
CS	133:	Databases	

Fall	2019	
Lec	25	–	12/10	

NoSQL	
	

Prof.	Beth	Trushkowsky	

Final	Exam	Logistics	

•  Final	exam	take-home		
– Available:	in-class	on	Thursday	
– Due:	Wednesday	December	18th,	5:15pm	

•  Same	resources	as	midterm	
– Except	this	time,	two	note	sheets	allowed	(can	re-
use	your	own	from	midterm)	

Goals	for	Today	

•  Discuss	data	replication	in	distributed	DBMSs	

•  Understand	the	motivation	and	goals	for	
“NoSQL”	data	management	systems	

•  Reason	about	the	key	concepts,	techniques,	
and	tradeoffs	for	NoSQL	systems	
– Touch	on	a	couple	specific	NoSQL	systems	
(Dynamo,	MongoDB,	Cassandra)	

	

Some	References	Used	

•  Ten	Rules	for	Scalable	Performance	in	“Simple	Operation”	
Datastores	
–  Communications	of	the	ACM	2011	
–  Stonebraker	and	Cattell	

•  Scalable	SQL	and	NoSQL	Data	Stores	
–  SIGMOD	Record	2011	
–  Cattell	

•  Dynamo:	Amazon’s	Highly	Available	Key-value	Store	
–  SOSP	2007	
–  DeCandia	et	al	

•  MongoDB	and	Cassandra	web	sites	

Asynchronous	Replication	

•  The	modifying	xact	can	commit	before	all	copies	
have	been	changed		
– Users/apps	must	be	aware	of	which	copy	they	are	
reading,	and	that	copies	may	be	out-of-sync	for	short	
periods	of	time	

•  Two	approaches	for	replication:			
–  Primary	Site		

–  Peer-to-Peer	(aka	or	update-anywhere)	
– Difference	lies	in	how	many	copies	are	“updatable”	

Primary	Site	Replication	
•  Exactly	one	copy	of	a	relation	partition	is	designated	
the	primary	copy.			
–  Replicas	at	other	sites	cannot	be	directly	updated	

•  How	are	changes	to	the	primary	copy	propagated	to	
the	secondary	copies?	
– One	approach:	log	shipping	

reads/writes	

reads	only	

reads	only	
If	reads	happen	at	secondary	
copies,	then	possible	that	a	
xact	is	not	be	able	to	read	its	
own	writes	

Peer-to-Peer	Replication	

•  More	than	one	of	the	copies	of	an	object	can	be	primary	

•  Changes	to	a	copy	must	be	propagated	to	other	copies	

•  If	two	copies	are	updated	in	a	conflicting	manner,	this	
must	be	resolved	
–  E.g.,	Last	write	wins?	Combine	updates	somehow?	

reads/writes	

reads/writes	

reads/writes	

Strong	vs.	Eventual	Consistency		
•  Strong:	after	update	to	an	object,	subsequent	reads	see	that	update	
•  Weak:	subsequent	reads	of	an	update	may	not	reflect	that	update	

–  Eventual:	if	updates	ceased,	eventually	the	system	would	reflect	all	
updates	

	
•  Eventual	consistency	has	some	variation	

–  Read-your-own-writes,	special	case	of	session	or	causal	consistency	
–  Monotonic	reads	

	
	
	
	
	
•  BASE,	not	ACID!	

–  BASE:	Basically	available,	soft	state,	eventually	consistent	
Werner	Vogels	on	eventual	consistency:	http://www.allthingsdistributed.com/2008/12/eventually_consistent.html	

“Eventually	Consistent	-	Building	reliable	
distributed	systems	at	a	worldwide	scale	demands	
trade-offs	between	consistency	and	availability.”	
-	Vogels,	CTO	Amazon.com	

Exercise	2:	Replica	Consistency	

•  Suppose	have	N	replicas	of	some	data	object	
– W	=	#	replicas	write	to	before	xact	commits	

– R	=	#	replicas	read	from	

•  Strong	consistency:	overlap	the	W	and	R	sets	
– R	+	W	>	N	

– E.g.,	Read-one-write-all:	R=1,	W=	N	

	

What	is	“NoSQL”?	
Here’s	a	challenge:	can	you	
describe	NoSQL	without	
using	any	buzz	words?!	

Web	2.0	
Agile	

Development	

Eventual	
Consistency		
(BASE	not	ACID)	

A	movement	around	non-relational	data	stores	

Tons	of	user-generated	
content	on	the	web	
	
•  E.g.,	social	

networking	sites	
•  Web	1.0:	few	

content	creators,	
more	static	websites	

Develop	and	change	web	
applications	iteratively	
	
•  Schema	changes	and	

non-uniformity	
•  Make	changes	while	

the	application	is	live	

Performance	gains	at	the	
expense	of	consistency	
	
•  Grow	incrementally	by	

leveraging	leased	cloud	
resources	like	IaaS	

•  Automatically	grow	
resources	as	needed	

Story	of	a	“Successful”	Web	Startup	

•  Start	with	a	relational	DBMS	running	on	single	machine	

	
•  Logic	in	web	application	manages	directing	queries	
–  Cross-shard	filters	and	joins	coded	inside	the	app	
–  App	logic	deals	with	data	consistency	

Web	site	gets	popular!!	
Need	to	scale	up…	

…	so	manually	partition/shard	data	across	more	nodes	

As	the	number	of	machines	increases,		
the	chance	that	something	fails	increases	

Tons	of	NoSQL	systems	

CAP	Theorem	
•  Eric	Brewer’s	CAP	theorem:	a	distributed	system	can		

only	have	two	of	the	following	three	properties:	
–  	Consistency	

	
–  	Availability	

	
–  	Tolerance	to	network	Partitions	

Of	replicated	data	

For	write	requests	

Summary:	NoSQL	Motivation	

•  Development	of	NoSQL	systems	motivated	by	
difficulty	scaling	up	Web	2.0	applications	
–  Thousands	to	millions	of	users	

– Many	[small]	reads	and	writes	(“small	operations”)	

•  Typically	make	sacrifices	for	performance	
–  E.g.,	no	ACID	xacts,	eventual	consistency	

Achieving	Scalable	Performance	

•  Rule	#1:		
Shared-nothing	scalability	
	

•  Rule	#4:		
High	availability	and	automatic	recovery	essential	

	
•  Rule	#5:		
On-line	everything	(system	always	“up”)	
	

•  Rule	#6:		
Avoid	multi-node	operators	

Stonebraker	and	Cattell	

Rule	#1:	Shared-nothing	scalability	

•  Goal:	as	application	grows,	need	more	servers	added	
seamlessly	
–  Don’t	want	manual	management	of	scaling	up	

•  Example	techniques:	
–  Consistent	hashing	(Dynamo	and	Cassandra)	
–  Periodic	re-balancing	of	partitions	(MongoDB)	

Fig	2	in	Dynamo	

Rule	#4:	High	Availability	and		
Auto-Recovery	

•  Goal:	updates	always	succeed!	
–  Issue:	conflicting	writes	on	disjoint	sets	of	replicas	

Exercise	3	

•  Example:	shopping	cart	
– Add	2	items	to	cart,	update	goes	to	two	replicas	

– Partition!	Add	1	(different)	item	to	each	replica	

– Both	carts	are	“version	2”	L	

•  Dynamo:	vector	clocks	
	

•  Or	latest	timestamp	wins?	

	

“…in	the	case	of	a	timestamp	tie,	
Cassandra	follows	two	rules:	first,	
deletes	take	precedence	over	
inserts/updates.	Second,	if	there	are	
two	updates,	the	one	with	the	
lexically	larger	value	is	selected.”	

https://wiki.apache.org/cassandra/FAQ#clocktie	

Replication/Availability	Examples	

•  MongoDB:	automatic	failover	for	primary	

•  Cassandra/Dynamo:	peer-to-peer	replication	
–  tunable	consistency,	e.g.,	quorum	or	not	

Pics	from	https://docs.mongodb.org/master/MongoDB-replication-guide-master.pdf	

Rule	#5:	On-line	Everything	(Schema)	

•  Recall:		
–  A	data	model		is	a	collection	of	high-level	data	description	
constructs		

–  A	schema	is	a	description	of	a	particular	collection	of	data,	
using	a	given	data	model	

•  Relational	model	has	a	rigid,	structured	schema	
–  Attributes	for	relation	pre-defined,	shared	by	all	tuples	
–  Data	and	integrity	constraints	
–  Referential	constraints	

What	if	you	want	
more	flexibility?	

NoSQL:	Non-Relational	Data	Models	

•  Agile	development,	live	schema	changes	
– No	enforcement	of	structure	
– E.g.,	every	“tuple”	could	have	different	attributes	

•  In	essence,	these	data	models	are	key-based	
– Key:	some	unique	identifier	to	look	up	a	
corresponding	“value”	

– What	the	value	is	can	be	complex	

Key	typically	plays	a	role	in	data	partitioning	scheme	

Key-Value	Data	Model	

•  Example	system:	Amazon’s	Dynamo	

•  Key	is	some	unique	identifier,	value	can	be	
anything,	BLOB	interpreted	by	app	logic	
–  E.g.,	id	à	shopping	cart	contents	

•  Query	functionality	
– Get(key),	put(key,	value)	
– Only	primary	key	index	
– No	index	lookups	on	non-keys	(secondary	indexes)	

Document	Data	Model	

•  Example	system:	MongoDB	

•  Stores	collections	of	“documents”	(e.g.,	JSON)	
–  Relation:tuple	::	Collection:document	
–  Key	à	Document	
– Document	has	key-value	pairs,	can	be	nested	lists	or	
scalars	(and	not	defined	in	a	global	schema)	

	
•  Query	functionality	
–  Primary	key	lookups	
–  Secondary	indexes	on	other	attributes	

MongoDB	Example	
Example:	info	about	products,	which	have	many	parts	
	
db.createCollection(”parts")  
db.createCollection(”products")  
 
 
// example part  
{
 _id : ObjectID('AAAA'),
 partno : '123-aff-456',
 name : '#4 grommet',
 qty: 94,
 cost: 0.94,
 price: 3.99
 manufac_addr : [
 { street: '123 Sesame St',  

city: 'Anytown', cc: 'USA' },
 { street: '123 Avenue Q',

city: 'New York', cc: 'USA' }]
}

Modified	from:	http://blog.mongodb.org/post/87200945828/6-rules-of-thumb-for-mongodb-schema-design-part-1	

One-to-many	relationship	captured	with	references	

// example product
{
 name : ‘smoke shifter',
 manufacturer : 'Acme Corp',
 catalog_number: 1234,
 parts : [
 ObjectID('AAAA'),
 ObjectID('F17C’),  
 ObjectID('D2AA’)]
}

What	about		
a	JOIN?	

Extensible	Record	(aka	Column	Family)	

•  Example	system:	BigTable,	Cassandra	

•  A	bit	more	complex	than	document	model	
–  Relation:tuple	::	ColumnFamily:Row	
–  Key	à		Set	of	columns	(“wide-column	store”)	
–  Each	column	has	key-value	pairs	
– Different	records	can	have	different	columns	

	
•  Query	functionality	in	“CQL”	
–  Primary	key	lookups	by	row	(with	sorted	columns)	
–  Secondary	indexes	

“Row”	called	
“partition”	now	

Cassandra	Examples	

Roughly	based	on:	http://www.datastax.com/dev/blog/thrift-to-cql3	

CREATE TABLE people (
user_id text PRIMARY KEY,
name text,
addresses list

);

 CREATE TABLE comments (
article_id uuid,
posted_at timestamp,
author text,
content text,
PRIMARY KEY (article_id,posted_at)

);

alicious	 addresses	 name	

West	 Alice	

North	

Drinkward	

bobtastic	 addresses	 name	

1	Lonely	Ave	 Bob	

a4i89	 2015-12-03	 	

…		
	

2015-11-11	

author	 Bob	 author	 Alice	

content	 Bravo!	 content	 Awful	L	

First	argument	is	partition	key,	
others	are	“clustering”	columns	

Becomes	the	
partition	key	

Rule	#6:	Avoid	Multi-Node	Queries	

•  No	ACID	transactions	across	primary	keys	

•  No	joins!	Denormalization	helps	
	
	

•  Systems	offer	different	levels	of	“protection”	
– Key-value	stores:	get(key)method	requires	key	
– MongoDB:	Table	scans	discouraged	
– Cassandra:	Table	scans	prohibited	

db.people.find(
{favorite-color: ‘blue’},
{name: 1, addresses: 1})

