CS 133: Databases

Final Exam Logistics

* Final exam take-home
— Available: in-class on Thursday
— Due: Wednesday December 18, 5:15pm

e Same resources as midterm

— Except this time, two note sheets allowed (can re-
use your own from midterm)

Goals for Today

Discuss data replication in distributed DBMSs

Understand the motivation and goals for
“NoSQL” data management systems

Reason about the key concepts, techniques,
and tradeoffs for NoSQL systems

— Touch on a couple specific NoSQL systems
(Dynamo, MongoDB, Cassandra)

Some References Used

”

* Ten Rules for Scalable Performance in “Simple Operation
Datastores

— Communications of the ACM 2011
— Stonebraker and Cattell

e Scalable SQL and NoSQL Data Stores
— SIGMOD Record 2011
— Cattell

* Dynamo: Amazon’s Highly Available Key-value Store
— SOSP 2007
— DeCandia et al

* MongoDB and Cassandra web sites

Asynchronous Replication

* The modifying xact can commit before all copies
have been changed

— Users/apps must be aware of which copy they are
reading, and that copies may be out-of-sync for short
periods of time

* Two approaches for replication:
— Primary Site
— Peer-to-Peer (aka or update-anywhere)

— Difference lies in how many copies are “updatable”

Primary Site Replication

* Exactly one copy of a relation partition is designated
the primary copy.
— Replicas at other sites cannot be directly updated
readsonly — —
— |

reads/writes reads only L,]

If reads happen at secondary
copies, then possible that a
xact is not be able to read its
own writes

* How are changes to the primary copy propagated to
the secondary copies?
— One approach: log shipping

Peer-to-Peer Replication

* More than one of the copies of an object can be primary

reads/grites[}

reads urites [:’**J S—
o reads/grites[J

* Changes to a copy must be propagated to other copies

* If two copies are updated in a conflicting manner, this
must be resolved
— E.g., Last write wins? Combine updates somehow?

Strong vs. Eventual Consistency

* Strong: after update to an object, subsequent reads see that update
* Weak: subsequent reads of an update may not reflect that update

— Eventual: if updates ceased, eventually the system would reflect all
updates

* Eventual consistency has some variation
— Read-your-own-writes, special case of session or causal consistency

— Monotonic reads

“Eventually Consistent - Building reliable
distributed systems at a worldwide scale demands
trade-offs between consistency and availability.”
- Vogels, CTO Amazon.com

* BASE, not ACID!
— BASE: Basically available, soft state, eventually consistent

Werner Vogels on eventual consistency: http://www.allthingsdistributed.com/2008/12/eventually_consistent.html

Exercise 2: Replica Consistency

* Suppose have N replicas of some data object
— W = # replicas write to before xact commits
— R =#replicas read from

» Strong consistency: overlap the W and R sets
—R+W>N
— E.g., Read-one-write-all: R=1, W= N

A

Tons of user-generated
content on the web

What is “NoSQL"?

A movement around non-relational data stores

Here’s a challenge: can you
describe NoSQL without
using any buzz words?!

- \ Eventual
Agile
Web 2.0 Consistency
) ‘\rDeveIopment/’ (BASE not ACID)

Performance gains at the
expense of consistency

Develop and change web
applications iteratively

E.g., social ¢ Schema changes and * Grow incrementally by
networking sites non-uniformity leveraging leased cloud
Web 1.0: few ¢ Make changes while resources like laaS
content creators, the application is live * Automatically grow
more static websites resources as needed

Story of a “Successful” Web Startup

* Start with a relational DBMS running on single machine

Web site gets popular!! SR C— C— >
Need to scale up...
| J
[

... S0 manually partition/shard data across more nodes

* Logic in web application manages directing queries
— Cross-shard filters and joins coded inside the app
— App logic deals with data consistency

As the number of machines increases,
the chance that something fails increases

Tons of NoSQL systems

nosql-database.org Q %

NX&SQL

NOSQL DEFINITION:Next Generation Database Management Systems mostly addressing some of the NoSQL RELATED EVENTS:

Your Ultimate Guide to the
Non-Relational Universe!

[including a historic Archive 2009-2011]
News Feed covering some changes here !

points: being i pel and hori; scalable.

« Register your Event here!
The original intention has been modern web-scale database systems. The
began early 2009 and is growing rapidly. Often more ics apply such as: sch free, easy Register your event 4free: »

replication support, simple AP, eventually consistent / BASE (not ACID), a huge amount of data
and more. So the misleading term "nosq/" (the community now translates it mostly with "not only sql")
should be seen as an alias to something like the definition above. [based on 7 sources, 15 constructive

>
feedback emails (thanks!) and 1 disliking comment. Agree / Disagree? Tell me so! By the way: ths is a strong definition and it 3“
is out there here since 20091] =

7

NoSQL ARCHIVE

Thanks to Gary Stevens, Web Hosting Admin at HostingCanada.org, for reviewing and curating this list.
If you run into Gary in Ottawa, please buy him a beer on me!

LIST OF NOSQL DATABASE MANAGEMENT + Global NOSQL Forum »
SYSTEMS [currently >225] o ponea s

« Forum Japan »

NoSQL FORUMS

CAP Theorem Summary: NoSQL Motivation

Eric Brewer’s CAP theorem: a distributed system can

°i"Vch:n"s’fstt:r’1‘c’y°“he following three properties: * Development of NoSQL systems motivated by
Qicplicateddata difficulty scaling up Web 2.0 applications

- Availabily For write requests — Thousands to millions of users

~ Tolerance to network Partitions — Many [small] reads and writes (“small operations”)

* Typically make sacrifices for performance
— E.g., no ACID xacts, eventual consistency

Achieving Scalable Performance Rule #1: Shared-nothing scalability
Rule #1: * Goal: as application grows, need more servers added
Shared-nothing scalability seamlessly

— Don’t want manual management of scaling up

Rule #4:

High availability and automatic recovery essential * Example techniques:

— Consistent hashing (Dynamo and Cassandra)
— Periodic re-balancing of partitions (MongoDB)

Rule #5:
On-line everything (system always “up”) / Keyk
Rule #6: /@ .
. . \ odes B,
Avoid multi-node operators / | andDson
® (© e

K.

NooP,

Stonebraker and Cattell Fig 2 in Dynamo

Rule #4: High Availability and
Auto-Recovery

* Goal: updates always succeed!
— Issue: conflicting writes on disjoint sets of replicas

Exercise 3

* Example: shopping cart
— Add 2 items to cart, update goes to two replicas
— Partition! Add 1 (different) item to each replica
— Both carts are “version 2” ®

* Dynamo: vector clocks

“...in the case of a timestamp tie,

. . Cassandra follows two rules: first,
* Or IateSt t|meStamp WlnS? deletes take precedence over
inserts/updates. Second, if there are
two updates, the one with the
lexically larger value is selected.”

https://wiki.apache.org/cassandra/FAQ#clocktie

Replication/Availability Examples

* MongoDB: automatic failover for primary

B Mﬁ’
S, S,

S New Primary Elected

&

Heartbeat
-—

|_primaryJprrermg seconsar |

» Cassandra/Dynamo: peer-to-peer replication
— tunable consistency, e.g., quorum or not

Pics from https://docs.mongodb.org/master/MongoDB-replication-guide-master.pdf

Rule #5: On-line Everything (Schema)

¢ Recall:

— A data model is a collection of high-level data description
constructs

— A schema is a description of a particular collection of data,
using a given data model

What if you want
more flexibility?

* Relational model has a rigid, structured schema
— Attributes for relation pre-defined, shared by all tuples
— Data and integrity constraints
— Referential constraints

NoSQL: Non-Relational Data Models

» Agile development, live schema changes
— No enforcement of structure
— E.g., every “tuple” could have different attributes

* In essence, these data models are key-based

— Key: some unique identifier to look up a
corresponding “value”

— What the value is can be complex

Key typically plays a role in data partitioning scheme

Key-Value Data Model

* Example system: Amazon’s Dynamo

* Key is some unique identifier, value can be
anything, BLOB interpreted by app logic
— E.g., id = shopping cart contents

* Query functionality
— Get(key), put(key, value)
— Only primary key index
— No index lookups on non-keys (secondary indexes)

Document Data Model
* Example system: MongoDB

* Stores collections of “documents” (e.g., JSON)
— Relation:tuple :: Collection:document
— Key 2 Document

— Document has key-value pairs, can be nested lists or
scalars (and not defined in a global schema)

* Query functionality
— Primary key lookups
— Secondary indexes on other attributes

MongoDB Example

Example: info about products, which have many parts

db.createCollection(”parts")
db.createCollection(”products") g/ example product
name : ‘smoke shifter',
// example part manufacturer : 'Acme Corp',
. . , , catalog number: 1234,
id : ObjectID('AAAA'), parts .[
partno : '123-aff-456", ObjectID('AAAA')

i 1 ’
name : '#4 grommet', ObjectID('F17C’),
qty: 94, ObjectID('D2AA’)]
cost: 0.94, }

price: 3.99
manufac_addr : [
{ street: '123 Sesame St', What about
city: 'Anytown', cc: 'USA' }, a JOIN?
{ street: '123 Avenue Q',
city: 'New York', cc: 'USA' }]

Modified from: http://blog.mongodb.org/post/87200945828/6-rules-of-thumb-for-mongodb-schema-design-part-1

Extensible Record (aka Column Family)
* Example system: BigTable, Cassandra

* A bit more complex than document model

— Relation:tuple :: CqumnFamin:RO\A\ “Row” called
— Key =2 Set of columns (“wide-column store”)| “partition” now

— Each column has key-value pairs
— Different records can have different columns

* Query functionality in “CQL”
— Primary key lookups by row (with sorted columns)
— Secondary indexes

Cassandra Examples

alicious addresses name
CREATE TPfBLE people (West Alice
user_id text PRIMARY KEY,
name text, North
addresses list Drinkward
)i Becomes the bobtastic addresses name
partition key 1Lonely Ave | Bob
CREATE TABLE comments (| ,jig9 2015-12-03 2015-11-11
article_id uuid,
posted_at timestamp, author | Bob oo | author | Alice
author text, content | Bravo! content | Awful ®

content text,
PRIMARY KEY (article id,posted_at)

)i £
First argument is partition key,
others are “clustering” columns

Roughly based on: http://www.datastax.com/dev/blog/thrift-to-cql3

Rule #6: Avoid Multi-Node Queries

* No ACID transactions across primary keys

* No joins! Denormalization helps

» Systems offer different levels of “protection”
— Key-value stores: get (key) method requires key
— MongoDB: Table scans discouraged
— Cassandra: Table scans prohibited

