| CS 133: Databases <br> Fall 2019 <br> Lec 22 -11/26 <br> Database Design <br> Prof. Beth Trushkowsky | Warm-up Exercise <br> (See exercise sheet. You can start before class.) <br> Given: $X \rightarrow Y$ and $Y W \rightarrow Z$ <br> XW $\rightarrow$ YW (augmentation) <br> XW $\rightarrow$ Z (transitivity) |
| :---: | :---: |
| Rules of Inference <br> - Armstrong's Axioms ( $X, Y, Z$ are sets of attributes): <br> - Reflexivity: If $Y \subseteq X$, then $X \rightarrow Y$ <br> - Augmentation: If $X \rightarrow Y$, then $X Z \rightarrow Y Z$ for any $Z$ <br> - Transitivity: If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$ <br> - Some additional rules (that follow from AA): <br> - Union: If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow Y Z$ <br> - Decomposition: If $X \rightarrow Y Z$, then $X \rightarrow Y$ and $X \rightarrow Z$ <br> - Pseudo-transitivity: If $\mathrm{X} \rightarrow \mathrm{Y}$ and $\mathrm{YW} \rightarrow \mathrm{Z}$, then $\mathrm{XW} \rightarrow \mathrm{Z}$ | Goals for Today <br> - Learn how to decompose a relation to adhere to Boyce-Codd Normal Form (BCNF) <br> - Understand lossy vs. loss-less decompositions <br> - Reason about issues that can result even if a decomposition is loss-less |

## The Issue with Non-Key FDs

- Why does the FD rating $\rightarrow$ hourly_wages yield redundancy issues?

| S | N | L | R | W | H |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| 123-22-3666 | Attishoo | 48 | 8 | 10 | 40 |  |
| $231-31-5368$ | Smiley | 22 | 8 | 10 | 30 |  |
| $131-24-3650$ | Smethurst | 35 | 5 | 7 | 30 |  |
| $434-26-3751$ | Guldu | 35 | 5 | 7 | 32 |  |
| $612-67-4134$ | Madayan | 35 | 8 | 10 | 40 |  |
| Hourly_Emps |  |  |  |  |  |  |

- Rating is a non-key field, so there could be duplicate pairs of particular \{rating, hourly_wages\} in this relation
- By separating \{rating, hourly_wages\} into its own relation, we resolve redundancy!
- Can regain the original data via natural join


## "Normal" Forms for a Schema

- Idea: decompose relation into two or more relations to remove redundancy. Decomposition guided by FDs!
- Boyce-Codd Normal Form (BCNF)
- Adhere to simple conditions and anomalies caused by data redundancy cannot occur
- BCNF definition:

A Relation R with FDs F is in BCNF if, for all $\mathrm{X} \rightarrow \mathrm{A}$ in $\mathrm{F}^{+}$

- $A \in X$ (a trivial $F D$ ), or
- X is a superkey for R
- I.e.,: $R$ is in BCNF if the only non-trivial FDs over $R$ are key constraints

Each tuple in $R$ is an entity or relationship identified by a key and described by other attributes

## Lossy vs. Lossless Decomposition

- Example schema:

Oversees(Projectld, Employeeld, Departmentld)

- FDs:
$-E \rightarrow P$ (an employee oversees only one project)
$-D \rightarrow P$ (a dept works on only one project)
$-E \rightarrow D$ (an employee only works with one dept for these projects)
- Example instance of Oversees:

| Project | Employee | Department |
| :--- | :--- | :--- |
| Comet | Alice | Physics |
| Comet | Bob | Astronomy |
| Genomics | Carl | Biology |
| Genomics | Denise | Biology |

## Lossy vs. Lossless Decomp (cntd)

- Redundancy with the FD $\mathrm{D} \rightarrow \mathrm{P}$

| Project | Employee | Department |
| :--- | :--- | :--- |
| Comet | Alice | Physics |
| Comet | Bob | Astronomy |
| Genomics | Carl | Biology |
| Genomics | Denise | Biology |

- Proposed decomposition:

| Project | Employee |
| :--- | :--- |
| Comet | Alice |
| Comet | Bob |
| Genomics | Carl |
| Genomics | Denise |


| Department | Project |
| :--- | :--- |
| Physics | Comet |
| Astronomy | Comet |
| Biology | Genomics |

## Lossy vs. Lossless Decomp (cntd)

- Decomposition attempt \#2, for FD D $\rightarrow$ P:

| Department | Employee |  | Department | Project |
| :---: | :---: | :---: | :---: | :---: |
| Physics | Alice |  | Physics | Comet |
| Astronomy | Bob |  | Astronomy | Comet |
| Biology | Carl |  | Biology | Genomics |
| Biology | Denise |  |  |  |
|  | Project | Employee | Department |  |
|  | Comet | Alice | Physics |  |
|  | Comet | Bob | Astronomy |  |
|  | Genomics | Carl | Biology |  |
|  | Genomics | Denise | Biology |  |

## Lossy vs. Lossless Decomp (cntd)

- Redundancy with the FD $\mathrm{D} \rightarrow \mathrm{P}$

| Project | Employee |
| :--- | :--- |
| Comet | Alice |
| Comet | Bob |
| Genomics | Carl |
| Genomics | Denise |



| Project | Employee | Department |
| :--- | :--- | :--- |
| Comet | Alice | Physics |
| Comet | Alice | Astronomy |
| Comet | Bob | Physics |
| Comet | Bob | Astronomy |
| $\ldots$. | $\ldots$. | $\ldots$ |

## Loss-less Decomposition

- Decomposition of R into X and Y is lossless-join w.r.t. a set of FDs F if, for every instance $r$ that satisfies F:

$$
\pi_{X}{ }^{(r)} \bowtie \pi_{Y}{ }^{(r)}=r
$$

- Decomposition of R into X and Y is lossless with respect to F if and only if $\mathrm{F}^{+}$contains:

$$
\begin{array}{l|l}
\mathrm{X} \cap \mathrm{Y} \rightarrow \mathrm{X}, \text { or } \\
\mathrm{X} \cap \mathrm{Y} \rightarrow \mathrm{Y}
\end{array} \quad \begin{aligned}
& \text { In other words, the common } \\
& \text { attributes form a key for } X \text { or } Y
\end{aligned}
$$

Corollary: If $\mathrm{Z} \rightarrow \mathrm{W}$ holds over R and $\mathrm{Z} \cap \mathrm{W}$ is empty, then decomposition of R into $\mathbf{Z W}$ and $\mathbf{R}$ - $\mathbf{W}$ is loss-less.

- In "Oversees" example, decomposing into $\{E, P\}$ and $\{D, P\}$ is lossy because the intersection (i.e., Project) is not a key of either resulting relation


## Loss-less Decomposition into BCNF

- Relation $R$ has $F D s F$. If $Z \rightarrow W$ in $F$ violates $B C N F$ :
- decompose R into R-W and ZW
(guaranteed to be loss-less)



## Reasoning about BCNF

- If relation $R$ is in BCNF, then each field of a tuple provides a fact that cannot be inferred using FDs alone

| - Suppose we are told that the FD |
| :--- | :--- | :--- | :--- |
| $\mathrm{X} \rightarrow$ A holds for this relation: |$\quad$| X | Y | A |
| :--- | :--- | :--- |
| x | y 1 | a |
| x | y 2 | $?$ | | $\begin{array}{c}\text { Possible to } \\ \text { guess the value } \\ \text { of the missing } \\ \text { attribute! }\end{array}$ |
| :---: |

> We can infer missing value using the FD... this relation is not in BCNF.

## Reasoning about BCNF

- Relation $R$ with $F D s F$ is in BCNF if, for all $X \rightarrow A$ in $F^{+}$
$-A \in X$ (a trivial FD), or
- $X$ is a superkey for $R$


Also recall that relations are sets of tuples

## Example 1: Is Hourly_Emps in BCNF?

Hourly_Emps

| S | N | L | R | W | H |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $123-22-3666$ | Attishoo | 48 | 8 | 10 | 40 |
| $231-31-5368$ | Smiley | 22 | 8 | 10 | 30 |
| $131-24-3650$ | Smethurst | 35 | 5 | 7 | 30 |
| $434-26-3751$ | Guldu | 35 | 5 | 7 | 32 |
| $612-67-4134$ | Madayan | 35 | 8 | 10 | 40 |

- SNLRWH has FDs
$\mathrm{S} \rightarrow$ SNLRWH
$\mathrm{R} \rightarrow \mathrm{W}$
In BCNF??


## Example 2: Is Bar_Sells in BCNF?

- Combing Bars and Sells

Bar_Sells (bar name, beer name, address, price)


## Transitive Dependencies

- Violating FD involves attribute(s) depending on non-key attribute(s)


Hourly_Emps violating FD: $\mathrm{R} \rightarrow \mathrm{W}$

## Examples: BCNF Decomposition

- Hourly_Emps

| S | N | L | R | H |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 123-22-3666 | Attishoo | 48 | 8 | 40 | R | W |
| 231-31-5368 | Smiley | 22 | 8 | 30 | 8 | 10 |
| 131-24-3650 | Smethurst | 35 | 5 | 30 | 5 |  |
| 434-26-3751 | Guldu | 35 | 5 | 32 |  |  |
| 612-67-4134 | Madayan | 35 | 8 | 40 | Wages |  |

- Bar_sells Hourly_Emps2


Bars(bar_name, address)
Sells(bar_name, beer_name, price)

## Partial Dependencies

- Violating FD involves attribute(s) depending on attribute(s) that are proper subset of a key


[^0]
## Refining an ER Diagram

- 1st diagram becomes: Workers(S,N,L,D,Si) Departments(D,M,B)
- Lots associated w/ workers
- Suppose all workers in a dept are
 assigned the same lot: $\mathrm{D} \rightarrow \mathrm{L}$
- Redundancy; fixed by: Workers2(S,N,D,Si) Dept_Lots(D,L) Departments(D,M,B)
- Can fine-tune this:

Workers2(S,N,D,Si)
Departments(D,M,B,L)


## Repeated Decomposition

- Repeated decomposition
- May be needed to get set of relations that are in BCNF
- Can confirm BCNF for original relation $R$ using only FDs $F$, but each decomposed relation $R_{i}$ must be checked for violating each [relevant] FD in $\mathrm{F}^{+}$
- Using attribute closure to check decomposed $\mathrm{R}_{\mathrm{i}}$
- To confirm $R_{i}$ is in BCNF: for each subset of attributes $\alpha$ in $R_{i}$, check that $\alpha^{+}$(under $F$ ):
- Contains no attributes of $R_{i}-\alpha$, or
- Contains all attributes of $\mathrm{R}_{\mathrm{i}}$


## Exercise 3: BCNF Decomposition

- Candidate key=\{id, advisorld\}
- FD violation? Both!
- Decomposed into three relations:
- R1 = \{id, name, dorm $\}$
- R2 = \{advisorld, advisorName\}
- R3 $=\{$ id, advisorld $\}$


## An Aside: Multiple Candidate Keys

- For relation Bars(bar_name, address), suppose we knew:
- bar_name $\rightarrow$ address
- address $\rightarrow$ bar_name $\quad \begin{aligned} & \text { Either attribute could } \\ & \text { serve as primary key! }\end{aligned}$
- When creating a relation in SQL, use one candidate key as the primary key
- Enforce others using UNIQUE key word
- Commonly used when use surrogate key as a primary key


## Dependency Preservation

- Decomposed example from "Oversees":
$-E \rightarrow P$ (an employee oversees only one project)
- $D \rightarrow P$ (a dept works on only one project)
$-E \rightarrow D$ (an employee only works with one dept for these projects)

| Project | Department |
| :--- | :--- |
| Comet | Physics |
| Comet | Astronomy |
| Genomics | Biology |


| Department | Employee |
| :--- | :--- |
| Physics | Alice |
| Astronomy | Bob |
| Biology | Carl |
| Biology | Denise |

- How can we check E $\rightarrow$ P?? (an employee oversees only one project)


## Dependency Preserving Decompositions (Contd.)

- Decomposition of $R$ into $X$ and $Y$ is dependency preserving if $\left(F_{X} \cup F_{Y}\right)^{+}=F^{+}$ - i.e., we can check FDs on X and Y independently
- "Oversees" example, continued:
$-X=\{$ Employee, Department $\}, F_{X}=\{E \rightarrow D\}$
$-Y=\{$ Project, Department $\}, F_{Y}=\{D \rightarrow P\}$
- Does $\left(F_{X} \cup F_{Y}\right)+$ include $E \rightarrow P$ ?

YES! (transitive property)

## Dependency Preserving Decomposition

- Dependency preserving decomposition (Intuition):
- If $R$ is decomposed into $X, Y$ and $Z$, and we enforce the FDs that hold individually on $X, Y$, and $Z$
$\rightarrow$ then all FDs that were given to hold on R must also hold
- The projection of F on attribute set X (denoted $\mathrm{F}_{\mathrm{X}}$ ):
- The set of $\mathrm{FDs} \mathrm{U} \rightarrow \mathrm{V}$ in $\mathrm{F}^{+}$(closure of $F$, not just F ! ) such that all of the attributes on both sides of the FD are in $X$
- That is: $U$ and $V$ are subsets of $X$


## Exercise 4: Movie showings

a. \{movie, city\} and \{movie, theater\}
b. After decomposing on Theater $\rightarrow$ city, can't preserve the FD movie, city $\rightarrow$ theater

## Movie showings: decomposition issue

- Showings (movie, theater, city)
- FDs:
- movie, city $\rightarrow$ theater
- theater $\rightarrow$ city
implied:
movie, theater $\rightarrow$ city
- Decompose on theater $\rightarrow$ city:

| Theater | City |
| :--- | :--- |
| ArcLight | Pasadena |
| iPic | Pasadena |


| Theater | Movie |
| :--- | :--- |
| ArcLight | The Martian |
| iPic | The Martian |

Above decomposition could allow this to happen!

Violates FD movie, city $\rightarrow$ theater

## Third Normal Form (3NF)

- Definition: for all $X \rightarrow A$ in $\mathrm{F}^{+}$
$-A \in X$ (called a trivial $F D$ ), or
- $X$ is a superkey for $R$, OR
- A is a part of some candidate key for $R$
- Allows FDs like non-key $\rightarrow$ partial key
- $3 N F$ but not BCNF?
- have overlapping composite candidate keys

Always possible to get a loss-less, dependencypreserving decomposition into 3NF!
(may contain redundancy)


[^0]:    Bar_sells violating FD: bar_name $\rightarrow$ address

