CS 133: Databases

Spring 2017
Lec 20 – 4/4
Database Design
Prof. Beth Trushkowsky

Warm-up Exercise

(See exercise sheet. You can start before class.)

Redundant data storage.
A sailor can’t exist without a reservation, same with boats.
Integrity constraints we know should exist, can’t (E.g., sid determines sname)

Lab 4: Buffer Pool and Deadlock detection

• Buffer pool policy: NO STEAL, FORCE
 – (no logging)

• Deadlock detection
 – Timeout-based approach
 – Waits-for-graph

Goals for Today

• Learn about the process of designing a database to model a real-world application

• Understand how to encode an application in an entity-relationship (ER) diagram

• Reason about translating an ER model to a relational model
Database Design

- **Requirements Analysis**
 - user needs; what must database do?
- **Conceptual Design**
 - high level description (often done w/ ER model)
- **Logical Design**
 - translate ER into DBMS data model
- **Schema Refinement**
 - consistency, normalization
- **Physical Design**
 - indexes, disk layout
- **Security Design**
 - who accesses what

Data Models – Describing Data

- A *Database design* encodes some portion of the real world
- A *Data Model* is a set of concepts for thinking about this encoding

Helpful to start with a graphical representation: the *Entity-Relationship* model!

Integrity Constraints (ICs)

- Remember the “C” in ACID (Consistency)
- **Integrity Constraint (IC)**: condition that must be true for *any* instance of the database
 - e.g., *domain constraints, keys and foreign key*
 - ICs are specified when schema is defined.
 - ICs are checked when relations are modified.

- **Come from semantics of the real world!**
 - Should be determined during Requirements Analysis and/or Conceptual Design phases

 What “business rules” make sense

Entity-Relationship (ER) Model Basics

- **Entity**: Real-world object, distinguishable from other objects. An entity can have a set of *attributes*
 - Each attribute is atomic (not a list or set)
- **Entity Set**: A collection of similar entities. E.g., all employees.
 - All entities in an entity set have the same set of attributes. *(Until we consider hierarchies, anyway)*
 - Each entity set has a *key* *(underlined)*.
 - Each attribute has a *domain*.
ER Model Basics (Contd.)

• **Relationship**: Association among two or more entities. E.g., Alice *works in* Pharmacy department.
 – Relationships can have their own attributes
 – Relationships uniquely identified only by participating entities, excluding attributes

• **Relationship Set**: Collection of similar relationships
 – An *n*-ary relationship set *R* relates *n* entity sets *E₁* ... *Eₙ*, each relationship in *R* involves entities *eᵢ* ∈ *Eᵢ*, ..., *eₙ* ∈ *Eₙ*

Key Constraints

An employee can work in **many** departments; a dept can have **many** employees.

In contrast, each dept has **at most one** manager, according to the **key constraint** on Manages.

Participation Constraints

• Does every employee work in a department?
 – If so, the participation of Employees in Works_In is said to be **total** (vs. **partial**)?

• What if every department has an employee working in it?

• Use bold edge in ER diagram... basically means “one or more”

Means: “one or more”

Means: “exactly one”
Weak Entities

A weak entity can be identified uniquely only with the primary key of another (owner) entity.

- Owner entity set and weak entity set must participate in a one-to-many relationship set (one owner, many weak entities).
- Weak entity set must have total participation in this identifying relationship set.

Weak entities have only a “partial key” (dashed underline)

Exercise 2: Interpret E/R diagram

- a) Every classroom must be taught in. Not every class has to be taught.
- b) No. A relationship is uniquely identified by its participating entities only
- c) Perhaps include a “course offering” as a weak entity

ISA (‘is a’) Hierarchies

If we declare A ISA B, every A entity is also considered to be a B entity

- Overlap constraints: Can Alice be an Hourly_Emps as well as a Contract_Emps entity? (Allowed/disallowed)

- Covering constraints: Does every Employees entity also have to be an Hourly_Emps or a Contract_Emps entity? (Yes/no)

- Reasons for using ISA:
 - To add descriptive attributes specific to a subclass.
 - i.e. not appropriate for all entities in the superclass
 - To identify entities that participate in a particular relationship
 - i.e., not all superclass entities participate

Conceptual Design Using the ER Model

- ER modeling can get tricky!
- **Example design choices:**
 - Should a concept be modeled as an entity or an attribute?
 - Should a concept be modeled as an entity or a relationship?

- Note constraints of the ER Model:
 - A lot of data semantics can (and should) be captured
 - But some constraints cannot be captured in ER diagrams
 - We’ll refine things in our logical (relational) design
Entity vs. Attribute

- E.g., capturing employee “Address“:

 ![Diagram of Entities and Relationships]

- It depends! Semantics and usage:
 - Several addresses per employee?
 - must be an entity!
 - atomic attribute types (no set-valued attributes!)
 - Care about structure? (city, street, etc.)
 - must be an entity!
 - atomic attribute types (no tuple-valued attributes!)

Example: Entity vs. Attribute

- Works_In2: implies employee cannot work in a department for multiple periods
 - Similar to issue of multiple addresses per employee

Example: Entity vs. Relationship

- Implies separate discretionary budget ($dbudget$) for each dept

 ![Diagram of Entities and Relationships]

- What if manager’s $dbudget$ covers all managed depts?
 - Could repeat value (Confusing)
 - Also redundancy problems

- Instead: make Manager entity set descended from Employees in ISA hierarchy
 - Make $dbudget$ an attribute of Manager

Exercise: Basic ER Model

- Entities and Entity Set (boxes)
- Relationships and Relationship sets (diamonds)
 - binary
 - n-ary
- Key constraints (1-1,1-M, M-M, arrows on 1 side)
- Participation constraints (bold for Total)

- Try Exercise 3
Exercise 3

- Example answer

```
CREATE TABLE Employees
(ssn CHAR(11),
 name CHAR(20),
 lot INTEGER,
 PRIMARY KEY (ssn))
```

Logical DB Design: ER to Relational

Entity sets to tables

```
CREATE TABLE Employees
(ssn CHAR(11),
 name CHAR(20),
 lot INTEGER,
 PRIMARY KEY (ssn))
```

Relationship Sets to Tables

- In translating a many-to-many relationship set to a relation, attributes of the relation must include:
 1. Keys for each participating entity set (as foreign keys).
 - This set of attributes forms a super key for the relation.
 2. All descriptive attributes for the relationship set.

```
CREATE TABLE Works_In
(ssn CHAR(1),
 did INTEGER,
 since DATE,
 PRIMARY KEY (ssn, did),
 FOREIGN KEY (ssn) REFERENCES Employees,
 FOREIGN KEY (did) REFERENCES Departments)
```

Translating ER with Key Constraints

One way to translate the Manages Relationship (one-to-many):

```
CREATE TABLE Manages
(ssn CHAR(11),
 did INTEGER,
 since DATE,
 PRIMARY KEY (did),
 FOREIGN KEY (ssn) REFERENCES Employees,
 FOREIGN KEY (did) REFERENCES Departments)
```

In general, schema will include keys from entity sets (but not necessarily all will form primary key)
Translating ER with Key Constraints (Take 2)

Since each department has a unique manager, we could instead combine Manages and Departments as Dept_Mgr:

```sql
CREATE TABLE Dept_Mgr(
  did INTEGER,
  dname CHAR(20),
  budget REAL,
  ssn CHAR(11),
  since DATE,
  PRIMARY KEY (did),
  FOREIGN KEY (ssn) REFERENCES Employees)
```

Participation Constraints in SQL

- We can capture participation constraints involving one entity set in a binary relationship, but little else (without resorting to CHECK constraints).

```sql
CREATE TABLE Dept_Mgr(
  did INTEGER,
  dname CHAR(20),
  budget REAL,
  ssn CHAR(11) NOT NULL,
  since DATE,
  PRIMARY KEY (did),
  FOREIGN KEY (ssn) REFERENCES Employees,
  ON DELETE NO ACTION)
```

Translating Weak Entity Sets

- Weak entity set and identifying relationship set are translated into a single table.
 - When the owner entity is deleted, all owned weak entities must also be deleted.

```sql
CREATE TABLE Dep_Policy (
  pname CHAR(20),
  age INTEGER,
  cost REAL,
  ssn CHAR(11) NOT NULL,
  PRIMARY KEY (pname, ssn),
  FOREIGN KEY (ssn) REFERENCES Employees,
  ON DELETE CASCADE)
```

Exercise 4 (attribute types omitted)

- CREATE TABLE Drinkers(ssn, name, birthday, PRIMARY KEY(ssn))

- CREATE TABLE Friends(friend1, friend2, PRIMARY KEY(friend1,friend2), FOREIGN KEY(friend1) REFERENCES Drinkers(ssn), FOREIGN KEY(friend2) REFERENCES Drinkers(ssn))

- CREATE TABLE Bars_owns(name, address, phone, ssn_owner NOT NULL, PRIMARY KEY(name), FOREIGN KEY(ssn_owner) REFERENCES Drinkers(ssn))
ISA Hierarchies to Relations

• **Three relations**
 Employees(ssn, name, lot)
 Contract_emps(ssn, contractid)
 Hourly_Emps(ssn, hourly_wages, rating, hours_worked)

• **Alternative (assuming covering)**
 Contract_emps(ssn, name, lot, contractid)
 Hourly_Emps(ssn, name, lot, hourly_wages, rating, hours_worked)

Query to get:
Names of all Employees?
Names of just Hourly Emps?