CS 133: Databases

Fall 2019 Lec 26 – 12/12 Data Analytics

Prof. Beth Trushkowsky

Warm-up Exercise

(See exercise sheet. You can start before class.)

Number of reservations for each sid, bid pair

Goals for Today

- Understand how Analytics processing (OLAP) is different than Transactional processing (OLTP)
- Reason about how data is organized and queried in a data warehouse
- Discuss current trends in Big Data processing

Data Analytics and Decision Support

- Idea: current and historical data to identify useful patterns and support business strategies
- Complex, interactive, exploratory analysis of data

 Large datasets
 - Data integrated from across all parts of an enterprise
 - Data is fairly static
- OLAP: on-line analytical processing

 In contrast to OLTP (on-line transactional processing)

OLAP vs. OLTP

• OLTP

- Update-heavy
- Short, simple transactions
- Goal: transaction throughput

• OLAP

- Mostly reads
- Longer, complex queries for analysis and decisionmaking
- Goal: fast queries

Data Integration

- Data may reside in many distributed, heterogeneous OLTP sources
 - Sales, inventory, customer, ...
 - NC branch, NY branch, CA branch, ...
- Need to support OLAP over integrated view of the data

Tradeoffs?

- Possible approaches to integration
 - Eager: integrate in advance and store the integrated data in a data warehouse
 Need ETL
 - Lazy: integrate on demand; process queries over distributed sources—the approach of mediated or federated systems

Example: Car Sales Schema

Cars(serialNo, make, model, color)
Dealers(name, city, state, phone)
Date(date, day, week, quarter, month, year)

Sales(serialNo, date, dealer, price)

Star Schema in Relational OLAP (ROLAP) System

 Fact table BCNF; dimension tables possibly denormalized
 Dimension tables are small; updates/inserts/deletes are rare.... anomalies less important than performance

Star Schema

Exercise 2 (a-c)

SELECT dealer name, month, SUM(price)

WHERE Sales.serialNo = Cars.serialNo

AND Sales.date=Days.date

AND model = "Mazda3"

AND color = "red" GROUP BY month, dealer name;

FROM Sales, Cars, Days

(a)

SELECT color, month, SUM(price) FROM Sales, Cars, Days WHERE Sales.serialNo = Cars.serialNo AND Sales.date=Days.date AND model = "Mazda3" GROUP BY color, month;

(c)

SELECT dealer_name, year, SUM(price) FROM Sales, Cars, Days WHERE Sales.serialNo = Cars.serialNo AND Sales.date=Days.date AND model = "Mazda3" AND color = "red" AND (year = 2016 OR year = 2017) GROUP BY year, dealer_name;

OLAP Queries

- A common operation is to aggregate a measure over one or more dimensions.
- **Roll-up**: Aggregating at coarser granularity, e.g., higher level in dimension hierarchy.
- Drill-down: The inverse of roll-up

Analysis: Cross-tabulation

Sales from each dealer by car color
 View popularized by spreadsheet applications

Car color

		Red	White	Blue	total
Dealer	Alice	90K	30K	120K	240K
	Bob	100K	10K	40K	150K
	total	190K	40K	160K	390K

How many SQL queries to generate the data in this table?

The Data CUBE Multidimensional OLAP (MOLAP)

• A CUBE relation: generalization of the cross-tabulation

Also called "pivoting"

Pokémon or Big Data? Analyzing Big Data: Current Trends https://pixelastic.github.io/pokemonorbigdata/ Motivation Is it Pokemon or Big Data ? × - Expensive ROLAP and MOLAP systems not for everyone https://pixelastic.github.io/pokemonorbigdata/ - Desire to analyze semi-structured or unstructured data Hadoop is Big Data! Big Data rampant! - E.g., data sets generated by some of the applications backed by NoSQL systems - Sensor data. tweets. etc. Trend: many people using MapReduce/Hadoop for Big Data Analysis - Scalability and commodity hardware Hadoop is a distributed system for counting words. Open-source version of Next auestion Google's MapReduce Possible Topics on Final **Final Exam: Logistics** Cumulative-ish Take-home exam - Topics we covered earlier still relevant (e.g., hash & tree indexes, estimating cost in I/Os) - Won't focus on nitty gritty from before midterm (e.g., linear vs extendible hashing) Due to my office (Olin 1267) at or before Wednesday, December 18th, 5:15pm

- Two 8.5x11, double-sided note sheets
 - You can use your note sheet from the midterm as one of the two
 - No other resources
- 3-hour timed exam

- Query Optimization
- Transactions and ACID
- Database design
- ORDBMS, Distributed DBMS and NoSQL, OLAP (high-level)
- General themes
 - Reasoning about cost and tradeoffs
 - Consistency and correctness with concurrent access and failures

Query Optimization

- Query
 - → relational algebra tree
 → logical plan
 → physical plan
- Unit of optimization: query block
- Logical plan
 - Relational algebra equivalences
 - Outer vs. inner relation in joins
 - Query plan tree shape: bushy, linear, deep

Query Optimization

- Choosing physical plan
 - Enumerate plan space
 - Join permutations and orders
 - System R choices
 - Estimate cost of plan
 - Picking cheapest
 - Dynamic programming algorithm (idea)
 - Interesting orders
- Cost estimation
 - Operator algorithm cost
 - Estimating cost of different join algorithms
 - Operator result size estimation
 - Selectivity/Reduction Factor, statistics, histograms
 - Using indexes

ACID Transactions

- Transactions, how to achieve ACID
- Isolation (I)
 - Schedules: serializable, conflict-serializable, etc.
 - Anomalies from interleaved actions, conflicting actions
 - Locking, lock granularity and compatibility, deadlock detection and prevention
 - 2PL vs Strict 2PL, cascading aborts
 - Optimistic concurrency control, backwards validation algorithm
- Recovery (A and D)
 - Steal vs. force and implications on UNDO/REDO
 - Write-Ahead-Logging
 - ARIES recovery algorithm

Database design

- E/R modeling (general idea)
 - Entities, relationships, weak entities
 - Capturing key and participation constraints
- Functional dependencies
 - Attribute closure, Armstrong's axioms
 - Determining candidate keys
 - Role in detecting data redundancy
- Schema refinement
 - Normalization
 - BCNF normalization process
- Capturing integrity constraints in relational schema
- General motivation and ideas from ORDBMS

Special Topics

- Distributed DBMS
 - Goals of data partitioning and data replication
 Types of partitioning: range vs hash
 - Replication
 - Synchronous vs asynchronous
 - Strong vs. eventual/weak consistency
 - Challenges with distributed xacts (generally)
- NoSQL
 - CAP theorem
 - Query restrictions for performance (generally)
- Analytics
 - Generally what OLAP is, vs. OLTP, and what kinds of queries run