CS 133: Databases

Fall 2019
Lec 24 —12/05
Parallel and Distributed DBMSs

Prof. Beth Trushkowsky

Warm-up Exercise

(See exercise sheet. You can start before class.)

Performance, availability, more storage space to fit the data

Goals for Today

* Discuss distributing data and workload for increased
performance in a DBMS

* Reason about DBMS concepts in parallel and
distributed setting
— How to achieve distributed ACID transactions
— Data consistency across copies

* Understand why some of the disadvantages of
distributed databases have led to some relaxation of
consistency

Some Parallelism Terminology

e Throughput
— Amount of work done per unit time

* Latency (response time)
— Time to complete one unit work

Ideal

* Speed-U
P P (speed-up)

— More resources means less time for a

given unit of work
- do more units of work in same time

Xact/sec
(throughput)

degree of parallelism

* Scale-Up
— If resources increased in proportion to
increase in units of work, time per
unit is constant.

Ideal
(scale-up)

sec./Xact
(response time)

Resource contention impacts scale-up/speed-up degree of parallelism

Parallel DBMS Architectures

* Multiple processors (CPUs) can do work in parallel
— How do they communicate about what work to do?
— Three main parallel DB architectures:

Shared
~ RAM

- RAM @ —
| Disk 7 7 Disk

—_— RAM @ —
Disk Disk
S RAM

Shared Memory ; Shared Disk Shared Nothing
(aka shared everything)

o

Data Partitioning

Partitioning (aka sharding aka horizontally fragmenting) a table:
Range Hash Round Robin

D000 D000 S8080
TT RRRMS RASaD

[ME[G Eosiz]| |-----| |--@m-|

Good for equijoins, Good for equijoins Good to spread load
range queries
group-by

E-—il

Different Types of DBMS Parallelism

* Inter-query parallelism: different queries run on different
nodes

* Intra-operator “partitioned” parallelism

— Multiple machines working together to execute an operator
(e.g., scan, sort, join)
— Machines work on disjoint partition of the data

* Parallelizing a relational operator: merge and split
— Merge streams of output to serve as input to an operator
— Split output of operator to be processed in parallel

Sequential
Code

Sequential
Code

Different Types of DBMS Parallelism

Inter-operator “pipelined” parallelism

— Each relational operator may run concurrently on
a different machine

— Output of first operator consumed on-the-fly as
input to second operator

Could be limited by

Sequential Sequentia blocking operators
Code Code such as sort or
aggregation

Exercise 2

* (a) inter-query
* (b) intra-operator “partitioned” parallelism

Distributed DBMS (Shared Nothing)

* Datais stored at several sites (geo-distributed), each
managed by a DBMS that can run independently

Extends Physical and Logical
Data Independence principles

* Distributed Data Independence:
Users should not have to know where data is located

— Note: catalog needs to keep track of where data is

* Distributed Transaction Atomicity:
Users should be able to write Xacts accessing multiple

sites just like local Xacts

Distributed Query Processing: Joins

LONDON PARIS
m JoINonsid [RGHEHAES
500 pages 1000 pages

* Approach 1 -- Fetch as Needed: Page NLJ, Sailors as
outer (query submitted at London):
— D is cost to read/write page; S is cost to ship page
— Cost: 500 D + 500 * 1000 (D+S) = 500,500 D + 500,000 S
— If query not submitted at London, must add cost of shipping
result to query site

* Approach 2 -- Ship to One Site: Ship Reserves to London

— Cost: 1000 (D+S) + 500 D + 500*1000 D
=501,500 D + 1000 S

Could also consider other
single-site join methods

Semijoin
* Why ship all of Reserves to London?
— Some of these tuples may not even end up being joined, so wasted

communication cost
— ldea: only ship the Reserves tuples that will match Sailors tuples

LONDON (1) 1,4 Sailors . PARIS

500 pages (2) Reserves XSailors 1000 pages
(3) finish join

* Bottom line: Tradeoff the cost of computing and shipping projection
for cost of shipping full Reserves relation.

* Note: Especially useful if there is a selection on Sailors, and then join
selectivity is also high

An aside: Bloom Filter

* A bloom filter is a bit vector used to quickly

determine whether an element belongs to a set

e Hash elements to one of k buckets

Refinement: Bloomjoin

Idea: rather than shipping the join column, ship a more compact data
structure that captures (almost) the same info

— Bloom filter bit vector
— Bit-vector cheaper to ship, almost as effective (false positives possible)

Hash Sailors.sid values into range [0,k-1]
— If tuple hashes to slot i, set bitito 1
Hash Reserves tuples into same range [0,k-1]
— Discard tuples that hash to 0 in Sailors bit vector

LONDON (1) Sailors.sid bit vector PARIS

500 pages (2) Reserves reduction 1000 pages
(3) finish join

Query Optimization

* New considerations for cost-based approach
— Communication costs
— New distributed join methods

* Also optimizing for query response time?
— Might want to consider a larger space of plans

>
May cost less [c=d

May allow
parallelism
that yields

overall lower

/ \ Vs. _~| response time

e U <]

=c c=d
TN T

>< T ><] =y

a=b a=b =

N

™~

Exercise 3

* Concerns: correctness, deadlock, performance

* Some options:
— All lock requests go through a central location

— Lock requests distributed; request is sent to the
site that holds the data that is desired

Distributed Transactions

* With data at distributed sites, a transaction may operate on
data at multiple sites

— xact broken down into sub-xacts that execute at each site

* Example: read and update inventory at four sites with
horizontal partitions of the data

— T:R(A), R(B), R(C), , W(A), W(B), W(C), , commit

* How do we guarantee atomicity??
— Need a commit protocol (type of consensus protocol)

— Alog is maintained at each site, as in a centralized DBMS, and
commit protocol actions are additionally logged

Two-Phase Commit (2PC)

Site at which xact originates is coordinator; other
sites at which it executes are subordinates

Suppose xact wants to commit (normal execution):

(1) PREPARE!
(2b) YES or NO

U (2a) Log: no or ready

(3a) All YES? Log: commit[—— (4a) Log: abort or commit
Else Log: abort
\ (2a) Log: no or ready

(3b) COMMIT or ABORT \ (4a) Log: abort or commit
4b) ACK! U (2a) Log: no or ready

(5) Log: end (4a) Log: abort or commit

2PC: Steps

* When a Xact wants to commit:

@ Coordinator sends prepare msg to each subordinate.

@ Subordinate force-writes a no or ready log record and
then sends a no or yes msg to coordinator.

@ If coordinator gets unanimous yes votes, force-writes a
commit log record and sends commit msg to all subs.
Else, force-writes abort log rec, and sends abort msg.

@ Subordinates force-write abort/commit log rec based
on msg they get, then send ack msg to coordinator.

® Coordinator writes end log rec after getting all acks.

Site and Link Failures ®

* If coordinator detects a subordinate failed, e.g., after timeout

Exercise 4: when the failed subordinate site wakes up,
can it tell if a global transaction committed or aborted?

¢ If coordinator for Xact T fails, subordinates who have voted
yes cannot decide whether to commit or abort T until
coordinator recovers
— Xact Tis blocked

Exercise 4

* Site that wakes up should interpret its log
— (a) T committed! it should REDO actions for T
— (b) T aborted! it should UNDO actions for T

— (c) Can’t tell... Needs to consult coordinator about
what coordinator decided
— (d) T aborted! it should write abort, and UNDO

* Since it never even wrote ready, coordinator couldn’t
possibly have decided to commit (since it would have
waited for the site to say yes)

Data Replication

* Replication: keep copies of data at different sites

¢ Benefits

— Gives increased availability
— Faster query evaluation

* Flavors

— Synchronous (eager) vs. Asynchronous (lazy)
* Vary in how current copies are (i.e., how consistent they are)

* Can be used in addition to data partitioning

— Full replication: copy of all data at every site (vs. partial)

Locking: on primary copy or fully distributed

Updating Distributed Data

Not necessarily
all copies!
* Synchronous (Eager) Replication: set of copies of a
modified relation must be updated before the
modifying xact commits
— Exclusive locks on all the copies that are modified
— Users/apps do not need to know data location(s)

* Asynchronous (Lazy) Replication: Copies of a modified
relation are only periodically updated
— Different copies may get out of sync in the meantime
— Users/applications must be aware of data location(s)

Synchronous Replication: Majority

* Majority technique can guarantee data consistency:
— Xact must write a majority of copies to modify an object
— Each copy has version number for object
— Xact must read enough copies to be sure of seeing at least
one most recent copy

Impact on performance

* Example: 6 copies of data of READ queries??
Could use
Written: Read-one-write-all
4 nodes. (ROWA) policy instead

Read:
3 nodes

