Rules of Inference

- **Armstrong’s Axioms** (X, Y, Z are sets of attributes):
 - Reflexivity: If $Y \subseteq X$, then $X \rightarrow Y$
 - Augmentation: If $X \rightarrow Y$, then $XZ \rightarrow YZ$ for any Z
 - Transitivity: If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$

- Some additional rules (that follow from AA):
 - Union: If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$
 - Decomposition: If $X \rightarrow YZ$, then $X \rightarrow Y$ and $X \rightarrow Z$
 - Pseudo-transitivity: If $X \rightarrow Y$ and $YW \rightarrow Z$, then $XW \rightarrow Z$

Warm-up Exercise

(See exercise sheet. You can start before class.)

Given: $X \rightarrow Y$ and $YW \rightarrow Z$

- $XW \rightarrow YW$ (augmentation)
- $XW \rightarrow Z$ (transitivity)

Goals for Today

- Learn how to decompose a relation to adhere to Boyce-Codd Normal Form (BCNF)
- Understand lossy vs. loss-less decompositions
- Reason about issues that can result even if a decomposition is loss-less
The Issue with Non-Key FDs

- Why does the FD $\text{rating} \rightarrow \text{hourly_wages}$ yield redundancy issues?

- Rating is a non-key field, so there could be duplicate pairs of particular $\{\text{rating, hourly_wages}\}$ in this relation.

- By separating $\{\text{rating, hourly_wages}\}$ into its own relation, we resolve redundancy!
 - Can regain the original data via natural join.

“Normal” Forms for a Schema

- Idea: decompose relation into two or more relations to remove redundancy. Decomposition guided by FDs!

- Boyce-Codd Normal Form (BCNF)
 - Adhere to simple conditions and anomalies caused by data redundancy cannot occur

- BCNF definition: A Relation R with FDs F is in BCNF if, for all $X \rightarrow A$ in F^+
 - $A \in X$ (a trivial FD), or
 - X is a superkey for R

- I.e., R is in BCNF if the only non-trivial FDs over R are key constraints.

Each tuple in R is an entity or relationship identified by a key and described by other attributes.

Problems with Decompositions

- There are three potential problems to consider:
 1) May be impossible to reconstruct the original relation! (Lossiness)
 2) Checking functional dependencies may require joins
 3) Some queries become more expensive due to joins

 - e.g., How much does Smiley earn?

<table>
<thead>
<tr>
<th>S</th>
<th>N</th>
<th>L</th>
<th>R</th>
<th>W</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>123-22-3666</td>
<td>Attishoo</td>
<td>48</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>231-31-5368</td>
<td>Smiley</td>
<td>22</td>
<td>8</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>131-24-3650</td>
<td>Smethurst</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>30</td>
</tr>
<tr>
<td>434-26-3751</td>
<td>Gulu</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>32</td>
</tr>
<tr>
<td>612-67-4134</td>
<td>Madayan</td>
<td>35</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
</tbody>
</table>

Lossiness (#1) cannot be allowed
#2 and #3 are design tradeoffs
Must consider these issues vs. redundancy

Lossess vs. Lossless Decomposition

- Example schema: Oversees(ProjectId, EmployeeId, DepartmentId)

- FDs:
 - $E \rightarrow P$ (an employee oversees only one project)
 - $D \rightarrow P$ (a dept works on only one project)
 - $E \rightarrow D$ (an employee only works with one dept for these projects)

- Example instance of Oversees:

<table>
<thead>
<tr>
<th>Project</th>
<th>Employee</th>
<th>Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comet</td>
<td>Alice</td>
<td>Physics</td>
</tr>
<tr>
<td>Comet</td>
<td>Bob</td>
<td>Astronomy</td>
</tr>
<tr>
<td>Genomics</td>
<td>Carl</td>
<td>Biology</td>
</tr>
<tr>
<td>Genomics</td>
<td>Denise</td>
<td>Biology</td>
</tr>
</tbody>
</table>
Lossy vs. Lossless Decomp (cntd)

- Redundancy with the FD $D \rightarrow P$

<table>
<thead>
<tr>
<th>Project</th>
<th>Employee</th>
<th>Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comet</td>
<td>Alice</td>
<td>Physics</td>
</tr>
<tr>
<td>Comet</td>
<td>Bob</td>
<td>Astronomy</td>
</tr>
<tr>
<td>Genomics</td>
<td>Carl</td>
<td>Biology</td>
</tr>
<tr>
<td>Genomics</td>
<td>Denise</td>
<td>Biology</td>
</tr>
</tbody>
</table>

- Proposed decomposition:

<table>
<thead>
<tr>
<th>Department</th>
<th>Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics</td>
<td>Comet</td>
</tr>
<tr>
<td>Astronomy</td>
<td>Comet</td>
</tr>
<tr>
<td>Biology</td>
<td>Genomics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Department</th>
<th>Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics</td>
<td>Comet</td>
</tr>
<tr>
<td>Astronomy</td>
<td>Comet</td>
</tr>
<tr>
<td>Biology</td>
<td>Genomics</td>
</tr>
</tbody>
</table>

Lossy vs. Lossless Decomp (cntd)

- Decomposition attempt #2, for FD $D \rightarrow P$:

<table>
<thead>
<tr>
<th>Department</th>
<th>Employee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics</td>
<td>Alice</td>
</tr>
<tr>
<td>Astronomy</td>
<td>Bob</td>
</tr>
<tr>
<td>Biology</td>
<td>Carl</td>
</tr>
<tr>
<td>Biology</td>
<td>Denise</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Department</th>
<th>Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics</td>
<td>Comet</td>
</tr>
<tr>
<td>Astronomy</td>
<td>Comet</td>
</tr>
<tr>
<td>Biology</td>
<td>Genomics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Department</th>
<th>Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics</td>
<td>Comet</td>
</tr>
<tr>
<td>Astronomy</td>
<td>Comet</td>
</tr>
<tr>
<td>Biology</td>
<td>Genomics</td>
</tr>
</tbody>
</table>

Tuples not in original!

Loss-less Decomposition

- Decomposition of R into X and Y is lossless-join w.r.t. a set of FDs F if, for every instance r that satisfies F:

$$\pi_X(r) \bowtie \pi_Y(r) = r$$

- Decomposition of R into X and Y is lossless with respect to F if and only if F contains:

$$X \cap Y \rightarrow X, \text{ or } X \cap Y \rightarrow Y$$

In other words, the common attributes form a key for X or Y

Corollary: If $Z \rightarrow W$ holds over R and $Z \cap W$ is empty, then decomposition of R into ZW and $R-W$ is loss-less.

- In “Oversees” example, decomposing into $\{E,P\}$ and $\{D,P\}$ is lossy because the intersection (i.e., Project) is not a key of either resulting relation.
Loss-less Decomposition into BCNF

• Relation R has FDs F. If \(Z \rightarrow W \) in F violates BCNF:
 – decompose R into \(R - W \) and \(ZW \)
 (guaranteed to be loss-less)

Reasoning about BCNF

• Relation R with FDs F is in BCNF if, for all \(X \rightarrow A \) in F+
 – \(A \in X \) (a trivial FD), or
 – \(X \) is a superkey for R

Also recall that relations are sets of tuples

Example 1: Is Hourly_Emps in BCNF?

<table>
<thead>
<tr>
<th>Hourly_Emps</th>
<th>SNLRWH</th>
<th>N</th>
<th>L</th>
<th>R</th>
<th>W</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>123-22-3666</td>
<td>Attishoo</td>
<td>48</td>
<td>8</td>
<td>10</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>231-31-5368</td>
<td>Smiley</td>
<td>22</td>
<td>8</td>
<td>10</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>131-24-3650</td>
<td>Smethurst</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>434-26-3751</td>
<td>Guldu</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>612-67-4134</td>
<td>Madayan</td>
<td>35</td>
<td>8</td>
<td>10</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

• SNLRWH has FDs
 \(S \rightarrow SNLRWH \)
 \(R \rightarrow W \)
 In BCNF??
Example 2: Is Bar_Sells in BCNF?

- Combing Bars and Sells

 Bar_Sells (bar_name, beer_name, address, price)

- FDs (for just Bar_Sells):
 bar_name → address
 bar_name, beer_name → price

In BCNF?? (Exercise 2)

Examples: BCNF Decomposition

- Hourly_Emps

<table>
<thead>
<tr>
<th>S</th>
<th>N</th>
<th>L</th>
<th>R</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>123-22-3666</td>
<td>Attishoo</td>
<td>48</td>
<td>8</td>
<td>40</td>
</tr>
<tr>
<td>231-31-5368</td>
<td>Smiley</td>
<td>22</td>
<td>8</td>
<td>30</td>
</tr>
<tr>
<td>131-24-3650</td>
<td>Smethurst</td>
<td>35</td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>434-26-3751</td>
<td>Guildu</td>
<td>35</td>
<td>5</td>
<td>32</td>
</tr>
<tr>
<td>612-67-1434</td>
<td>Madayan</td>
<td>35</td>
<td>8</td>
<td>40</td>
</tr>
</tbody>
</table>

- Bar_sells

 Wages

<table>
<thead>
<tr>
<th>S</th>
<th>R</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

Bar_sells violating FD: bar_name → address

Transitive Dependencies

- Violating FD involves attribute(s) depending on non-key attribute(s)

 S → R → W

 Hourly_Emps violating FD: R → W

Partial Dependencies

- Violating FD involves attribute(s) depending on attribute(s) that are proper subset of a key

 Beer_name, Bar_name → address

 Key = {beer_name, bar_name}
Refining an ER Diagram

- 1st diagram becomes:
 - Workers\(\{S,N,L,D,Si\}\)
 - Departments\(\{D,M,B\}\)
 - Lots associated w/ workers

- Suppose all workers in a dept are assigned the same lot: \(D \rightarrow L\)

- Redundancy; fixed by:
 - Workers\(2\{S,N,D,Si\}\)
 - Dept_Lots\(\{D,L\}\)
 - Departments\(\{D,M,B\}\)

- Can fine-tune this:
 - Workers\(2\{S,N,D,Si\}\)
 - Departments\(\{D,M,B,L\}\)

Repeated Decomposition

- **Repeated decomposition**
 - May be needed to get set of relations that are in BCNF
 - Can confirm BCNF for original relation \(R\) using only FDs \(F\), but *each decomposed relation* \(R_i\) must be checked for violating each [relevant] FD in \(F^+\)

- Using *attribute closure* to check decomposed \(R_i\)
 - To confirm \(R_i\) is in BCNF: for each subset of attributes \(\alpha\) in \(R\), check that \(\alpha^+\) (under \(F\)):
 - Contains no attributes of \(R_i\) – \(\alpha\), or
 - Contains all attributes of \(R_i\)

Exercise 3: BCNF Decomposition

- Candidate key=\{id, advisorId\}
- FD violation? Both!
- Decomposed into three relations:
 - \(R_1 = \{id, name, dorm\}\)
 - \(R_2 = \{advisorId, advisorName\}\)
 - \(R_3 = \{id, advisorId\}\)

An Aside: *Multiple* Candidate Keys

- For relation *Bars*\(\{bar_name, address\}\), suppose we knew:
 - \(bar_name \rightarrow address\)
 - \(address \rightarrow bar_name\)
 - Either attribute could serve as primary key!

- When creating a relation in SQL, use *one* candidate key as the primary key
 - Enforce others using UNIQUE key word
 - Commonly used when use *surrogate key* as a primary key
Dependency Preservation

• Decomposed example from “Oversees”:
 – E → P (an employee oversees only one project)
 – D → P (a dept works on only one project)
 – E → D (an employee only works with one dept for these projects)

• How can we check E → P ??
 (an employee oversees only one project)

Dependency Preserving Decomposition

• Dependency preserving decomposition (Intuition):
 – If R is decomposed into X, Y and Z, and we enforce the FDs that hold individually on X, Y, and Z
 → then all FDs that were given to hold on R must also hold

• The projection of F on attribute set X (denoted F_X):
 – The set of FDs $U \rightarrow V$ in F^+ (closure of F, not just F!) such that all of the attributes on both sides of the FD are in X
 – That is: U and V are subsets of X

Exercise 4: Movie showings

a. {movie, city} and {movie, theater}
b. After decomposing on Theater → city, can’t preserve the FD movie, city → theater
Movie showings: decomposition issue

- Showings (movie, theater, city)
- FDs:
 - movie, city \rightarrow theater \textit{implied:} movie, theater \rightarrow city
 - theater \rightarrow city
- Decompose on theater \rightarrow city:

<table>
<thead>
<tr>
<th>Theater</th>
<th>City</th>
<th>Movie</th>
</tr>
</thead>
<tbody>
<tr>
<td>ArcLight</td>
<td>Pasadena</td>
<td>ArcLight</td>
</tr>
<tr>
<td>iPic</td>
<td>Pasadena</td>
<td>iPic</td>
</tr>
<tr>
<td>Theater</td>
<td>Movie</td>
<td></td>
</tr>
<tr>
<td>ArcLight</td>
<td>The Martian</td>
<td></td>
</tr>
<tr>
<td>iPic</td>
<td>The Martian</td>
<td></td>
</tr>
</tbody>
</table>

Third Normal Form (3NF)

- Definition: \(\text{for all } X \rightarrow A \in F^+\)
 - \(A \subseteq X\) \text{ (called a trivial FD), or}
 - \(X\) is a superkey for \(R\), \text{OR}
 - \(A\) is a part of some candidate key for \(R\)
- Allows FDs like non-key \rightarrow partial key
- 3NF but not BCNF?
 - have overlapping composite candidate keys

Always possible to get a loss-less, dependency-preserving decomposition into 3NF!

Alternate Formulation of 3NF & BCNF

\text{Every non-key attribute must describe a fact about “the key, the whole key, and nothing but the key, so help me Codd”}

- Normal forms increasingly restrictive
 - 1st NF ⊃ 2nd NF ⊃ 3rd NF ⊃ Boyce-Codd NF