CS 133: Databases

Warm-up Exercise

(Number of reservations for each sid,bid pair)

Goals for Today

• Understand how Analytics processing (OLAP) is different than Transactional processing (OLTP)

• Reason about how data is organized and queried in a data warehouse

• Discuss current trends in Big Data processing

Data Analytics and Decision Support

• **Idea**: current and historical data to identify useful patterns and support business strategies

• Complex, interactive, exploratory analysis of data
 – Large datasets
 – Data integrated from across all parts of an enterprise
 – Data is fairly static

• **OLAP**: on-line analytical processing
 – In contrast to **OLTP** (on-line transactional processing)
OLAP vs. OLTP

- **OLTP**
 - Update-heavy
 - Short, simple transactions
 - Goal: transaction throughput

- **OLAP**
 - Mostly reads
 - Longer, complex queries for analysis and decision-making
 - Goal: fast queries

Data Integration

- Data may reside in many distributed, heterogeneous OLTP sources
 - Sales, inventory, customer, ...
 - NC branch, NY branch, CA branch, ...

- Need to support OLAP over integrated view of the data

 - **Possible approaches to integration**
 - **Eager**: integrate in advance and store the integrated data in a data warehouse
 - **Lazy**: integrate on demand; process queries over distributed sources—the approach of mediated or federated systems

Example: Car Sales Schema

- **Cars**
 - (serialNo, make, model, color)
- **Dealers**
 - (name, city, state, phone)
- **Date**
 - (date, day, week, quarter, month, year)
- **Sales**
 - (serialNo, date, dealer, price)

Star Schema in Relational OLAP (ROLAP) System

- Fact table **BCNF**; dimension tables possibly **denormalized**
 - Dimension tables are small; updates/inserts/deletes are rare.... anomalies less important than performance

 - **Star Schema**
 - Dimension Table tuple
 - Fact Table tuple
 - Dimension Table tuple
A Multidimensional View

- Example car sales schema:

 Cars(serialNo, model, color)
 Dealers(name, city, state, phone)
 Date(date, day, week, month, year)
 Sales(serialNo, date, dealer, price)

Dicing the Cube

- Can think of partitioning the raw data cube along each dimension at some level of granularity
- A choice of partition for each dimension “dices” the cube

Think SQL “group by”

Slicing the Cube

- Idea: want info about a fixed slice of the data
- In general, in SQL:
 - Dice: GROUP BY
 - Slice: WHERE

Example: Data Analysis

- Suppose Mazda3 model is not selling as well as anticipated
- Query: which colors not doing well?

```sql
SELECT color, SUM(price)
FROM Sales NATURAL JOIN Cars
WHERE model = "Mazda3"
GROUP BY color;`
Exercise 2 (a-c)

(a) SELECT color, month, SUM(price) FROM Sales, Cars, Days WHERE Sales.serialNo = Cars.serialNo AND Sales.date = Days.date AND model = "Mazda3" GROUP BY color, month;

(b) SELECT dealer_name, month, SUM(price) FROM Sales, Cars, Days WHERE Sales.serialNo = Cars.serialNo AND Sales.date = Days.date AND model = "Mazda3" AND color = "red" GROUP BY month, dealer_name;

(c) SELECT dealer_name, year, SUM(price) FROM Sales, Cars, Days WHERE Sales.serialNo = Cars.serialNo AND Sales.date = Days.date AND model = "Mazda3" AND color = "red" AND (year = 2016 OR year = 2017) GROUP BY year, dealer_name;

Analysis: Cross-tabulation

Sales from each dealer by car color
— View popularized by spreadsheet applications

<table>
<thead>
<tr>
<th>Dealer</th>
<th>Red</th>
<th>White</th>
<th>Blue</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>90K</td>
<td>30K</td>
<td>120K</td>
<td>240K</td>
</tr>
<tr>
<td>Bob</td>
<td>100K</td>
<td>10K</td>
<td>40K</td>
<td>150K</td>
</tr>
<tr>
<td>total</td>
<td>190K</td>
<td>40K</td>
<td>160K</td>
<td>390K</td>
</tr>
</tbody>
</table>

Specialized MOLAP and ROLAP systems may store pre-aggregated data (materialized views)

OLAP Queries

• A common operation is to aggregate a measure over one or more dimensions.

• Roll-up: Aggregating at coarser granularity, e.g., higher level in dimension hierarchy.

• Drill-down: The inverse of roll-up

The Data CUBE
Multidimensional OLAP (MOLAP)

• A CUBE relation:
  generalization of the cross-tabulation

Darkest: aggregation over all three dimensions
Medium: aggregation over two dimensions
Lightest: aggregation over one dimension
Analyzing Big Data: Current Trends

• Motivation
  – Expensive ROLAP and MOLAP systems not for everyone
  – Desire to analyze semi-structured or unstructured data

• Big Data rampant!
  – E.g., data sets generated by some of the applications backed by NoSQL systems
  – Sensor data, tweets, etc.

• Trend: many people using MapReduce/Hadoop for Big Data Analysis
  – Scalability and commodity hardware

Pokémon or Big Data?
https://pixelastic.github.io/pokemonorbigdata/

Final Exam: Logistics

• Take-home exam

• Due to my office (Olin 1267) at or before Wednesday, December 18th, 5:15pm

• Two 8.5x11, double-sided note sheets
  – You can use your note sheet from the midterm as one of the two
  – No other resources

• 3-hour timed exam

Possible Topics on Final

• Cumulative-ish
  – Topics we covered earlier still relevant (e.g., hash & tree indexes, estimating cost in I/Os)
  – Won’t focus on nitty gritty from before midterm (e.g., linear vs extendible hashing)

• Query Optimization
• Transactions and ACID
• Database design
• ORDBMS, Distributed DBMS and NoSQL, OLAP (high-level)

• General themes
  – Reasoning about cost and tradeoffs
  – Consistency and correctness with concurrent access and failures
Query Optimization

- Query
  - relational algebra tree
  - logical plan
  - physical plan

- Unit of optimization: query block

- Logical plan
  - Relational algebra equivalences
  - Outer vs. inner relation in joins
  - Query plan tree shape: bushy, linear, deep

Query Optimization

- Choosing physical plan
  - Enumerate plan space
    - Join permutations and orders
    - System R choices
  - Estimate cost of plan
  - Picking cheapest
    - Dynamic programming algorithm (idea)
    - Interesting orders

- Cost estimation
  - Operator algorithm cost
    - Estimating cost of different join algorithms
  - Operator result size estimation
    - Selectivity/Reduction Factor, statistics, histograms
    - Using indexes

ACID Transactions

- Transactions, how to achieve ACID

- Isolation (I)
  - Schedules: serializable, conflict-serializable, etc.
  - Anomalies from interleaved actions, conflicting actions
  - Locking, lock granularity and compatibility, deadlock detection and prevention
  - 2PL vs Strict 2PL, cascading aborts
  - Optimistic concurrency control, backwards validation algorithm

- Recovery (A and D)
  - Steal vs. force and implications on UNDO/REDO
  - Write-Ahead-Logging
  - ARIES recovery algorithm

Database design

- E/R modeling (general idea)
  - Entities, relationships, weak entities
  - Capturing key and participation constraints

- Functional dependencies
  - Attribute closure, Armstrong’s axioms
  - Determining candidate keys
  - Role in detecting data redundancy

- Schema refinement
  - Normalization
  - BCNF normalization process

- Capturing integrity constraints in relational schema

- General motivation and ideas from ORDBMS
Special Topics

• Distributed DBMS
  – Goals of data partitioning and data replication
    • Types of partitioning: range vs hash
  – Replication
    • Synchronous vs asynchronous
    • Strong vs. eventual/weak consistency
  – Challenges with distributed xacts (generally)

• NoSQL
  – CAP theorem
  – Query restrictions for performance (generally)

• Analytics
  – Generally what OLAP is, vs. OLTP, and what kinds of queries run