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Parallel	and	Distributed	DBMSs	
	

Prof.	Beth	Trushkowsky	

Warm-up	Exercise	

(See	exercise	sheet.	You	can	start	before	class.)	

Performance,	availability,	more	storage	space	to	fit	the	data	

Goals	for	Today	
•  Discuss	distributing	data	and	workload	for	increased	
performance	in	a	DBMS	

•  Reason	about	DBMS	concepts	in	parallel	and	
distributed	setting	
–  How	to	achieve	distributed	ACID	transactions	
–  Data	consistency	across	copies	

•  Understand	why	some	of	the	disadvantages	of	
distributed	databases	have	led	to	some	relaxation	of	
consistency	

	

Some	Parallelism	Terminology	
•  Throughput	

–  Amount	of	work	done	per	unit	time	
	

•  Latency	(response	time)	
–  Time	to	complete	one	unit	work	

	
•  Speed-Up	

–  More	resources	means	less	time	for	a	
given	unit	of	work		
à	do	more	units	of	work	in	same	time	

	
	
•  Scale-Up	

–  If	resources	increased	in	proportion	to	
increase	in	units	of	work,	time	per	
unit	is	constant.	
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Resource	contention	impacts	scale-up/speed-up	



Parallel	DBMS	Architectures	
•  Multiple	processors	(CPUs)	can	do	work	in	parallel	
–  How	do	they	communicate	about	what	work	to	do?	
–  Three	main	parallel	DB	architectures:	
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Partitioning	(aka	sharding	aka	horizontally	fragmenting)	a	table:	
Range 	Hash 	Round	Robin	

A...E	 F...J	 K...N	 O...S	 T...Z	 A...E	 F...J	 K...N	 O...S	 T...Z	 A...E	 F...J	 K...N	 O...S	 T...Z	

Good	for	equijoins,		
range	queries	
group-by	

Good	for	equijoins	 Good	to	spread	load	

Data	Partitioning	

Different	Types	of	DBMS	Parallelism	

•  Inter-query	parallelism:	different	queries	run	on	different	
nodes	

•  Intra-operator	“partitioned”	parallelism	
–  Multiple	machines	working	together	to	execute	an	operator	
(e.g.,	scan,	sort,	join)	

–  Machines	work	on	disjoint	partition	of	the	data	

•  Parallelizing	a	relational	operator:	merge	and	split	
–  Merge	streams	of	output	to	serve	as	input	to	an	operator	
–  Split	output	of	operator	to	be	processed	in	parallel	
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Different	Types	of	DBMS	Parallelism	

•  Inter-operator	“pipelined”	parallelism	
– Each	relational	operator	may	run	concurrently	on	
a	different	machine	

– Output	of	first	operator	consumed	on-the-fly	as	
input	to	second	operator	

Sequential 
Code 

Sequential 
Code 

Could	be	limited	by	
blocking	operators	
such	as	sort	or	
aggregation	



Exercise	2	

•  (a)	inter-query	
•  (b)	intra-operator	“partitioned”	parallelism	

Distributed	DBMS	(Shared	Nothing)	

•  Data	is	stored	at	several	sites	(geo-distributed),	each	
managed	by	a	DBMS	that	can	run	independently	

•  Distributed	Data	Independence:		
Users	should	not	have	to	know	where	data	is	located		
–  Note:	catalog	needs	to	keep	track	of	where	data	is	

•  Distributed	Transaction	Atomicity:			
Users	should	be	able	to	write	Xacts	accessing	multiple	
sites	just	like	local	Xacts	

Extends	Physical	and	Logical	
Data	Independence	principles	

Distributed	Query	Processing:	Joins	

•  Approach	1	--	Fetch	as	Needed:	Page	NLJ,	Sailors	as	
outer	(query	submitted	at	London):	
–  D	is	cost	to	read/write	page;	S	is	cost	to	ship	page	
–  Cost:		500	D	+	500	*	1000	(D+S)	=	500,500	D	+	500,000	S	
–  If	query	not	submitted	at	London,	must	add	cost	of	shipping	
result	to	query	site	

	
•  Approach	2	--	Ship	to	One	Site:		Ship	Reserves	to	London	
–  Cost:	1000	(D+S)	+	500	D	+	500*1000	D		
=	501,500	D	+	1000	S	

Sailors	 Reserves	
LONDON	 PARIS	

500	pages	 1000	pages	

JOIN	on	sid	

Could	also	consider	other		
single-site	join	methods	

Semijoin	
•  Why	ship	all	of	Reserves	to	London?	

–  Some	of	these	tuples	may	not	even	end	up	being	joined,	so	wasted	
communication	cost	

–  Idea:	only	ship	the	Reserves	tuples	that	will	match	Sailors	tuples	

	
•  Bottom	line:		Tradeoff	the	cost	of	computing	and	shipping	projection	

for	cost	of	shipping	full	Reserves	relation.	

•  Note:	Especially	useful	if	there	is	a	selection	on	Sailors,	and	then	join	
selectivity	is	also	high	

Sailors	 Reserves	
LONDON	 PARIS	

500	pages	 1000	pages	

(1)	πsid	Sailors	

(2)	Reserves	�	Sailors	
(3)	finish	join	



An	aside:	Bloom	Filter	
•  A	bloom	filter	is	a	bit	vector	used	to	quickly	
determine	whether	an	element	belongs	to	a	set	

•  Hash	elements	to	one	of	k	buckets	

Refinement:	Bloomjoin	
•  Idea:	rather	than	shipping	the	join	column,	ship	a	more	compact	data	

structure	that	captures	(almost)	the	same	info	
–  Bloom	filter	bit	vector	
–  Bit-vector	cheaper	to	ship,	almost	as	effective	(false	positives	possible)	
	

•  Hash	Sailors.sid	values	into	range	[0,k-1]	
–  If	tuple	hashes	to	slot	i,	set	bit	i	to	1	

•  Hash	Reserves	tuples	into	same	range	[0,k-1]	
–  Discard	tuples	that	hash	to	0	in	Sailors	bit	vector	

	

Sailors	 Reserves	
LONDON	 PARIS	

500	pages	 1000	pages	

(1)	Sailors.sid	bit	vector	

(2)	Reserves	reduction	
(3)	finish	join	

Query	Optimization	
•  New	considerations	for	cost-based	approach	

–  Communication	costs	
–  New	distributed	join	methods	

•  Also	optimizing	for	query	response	time?	
–  Might	want	to	consider	a	larger	space	of	plans	
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Exercise	3	

•  Concerns:	correctness,	deadlock,	performance	
•  Some	options:	
– All	lock	requests	go	through	a	central	location	
– Lock	requests	distributed;	request	is	sent	to	the	
site	that	holds	the	data	that	is	desired	



Distributed	Transactions	
•  With	data	at	distributed	sites,	a	transaction	may	operate	on	

data	at	multiple	sites	
–  xact	broken	down	into	sub-xacts	that	execute	at	each	site	

•  Example:	read	and	update	inventory	at	four	sites	with	
horizontal	partitions	of	the	data	
–  T:	R(A),	R(B),	R(C),	R(D),	W(A),	W(B),	W(C),	W(D),	commit	

•  How	do	we	guarantee	atomicity??	
–  Need	a	commit	protocol	(type	of	consensus	protocol)	
–  A	log	is	maintained	at	each	site,	as	in	a	centralized	DBMS,	and	
commit	protocol	actions	are	additionally	logged	

A	 B	 C	 D	
Where	should	
locks	be	managed?	

Two-Phase	Commit	(2PC)	
•  Site	at	which	xact	originates	is	coordinator;	other	
sites	at	which	it	executes	are	subordinates	
	

•  Suppose	xact	wants	to	commit	(normal	execution):	
(1)	PREPARE!	

(2a)	Log:	no	or	ready	

(2a)	Log:	no	or	ready	

(2a)	Log:	no	or	ready	

(2b)	YES	or	NO	

(3a)	All	YES?	Log:	commit	
Else	Log:	abort	

(3b)	COMMIT	or	ABORT	

(5)	Log:	end	

(4a)	Log:	abort	or	commit	

(4a)	Log:	abort	or	commit	

(4a)	Log:	abort	or	commit	

4b)	ACK!	

2PC:	Steps	
•  When	a	Xact	wants	to	commit:	
	
① 	Coordinator	sends	prepare	msg	to	each	subordinate.	
② 	Subordinate	force-writes	a	no	or	ready	log	record	and	
then	sends	a	no	or	yes	msg	to	coordinator.	

	
	
③ 	If	coordinator	gets	unanimous	yes	votes,	force-writes	a	
commit	log	record	and	sends	commit	msg	to	all	subs.		
Else,	force-writes	abort	log	rec,	and	sends	abort	msg.	

④ 	Subordinates	force-write	abort/commit	log	rec	based	
on	msg	they	get,	then	send	ack	msg	to	coordinator.	

⑤ 	Coordinator	writes	end	log	rec	after	getting	all	acks.	

Site	and	Link	Failures	L	

	
•  If	coordinator	detects	a	subordinate	failed,	e.g.,	after	timeout	

–  Before	“yes”?	à	assume		it	was	“abort”	
–  After	“yes”?	à	continue	as	normal	
	

•  If	coordinator	for	Xact	T	fails,	subordinates	who	have	voted	
yes	cannot	decide	whether	to	commit	or	abort	T	until	
coordinator	recovers	
–  Xact	T	is	blocked	

A	 B	

Exercise	4:	when	the	failed	subordinate	site	wakes	up,	
can	it	tell	if	a	global	transaction	committed	or	aborted?	



Exercise	4	

•  Site	that	wakes	up	should	interpret	its	log	
–  (a)	T	committed!	it	should	REDO	actions	for	T	
–  (b)	T	aborted!	it	should	UNDO	actions	for	T	
–  (c)	Can’t	tell...	Needs	to	consult	coordinator	about	
what	coordinator	decided	

–  (d)	T	aborted!	it	should	write	abort,	and	UNDO	
•  Since	it	never	even	wrote	ready,	coordinator	couldn’t	
possibly	have	decided	to	commit	(since	it	would	have	
waited	for	the	site	to	say	yes)	

Data	Replication	
•  Replication:	keep	copies	of	data	at	different	sites	

•  Benefits	
–  Gives	increased	availability	
–  Faster	query	evaluation	

•  Flavors	
–  Synchronous	(eager)	vs.	Asynchronous	(lazy)	

•  Vary	in	how	current	copies	are	(i.e.,	how	consistent	they	are)	

•  Can	be	used	in	addition	to	data	partitioning	
–  Full	replication:	copy	of	all	data	at	every	site	(vs.	partial)	
	

Locking:	on	primary	copy	or	fully	distributed	

Updating	Distributed	Data	

•  Synchronous	(Eager)	Replication:	set	of	copies	of	a	
modified	relation	must	be	updated	before	the	
modifying	xact	commits	
–  Exclusive	locks	on	all	the	copies	that	are	modified	
–  Users/apps	do	not	need	to	know	data	location(s)	
	

•  Asynchronous	(Lazy)	Replication:		Copies	of	a	modified	
relation	are	only	periodically	updated	
–  Different	copies	may	get	out	of	sync	in	the	meantime	
–  Users/applications	must	be	aware	of	data	location(s)	

Not	necessarily	
all	copies!	

Synchronous	Replication:	Majority	
•  Majority	technique	can	guarantee	data	consistency:			
–  Xact	must	write	a	majority	of	copies	to	modify	an	object	
–  Each	copy	has	version	number	for	object	
–  Xact	must	read	enough	copies	to	be	sure	of	seeing	at	least	
one	most	recent	copy	

•  Example:	6	copies	of	data	

Written:	
	4	nodes	

Read:	
3	nodes	

Impact	on	performance	
of	READ	queries??	

Could	use		
Read-one-write-all	

(ROWA)	policy	instead	


