
CS	133:	Databases	

Fall	2019	
Lec	24	–	12/05	

Parallel	and	Distributed	DBMSs	
	

Prof.	Beth	Trushkowsky	

Warm-up	Exercise	

(See	exercise	sheet.	You	can	start	before	class.)	

Performance,	availability,	more	storage	space	to	fit	the	data	

Goals	for	Today	
•  Discuss	distributing	data	and	workload	for	increased	
performance	in	a	DBMS	

•  Reason	about	DBMS	concepts	in	parallel	and	
distributed	setting	
–  How	to	achieve	distributed	ACID	transactions	
–  Data	consistency	across	copies	

•  Understand	why	some	of	the	disadvantages	of	
distributed	databases	have	led	to	some	relaxation	of	
consistency	

	

Some	Parallelism	Terminology	
•  Throughput	

–  Amount	of	work	done	per	unit	time	
	

•  Latency	(response	time)	
–  Time	to	complete	one	unit	work	

	
•  Speed-Up	

–  More	resources	means	less	time	for	a	
given	unit	of	work		
à	do	more	units	of	work	in	same	time	

	
	
•  Scale-Up	

–  If	resources	increased	in	proportion	to	
increase	in	units	of	work,	time	per	
unit	is	constant.	

degree	of	parallelism	

Xa
ct
/s
ec
.	

(t
hr
ou

gh
pu

t)
	 Ideal	

(speed-up)	

degree	of	parallelism	

se
c.
/X
ac
t	

(r
es
po

ns
e	
tim

e)
	

Ideal	
(scale-up)	

Resource	contention	impacts	scale-up/speed-up	



Parallel	DBMS	Architectures	
•  Multiple	processors	(CPUs)	can	do	work	in	parallel	
–  How	do	they	communicate	about	what	work	to	do?	
–  Three	main	parallel	DB	architectures:	

Disk	

Disk	

Disk	

CPU	

CPU	

CPU	

Shared	
RAM	

Shared	Memory	
(aka	shared	everything)	

Disk	

Disk	

Disk	

CPU	

CPU	

CPU	

Shared	Disk	

RAM	

RAM	

RAM	

Disk	

Disk	

CPU	

CPU	

Shared	Nothing	

RAM	

RAM	

	
	
Partitioning	(aka	sharding	aka	horizontally	fragmenting)	a	table:	
Range 	Hash 	Round	Robin	

A...E	 F...J	 K...N	 O...S	 T...Z	 A...E	 F...J	 K...N	 O...S	 T...Z	 A...E	 F...J	 K...N	 O...S	 T...Z	

Good	for	equijoins,		
range	queries	
group-by	

Good	for	equijoins	 Good	to	spread	load	

Data	Partitioning	

Different	Types	of	DBMS	Parallelism	

•  Inter-query	parallelism:	different	queries	run	on	different	
nodes	

•  Intra-operator	“partitioned”	parallelism	
–  Multiple	machines	working	together	to	execute	an	operator	
(e.g.,	scan,	sort,	join)	

–  Machines	work	on	disjoint	partition	of	the	data	

•  Parallelizing	a	relational	operator:	merge	and	split	
–  Merge	streams	of	output	to	serve	as	input	to	an	operator	
–  Split	output	of	operator	to	be	processed	in	parallel	

	
Sequential 
 Sequential 
 Sequential 

 
Sequential 
 
Sequential 

Code 
Sequential 

Code 

Different	Types	of	DBMS	Parallelism	

•  Inter-operator	“pipelined”	parallelism	
– Each	relational	operator	may	run	concurrently	on	
a	different	machine	

– Output	of	first	operator	consumed	on-the-fly	as	
input	to	second	operator	

Sequential 
Code 

Sequential 
Code 

Could	be	limited	by	
blocking	operators	
such	as	sort	or	
aggregation	



Exercise	2	

•  (a)	inter-query	
•  (b)	intra-operator	“partitioned”	parallelism	

Distributed	DBMS	(Shared	Nothing)	

•  Data	is	stored	at	several	sites	(geo-distributed),	each	
managed	by	a	DBMS	that	can	run	independently	

•  Distributed	Data	Independence:		
Users	should	not	have	to	know	where	data	is	located		
–  Note:	catalog	needs	to	keep	track	of	where	data	is	

•  Distributed	Transaction	Atomicity:			
Users	should	be	able	to	write	Xacts	accessing	multiple	
sites	just	like	local	Xacts	

Extends	Physical	and	Logical	
Data	Independence	principles	

Distributed	Query	Processing:	Joins	

•  Approach	1	--	Fetch	as	Needed:	Page	NLJ,	Sailors	as	
outer	(query	submitted	at	London):	
–  D	is	cost	to	read/write	page;	S	is	cost	to	ship	page	
–  Cost:		500	D	+	500	*	1000	(D+S)	=	500,500	D	+	500,000	S	
–  If	query	not	submitted	at	London,	must	add	cost	of	shipping	
result	to	query	site	

	
•  Approach	2	--	Ship	to	One	Site:		Ship	Reserves	to	London	
–  Cost:	1000	(D+S)	+	500	D	+	500*1000	D		
=	501,500	D	+	1000	S	

Sailors	 Reserves	
LONDON	 PARIS	

500	pages	 1000	pages	

JOIN	on	sid	

Could	also	consider	other		
single-site	join	methods	

Semijoin	
•  Why	ship	all	of	Reserves	to	London?	

–  Some	of	these	tuples	may	not	even	end	up	being	joined,	so	wasted	
communication	cost	

–  Idea:	only	ship	the	Reserves	tuples	that	will	match	Sailors	tuples	

	
•  Bottom	line:		Tradeoff	the	cost	of	computing	and	shipping	projection	

for	cost	of	shipping	full	Reserves	relation.	

•  Note:	Especially	useful	if	there	is	a	selection	on	Sailors,	and	then	join	
selectivity	is	also	high	

Sailors	 Reserves	
LONDON	 PARIS	

500	pages	 1000	pages	

(1)	πsid	Sailors	

(2)	Reserves	�	Sailors	
(3)	finish	join	



An	aside:	Bloom	Filter	
•  A	bloom	filter	is	a	bit	vector	used	to	quickly	
determine	whether	an	element	belongs	to	a	set	

•  Hash	elements	to	one	of	k	buckets	

Refinement:	Bloomjoin	
•  Idea:	rather	than	shipping	the	join	column,	ship	a	more	compact	data	

structure	that	captures	(almost)	the	same	info	
–  Bloom	filter	bit	vector	
–  Bit-vector	cheaper	to	ship,	almost	as	effective	(false	positives	possible)	
	

•  Hash	Sailors.sid	values	into	range	[0,k-1]	
–  If	tuple	hashes	to	slot	i,	set	bit	i	to	1	

•  Hash	Reserves	tuples	into	same	range	[0,k-1]	
–  Discard	tuples	that	hash	to	0	in	Sailors	bit	vector	

	

Sailors	 Reserves	
LONDON	 PARIS	

500	pages	 1000	pages	

(1)	Sailors.sid	bit	vector	

(2)	Reserves	reduction	
(3)	finish	join	

Query	Optimization	
•  New	considerations	for	cost-based	approach	

–  Communication	costs	
–  New	distributed	join	methods	

•  Also	optimizing	for	query	response	time?	
–  Might	want	to	consider	a	larger	space	of	plans	

Vs.	

R S 

a=b 
T 

b=c U 

c=d 

R S 

a=b 

U 

b=c 

c=d 

T 

May	cost	less	

May	allow	
parallelism	
that	yields	

overall	lower	
response	time	

Exercise	3	

•  Concerns:	correctness,	deadlock,	performance	
•  Some	options:	
– All	lock	requests	go	through	a	central	location	
– Lock	requests	distributed;	request	is	sent	to	the	
site	that	holds	the	data	that	is	desired	



Distributed	Transactions	
•  With	data	at	distributed	sites,	a	transaction	may	operate	on	

data	at	multiple	sites	
–  xact	broken	down	into	sub-xacts	that	execute	at	each	site	

•  Example:	read	and	update	inventory	at	four	sites	with	
horizontal	partitions	of	the	data	
–  T:	R(A),	R(B),	R(C),	R(D),	W(A),	W(B),	W(C),	W(D),	commit	

•  How	do	we	guarantee	atomicity??	
–  Need	a	commit	protocol	(type	of	consensus	protocol)	
–  A	log	is	maintained	at	each	site,	as	in	a	centralized	DBMS,	and	
commit	protocol	actions	are	additionally	logged	

A	 B	 C	 D	
Where	should	
locks	be	managed?	

Two-Phase	Commit	(2PC)	
•  Site	at	which	xact	originates	is	coordinator;	other	
sites	at	which	it	executes	are	subordinates	
	

•  Suppose	xact	wants	to	commit	(normal	execution):	
(1)	PREPARE!	

(2a)	Log:	no	or	ready	

(2a)	Log:	no	or	ready	

(2a)	Log:	no	or	ready	

(2b)	YES	or	NO	

(3a)	All	YES?	Log:	commit	
Else	Log:	abort	

(3b)	COMMIT	or	ABORT	

(5)	Log:	end	

(4a)	Log:	abort	or	commit	

(4a)	Log:	abort	or	commit	

(4a)	Log:	abort	or	commit	

4b)	ACK!	

2PC:	Steps	
•  When	a	Xact	wants	to	commit:	
	
① 	Coordinator	sends	prepare	msg	to	each	subordinate.	
② 	Subordinate	force-writes	a	no	or	ready	log	record	and	
then	sends	a	no	or	yes	msg	to	coordinator.	

	
	
③ 	If	coordinator	gets	unanimous	yes	votes,	force-writes	a	
commit	log	record	and	sends	commit	msg	to	all	subs.		
Else,	force-writes	abort	log	rec,	and	sends	abort	msg.	

④ 	Subordinates	force-write	abort/commit	log	rec	based	
on	msg	they	get,	then	send	ack	msg	to	coordinator.	

⑤ 	Coordinator	writes	end	log	rec	after	getting	all	acks.	

Site	and	Link	Failures	L	

	
•  If	coordinator	detects	a	subordinate	failed,	e.g.,	after	timeout	

–  Before	“yes”?	à	assume		it	was	“abort”	
–  After	“yes”?	à	continue	as	normal	
	

•  If	coordinator	for	Xact	T	fails,	subordinates	who	have	voted	
yes	cannot	decide	whether	to	commit	or	abort	T	until	
coordinator	recovers	
–  Xact	T	is	blocked	

A	 B	

Exercise	4:	when	the	failed	subordinate	site	wakes	up,	
can	it	tell	if	a	global	transaction	committed	or	aborted?	



Exercise	4	

•  Site	that	wakes	up	should	interpret	its	log	
–  (a)	T	committed!	it	should	REDO	actions	for	T	
–  (b)	T	aborted!	it	should	UNDO	actions	for	T	
–  (c)	Can’t	tell...	Needs	to	consult	coordinator	about	
what	coordinator	decided	

–  (d)	T	aborted!	it	should	write	abort,	and	UNDO	
•  Since	it	never	even	wrote	ready,	coordinator	couldn’t	
possibly	have	decided	to	commit	(since	it	would	have	
waited	for	the	site	to	say	yes)	

Data	Replication	
•  Replication:	keep	copies	of	data	at	different	sites	

•  Benefits	
–  Gives	increased	availability	
–  Faster	query	evaluation	

•  Flavors	
–  Synchronous	(eager)	vs.	Asynchronous	(lazy)	

•  Vary	in	how	current	copies	are	(i.e.,	how	consistent	they	are)	

•  Can	be	used	in	addition	to	data	partitioning	
–  Full	replication:	copy	of	all	data	at	every	site	(vs.	partial)	
	

Locking:	on	primary	copy	or	fully	distributed	

Updating	Distributed	Data	

•  Synchronous	(Eager)	Replication:	set	of	copies	of	a	
modified	relation	must	be	updated	before	the	
modifying	xact	commits	
–  Exclusive	locks	on	all	the	copies	that	are	modified	
–  Users/apps	do	not	need	to	know	data	location(s)	
	

•  Asynchronous	(Lazy)	Replication:		Copies	of	a	modified	
relation	are	only	periodically	updated	
–  Different	copies	may	get	out	of	sync	in	the	meantime	
–  Users/applications	must	be	aware	of	data	location(s)	

Not	necessarily	
all	copies!	

Synchronous	Replication:	Majority	
•  Majority	technique	can	guarantee	data	consistency:			
–  Xact	must	write	a	majority	of	copies	to	modify	an	object	
–  Each	copy	has	version	number	for	object	
–  Xact	must	read	enough	copies	to	be	sure	of	seeing	at	least	
one	most	recent	copy	

•  Example:	6	copies	of	data	

Written:	
	4	nodes	

Read:	
3	nodes	

Impact	on	performance	
of	READ	queries??	

Could	use		
Read-one-write-all	

(ROWA)	policy	instead	


