	same	

also	same	

Functional	Dependencies	(cntd)	

•  Where	do	FDs	come	from?	
–  Real-world	integrity	constraints	and	semantics	

	
•  Keys	redefined	as	FDs	with	set	of	attributes	K	and	
relation	R:	
1.  	if	K	→	all	(other)	attributes	of	R	

		K	is	a	“super	key”	

2.  And	if	no	proper	subset	of	K	satisfies	the	above	
condition,	then	
	K	is	minimal	(and	thus	a	candidate	key)	

Exercise	3:	Constructing	FDs	

•  What	functional	dependencies	do	you	think	
would	make	sense	for	this	application?	

address	 type	

name	

Beers	Bars	

name	

Sells	

price	

Bar_name	à	address	
beer_name	à	type	
bar_name,	beer_name	à	price	

•  Given	some	FDs,	can	usually	infer	additional	FDs	that	are	true		
E.g.,	College	use	case:	

	

	
	
	
•  However,	building,	roomNum	→	profName	 		

	does	NOT	imply		building	→	profName 	or		roomNum	→	profName	

•  A	particular	FD	f	is	implied	by	a	set	of	FDs	F		if	f	holds	
whenever	all	FDs	in	F	hold	

Reasoning	About	FDs	

Union	rule	
(opposite:	decomposition)	

Transitivity	rule	

buildling,	roomNum	→	roomNum	

profId	→	profName		 	and		
profId	→	dept	
	
implies:	
profId	→	profName,	dept	

profId	→	dept	 	and			
dept	→	building	
	
implies:	
profId	→	building 		

Closure	and	Rules	of	Inference	

•  F+	=	closure	of		F		is	the	set	of	all	FDs	that	are	implied	by	F				
(includes	“trivial	dependencies”:	RHS	⊆	LHS)	

•  Armstrong’s	Axioms	(X,	Y,	Z	are	sets	of	attributes):	
–  Reflexivity:		If		Y	⊆	X,		then			X	→	Y		
–  Augmentation:		If		X	→	Y,		then			XZ	→	YZ			for	any	Z	
–  Transitivity:		If		X	→	Y		and		Y	→	Z,		then			X	→	Z	
	
	

•  Some	additional	rules	(that	follow	from	AA):	
–  Union:			If	X	→	Y		and		X	→	Z,			then		X	→	YZ	
–  Decomposition:			If	X	→	YZ,			then		X	→	Y		and		X	→	Z	
	

Example:	Using	Inference	Rules	

•  Suppose	relation	R	has	three	attributes	
A,B,C	and	these	FDs:	
A	→	B	
B	→	C	

•  Using	reflexivity	
A	→	A,	AB	→	A,	etc.	
	

•  Using	transitivity	
A	→	C	
	

•  	Using	augmentation	
AC	→	BC,	AB	→	AC,	AB	→	BC	

Repeatedly	applying	
these	rules	to	the	set	
of	FDs	yields	the	
closure	of	F,	which	is	F+	

Attribute	Closure	
	

•  If	we	just	want	to	check	if	a	particular	FD	X	→Y	is	in	
F+,	then:	

				1)	Compute	the	attribute	closure	of	X	(denoted	X+)	
	with	respect	to	F		
•  X+	=		Set	of	all	attributes	A	such	that	X	→	A	is	in	F+	

•  initialize		X+	:=	X	
•  Repeat	until	no	change	to	X+:	
		 	if	U	→	V	in	F		such	that	U	is	in	X+,	then	add	V	to	X+	
	

				2)	Check	if	Y	is	in	X+	
	

	
Q.	How	can	attribute	closure	be	
used	to	determine	if	a	set	of	
attributes	is	a	key	for	a	relation?	

Exercise	4	

•  Contracts(cid,sid,jid,did,pid,qty,value),	and:	
C	is	the	primary	key:			C	→	CSJDPQV	
Project	purchases	each	part	using	single	contract:		JP	→	C	
Dept	purchases	at	most	1	part	from	a	supplier:	SD	→	P	

•  Show	that	SDJ	is	a	superkey	for	Contracts	
•  JP	→	C,		C	→	CSJDPQV			imply			JP	→	CSJDPQV	

(by	transitivity)		(shows	that	JP	is	a	superkey)	

•  SD	→	P			implies			SDJ	→	JP		
	(by	augmentation)	

•  SDJ	→	JP,			JP	→	CSJDPQV			imply			SDJ	→	CSJDPQV	
				 	(by	transitivity)	thus	SDJ	is	a	superkey	

Four-way	relationship:	a	
contract	for	parts	

between	a	supplier	and	
a	department	for	a	

project	

