
CS	133:	Databases	

Fall	2019	
Lec	23	–	12/3	

Database	Design:	OO	and	XML	
Prof.	Beth	Trushkowsky	

Warm-up	Exercise	

(See	exercise	sheet.	You	can	start	before	class.)	

To	avoid	anomalies	caused	by	data	redundancy.	

Goals	for	Today	

•  Understand	the	motivation	behind	object-
oriented	(OODBMS),	object-relational	(ORDBS),	
and	object-relational	mapping	(ORM)	

•  	Reason	about	non-relational	DBMSs	
	
•  Explore	XML:	semi-structured	data	model;	
querying	capability	

Reflections	on	the	Relational	Model		

•  Relations	are	the	key	concept	
–  Clean	and	simple,	efficient	implementation	
–  Primitive	data	types,	e.g.,	strings,	integer,	(and	BLOB)	
– Great:	normalization,	query	optimization,	and	theory		

	

•  Some	issues	
– No	complex	data	types	or	objects	

– No	inheritance	or	encapsulation	

Stonebraker’s	Classification		
of	DBMS	Applications	

•  Classification	of	the	applications	that	require	DBMS	
technology	
–  One	size	doesn’t	fit	all!	
–  RDBMS,	object-relational	DBMS,	object-oriented	DBMS	

http://db.cs.berkeley.edu/papers/Informix/www.informix.com/informix/corpinfo/zines/whitpprs/illuswp/wave.htm	

Stonebraker’s	Classification		
of	DBMS	Applications	

•  Text	editor	application	
– Open	file,	make	changes,	
write	file	back	to	disk	

–  “Queries”	
•  getFile()	
•  writeFile()	

– Data	Model	
•  Arbitrary	sequence	of	characters	

http://db.cs.berkeley.edu/papers/Informix/www.informix.com/informix/corpinfo/zines/whitpprs/illuswp/wave.htm	

File	System	

Stonebraker’s	Classification		
of	DBMS	Applications	

•  Business	data	processing	
–  Store	a	collection	of	
structured	records,	each	of	
which	has	attributes		

–  Data	are	simple	integers,	
floats	and	character	strings	

http://db.cs.berkeley.edu/papers/Informix/www.informix.com/informix/corpinfo/zines/whitpprs/illuswp/wave.htm	

RDBMS	

File	System	

– Relations	with	SQL	queries	
create table emp (
 name varchar(30),
 age int,
 salary float,
 dept varchar(20));

select name
from emp
where age < 40 and salary > 40000;

Stonebraker’s	Classification		
of	DBMS	Applications	

•  Facilities	planner	for	a	
company	that	has	an		
open	floor	plan	
–  Occasionally	rearrange	floor	
plan	to	reclaim	space	

http://db.cs.berkeley.edu/papers/Informix/www.informix.com/informix/corpinfo/zines/whitpprs/illuswp/wave.htm	

File	System	

RDBMS	

create table employee (
 name varchar(30),
 space polygon,
 adjacency set-of (employee));

create table floors (
 number int,
 asf swiss-cheese-polygon);

spaceReclamation()
{
 read all employees;
 read all floors;
 compact();
 write all employees;
}

Complex	
data	types!	

Not	unlike	CAD	applications	that	motivated	these	systems	

With	
persistent	
variables,	
only	need	

compact()

OODBMS	

Stonebraker’s	Classification		
of	DBMS	Applications	

http://db.cs.berkeley.edu/papers/Informix/www.informix.com/informix/corpinfo/zines/whitpprs/illuswp/wave.htm	

File	System	

RDBMS	

OODBMS	

Object-relational	
DBMS	(ORDBMS)!	

Exercise	2:	Design	relational	schema	

•  Possible	relations:	
–  Books(booktitle,	year,	pub_name,	pub_branch)	
–  Authored(booktitle,	author_name,	position)	
–  HasKeyword(booktitle,	keyword)	
–  Publisher(name,	branch,	address)	

•  Might	also	have:	
–  Authors(name)	
–  Keywords(word)	

	
•  Wouldn’t	it	be	nice	if	we	could	do	this:	

Example	adapted	from:	Database	System	Concepts	-	6th	Edition	

Title	 Author_array	 Publisher_info	 Year	 Keyword_set	

Compilers	 [Smith,	Jones]	 (McGraw-Hill,	New	
York,	55	Park	Ave)	

2019	 {parsing,	analysis}	

Networks	 [Jones,	Frick]	 (Oxford,	London,	12	
Oxford	St)	

2020	 {Internet,	Web}	

Running	Example:		
Dinky’s	Entertainment	Company	

•  Hollywood	conglomerate	
–  Collection	of	cartoon	characters	(e.g.,	Herbert	the	Worm)	
–  Films	featuring	Herbert	
–  Licensing	for	images,	voice,	action	figures,	etc.	

•  Database	need	
– Manage	sales	and	leasing	records	for	Herbert-related	
products,	as	well	as	films	

Disclaimer:	the	following	schema	examples	use	features	
proposed	in	the	SQL:1999	standard.	
	
Specific	DBMSs	may	not	comply	with	syntax/features!	

Complex	Types:	Abstract	Data	Types	

•  Motivation:	data	types	that	represent	image,	
voice,	video	footage	
–  Richer	structure	
–  Special	functions	to	manipulate	objects	of	these	types	

CREATE TABLE Frames(
frameno integer,
image jpeg_image,
category integer);

SELECT F.frameno, thumbnail(F.image)  
FROM Frames F
WHERE is_sunrise(F.image) AND is_herbert(F.image);

CREATE ABSTRACT DATA TYPE jpeg_image();

CREATE FUNCTION is_sunrise(jpeg_image)
RETURNS boolean AS EXTERNAL NAME
‘file.class’ LANGUAGE java;

Complex	Types:	Structured	Data	Types	

•  Motivation:	types	with	internal	structure	help	
with	data	abstraction	
– No	longer	only	have	atomic	data	types	

CREATE TABLE Films(
filmno integer,
title text,
stars varchar(25) array[10]);

SELECT F.title  
FROM Films F
WHERE F.stars[1] =

‘Herbert the Worm’;

CREATE TYPE theater_t AS ROW(
tno integer,
name text,
address text);

Array	index	
starts	at	1	L	

Can	access	an	item	i	with	
type	theater_t	using	
dot	notation,	e.g.,	i.name	

Added	in	SQL:2003	is	an	unordered	collection	called	multiset	

Complex	Types:	Object	Identifiers		
and	References	

•  Motivation:	new	data	types	might	be	quite	large,	
so	want	to	store	references	to	them,	not	copies	

CREATE TABLE Theaters OF theater_t REF is tid SYSTEM GENERATED;

CREATE TABLE NowShowing(
film integer,
theater REF(theater_t) SCOPE Theaters,
start date,
end date);

SELECT N.theater->name, N.theater->address, F.title  
FROM Nowshowing N, Films F
WHERE N.film = F.filmno AND F.stars[1] = ‘Herbert the Worm’;

Dereferencing	
the	pointer	
using	->	

Exercise	3	
•  For	each	lead	star	(first	star	in	the	array),	show	the	count	of	

theaters	currently	showing	a	movie	with	them	as	the	lead	
(you	can	assume	today’s	date	is	“today”)	

SELECT F.stars[1] AS leadStar, COUNT(DISTINCT theater->tno)  
FROM Films F, Nowshowing N
WHERE F.filmno = N.film AND start <= today AND end > today
GROUP BY F.stars[1];

CREATE TABLE NowShowing(
film integer,
theater REF(theater_t) SCOPE Theaters,
start date,
end date);

CREATE TABLE Films(
filmno integer,
title text,
stars varchar(25) array[10]);

Extensibility	

•  Support	indexes	over	new	data	types	
– E.g.,	GiST	in	PostgreSQL	
•  Template	tree-based	index,	you	write	functions	to	split	
nodes,	etc.	

•  New	Aggregations!	
– E.g.,	CREATE	AGGREGATE	in	PostgreSQL	
•  State	transition	function	
•  Final	function	

Just	like	in	
SimpleDb!	

Object-Relational	Mapping	(ORM)	
•  Motivation:	Solve	the	object-relational	impedance	mismatch	

problem	
–  Give	programmers	the	object	model,	with	robust	RDBMS	underneath		
–  Programmer	defines	mapping	between	objects	and	tuples	in	relations	
–  Should	be	easy	to	swap	out	the	particular	RDBMS	

	
•  Example:	Hibernate	for	Java	ORM	

	
	

	
	

•  Common	with	web	frameworks	and	Model-View-Control	(MVC)	
–  Django		(python)	
–  Play	(java	or	scala)	
–  Ruby	on	Rails	(ruby)	
–  …	

http://www.tutorialspoint.com/hibernate/hibernate_overview.htm	

Mapping	specified	
with	XML!	

Object-Relational	Mapping	(ORM)	
from django.db import models

class Musician(models.Model):
 name = models.CharField(max_length=50)

instrument = models.CharField(max_length=100)

class Album(models.Model):
 artist = models.ForeignKey(Musician)
 name = models.CharField(max_length=100)
 release_date = models.DateField()
 num_stars = models.IntegerField()

#	Create	a	Musician	
>>>	m	=	Musician(name=”Billy	Joel”,	“Piano”)	
>>>	m.save()	
#	Find	5-star	albums	
>>>	Album.objects.filter(num_stars	=	5)	

class	Manager	<	ActiveRecord::Base	
		has_many	:employees	
end	
	
class	Employee	<	ActiveRecord::Base	
		belongs_to	:manager			#	foreign	key	-	manager_id	
end	

Django	

Ruby	on	Rails	

One-to-many	
relationship	

http://blog.hasmanythrough.com/2007/1/15/basic-rails-association-cardinality	

The	Structure	Spectrum	

Structured
(schema-first)

Relational
Database

Semi-Structured
(schema-later)

Documents,
XML,

 Tagged
Text/Media

Unstructured
(schema-never)

Plain Text,
Media

Thanks	Mike	Franklin	

XML:	eXtensible	Markup	Language	
•  A	document’s	markup	is	metadata	not	intended	as	part	of	output	

–  Markup	language:	formal	description	of	which	parts	of	document	are	
content	vs.	markup	

<bibliography>
<book ISBN=”ISBN-10” price=”160.00”>

<title>Database Management Systems</
title>

<author>ramakrishnan</author>
<author>Gehrke</author>
<publisher>McGraw-Hill</publisher>
<year>2003</year>
<is_textbook/>

</book>
</bibliography>

Thanks	to	Jun	Yang	for	some	XML	content	and	examples	

<html>
<head>

<title>CS 133 – Databases </title>
</head>
<body>
…

HTML:		

set	of	markup	

tags	pre-defined	

XML:		

set	of	markup	tags	
defined/modified	by	

application	as	needed		

XML	Tree	Representation	

Note:	attributes	not	shown	

XML	Terminology	

•  Elements	can	be	nested:		
<book>…<title>…</title>…</book>	
	

•  Empty	elements	can	be	abbreviated:		
<is_textbook/>	
	

•  Elements	can	also	have	attributes:		
<book	ISBN=“…”price=“160.00”>	

<bibliography>
 <book ISBN=”ISBN-10” price=”160.00”>

<title>Database Management
Systems</title>

<author>Ramakrishnan</author>
<author>Gehrke</author>
<publisher>McGraw-Hill</publisher>
<year>2003</year>
<is_textbook/>

 </book>
 <book>…</book>
</bibliography>

•  Tag	names:	book,	title,	…	
–  Start	tags:	<book>,	<title>,	…	
–  End	tags:	</book>,	</title>,	…	
	

–  An	element	is	enclosed	by	a	pair	
of	start	and	end	tags:		
<book>…</book>	

Well-formed	XML	
documents	have	a	
single	root	element	
and	properly	nested	
elements	

XPath	Expressions	
•  XPath	specifies	path	expressions	that	match	XML	data	
by	navigating	down	(and	occasionally	up	and	across)	
the	tree	
	

•  Result	is	a	sequence	of	items		
(nodes	in	the	original	document)		

Example	XPath	query:		
/bibliography/book/author

All	author	elements	
reachable	along	this	
path	from	the	root	

XPath	Expressions	(cntd)	
•  [condition]	filters	a	sequence	
– An	item	in	the	sequence	is	retained	if	condition	
evaluates	to	true	on	that	item	

–  Evaluates	to	true	as	long	as	it	evaluates	true	for	at	
least	one	node	in	the	sequence	

/bibliography/book[@price<50]

Book	elements	with	price	
attribute	less	than	50	

Defining	an	XML	“Schema”	

•  A	valid	XML	document	conforms	to	a	Document	Type	
Definition	(DTD)	
–  Grammar	for	the	XML	document	
–  Constraints	on	structures	and	values	of	elements,	attributes,	…	

<!DOCTYPE bibliography [
<!ELEMENT bibliography (book+)>
<!ELEMENT book (title, author*, publisher?, year?, section*)>
<!ATTLIST book ISBN CDATA #REQUIRED>
<!ATTLIST book price CDATA #IMPLIED>
<!ELEMENT title (#PCDATA)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT publisher (#PCDATA)>
<!ELEMENT year (#PCDATA)>
<!ELEMENT section (title, (#PCDATA)?, section*)>

]>

The	bibliography	element	can	have	
one	or	more	book	child	elements	

The	book	element	has	an	optional	
price	attribute	that	is	character	data	

Basic	XPath	constructs	

/	 	 	 	separator	between	steps	in	a	path	
name	 	 	matches	any	child	element	with	this	tag	name	
*	 	 	 	matches	any	child	element	
@name	 	matches	the	attribute	with	this	name	
@*		 	 	matches	any	attribute	
//	 	 	 	matches	any	descendent	element	or	the	current	element	itself	
.	 	 	 	matches	the	current	element	
..	 	 	 	matches	the	parent	element	

contains(x,	y) 	 	return	true	if	string	x	contains	string	y	
count(collection)		 	counts	the	number	of	items	in	collection	
position()	 	 	 	returns	the	position	of	the	context	item	within	the	sequence	

Exercise	4	
What	will	the	following	Xpath	expressions	yield?	
	
a)  /bibliography/book[@price > 100]/author  

	Authors	of	books	that	cost	more	than	100	
	
b)  /bibliography/book[year < 2000]/@price  

 
Prices	of	books	published	before	2000	
	
	

c)  /bibliography/book[author=‘Gehrke’]  
 
 
Context	item	is	a	sequence	of	authors…	will	return	true	for	a	book	
if	at	least	one	of	the	authors	matches.

	

XQuery	

•  XPath	+	full-fledged	SQL-like	query	language	
•  An	XQuery	expression	in	general	can	return	a	new	resulting	

XML	document!	

•  Example:	Find	all	books	with	price	lower	than	$50	

<result>
{

doc(“bib.xml”)/bibliography/book[@price<50]
}
</result>

Things	outside	{}’s	are	
copied	to	output	verbatim	

Things	inside	{}’s	are	evaluated	and	
replaced	by	the	results	

	
Matching	book	elements	(and	their	
descendants)	copied	to	output!	

doc()	specifies	the	document	to	query	

