
Crowdsourced Joins for Filter Queries

Cienn Givens
Harvey Mudd College

Claremont, CA
cgivens@hmc.edu

Anna Serbent
Harvey Mudd College

Claremont, CA
aserbent@hmc.edu

Beth Trushkowsky
Harvey Mudd College

Claremont, CA
beth@cs.hmc.edu

1. INTRODUCTION AND MOTIVATION
Human computation, also called crowdsourcing, leverages

people to complete computational tasks. Web platforms
such as Amazon’s Mechanical Turk provide a programmatic
interface for recruiting crowd workers to work on small tasks
that typically take less than a few minutes; e.g., labeling an
image. Our work investigates using crowdsourcing within
query processing systems such as a database management
system (DBMS) to broaden the scope of questions users can
ask about their data.

This project builds on previous work on Dynamic Filter
[3], an algorithm for filtering a list of items using criteria
that each require human knowledge, perception, or experi-
ence; the algorithm uses the crowd to evaluate each item to
see which satisfy all filtering criteria. For example, a user’s
query could be to filter a list of hotels to find which ones
have (1) a nice view from the room and (2) a gym that is
open 24 hours.

In our current work, we aim to improve the efficiency of
the Dynamic Filter algorithm by giving special considera-
tion to filtering criteria that have a particular form. As an
example of this form, consider again the example use case
of filtering a list of hotels. Suppose there is a third filtering
criterion: the hotel should be within one mile of a metro
station with an elevator. The general form is when a filter-
ing criterion refers to a secondary list of items, in this case
a list of metro stations, that in turn has its own filtering
criterion (has elevator). Connecting items from one list (ho-
tels) to items from a second list (metro stations) using some
constraint (“within one mile”) is referred to as a Join oper-
ation in database systems. We call a filtering criterion that
has this form “join-able”, meaning that it can be treated as
a join with a secondary list with its own filtering criterion,
the secondary filter.

Our work investigates join-able filters in order to reduce
the amount of total crowdsourcing work needed to complete
the query. In the hotels example, overall worker effort could
be reduced if multiple hotels are close to the same station:
after the station is checked for having an elevator for the first
hotel, it will not have to be checked again for other hotels.

In this poster we describe our approach to some key chal-
lenges for realizing the benefits of join-able filters. The first
is determining the possible approaches for processing the
join and the secondary filter using the crowd. As is typically
the case in query processing systems, different approaches
may be better for different queries. Thus the second chal-
lenge is determining how the amount of overall crowd worker
effort, representing query cost, should be characterized and

then used to decide on an approach for a given query. Fi-
nally, there is the challenge of how to estimate the cost of
different approaches for a query because in Dynamic Filter
the true costs are unknown at query time.

2. BACKGROUND AND RELATED WORK
The process of determining the best, low-cost approach

for executing a query in a database system is called query
optimization. Related work in query optimization for crowd-
powered database systems assumes query costs are known
before the query runs [2]. Our work investigates when these
costs are unknown at query run time. Dynamic Filter is
an example of adaptive query processing [1]: the execution
approach for a query is modified as it runs. The algorithm
learns estimates of the query’s possible execution approaches
while the query is running and then adapts its strategy.

Conceptually, a DBMS Join pairs every item from its first
input list with every item from its second input list, called
the cross-product; pairs that satisfy the join condition are
the result of the join. Our work addresses crowd-powered
joins, where the join condition is evaluated by the crowd.
Join algorithms in a traditional DBMS aim to more effi-
ciently evaluate the same result as the conceptual evalua-
tion. Part of our approach to efficient crowd-powered joins
involves the idea of a pre-join filter [4]. A pre-join filter asks
the crowd to categorize each item from the two input lists
before the join condition is tested on pairs; two items in the
same category have a much higher likelihood of matching
by the join condition (in many cases, to the extent that two
items from different categories cannot match) [5]. For exam-
ple: if the lists were hotels and metro stations, each could
be categorized with the city where they are located.

3. APPROACH
Our work focuses on identifying approaches to a crowd-

powered join, characterizing their costs, and determining
how to estimate those costs while a query is running. Our
adaptive algorithm would use cost estimates to shift its ex-
ecution strategy over time.

3.1 Defining Join Paths
We call each approach for a crowd-powered join a path: a

sequence of evaluation steps each done by the crowd. Join-
able filters always have the secondary filter as one of the
steps; the join takes at least one step but may be broken
into multiple steps.

The space of possible paths includes different algorithms
for implementing the crowd-powered join as well as differ-



Figure 1: Join base paths. Blue dotted arrows show
ways to reorder steps, creating new paths. Dashed
lines denote a list that is created as the query runs.

ent orders of the steps in a path. We highlight two join
techniques, forming two base paths as shown in Figure 1.

The first path, on the left in Figure 1, has two steps:
perform what we call an item-wise join and then apply the
secondary filter. The item-wise join takes each item from
the primary list (e.g., hotels) and asks the crowd for every
secondary-list item (metro station) that satisfies the join
condition (within one mile) for the primary list item. Hav-
ing the crowd find the contents of secondary list is unique
to crowd-powered joins because the secondary list can be
unknown at the start of the query. The item-wise join only
evaluates as much of the cross-product between the two lists
as necessary. Reordering of steps in this base path include
doing an item-wise join starting with items from the sec-
ondary list, or evaluating the secondary filter before the join.

The second base path could be used when some or all
items in the secondary list are known; see right in Figure 1.
It has three steps: first, apply a pre-join filter to both lists,
then give possible pairs to the crowd to be verified, then
apply the secondary filter. The pre-join filter can greatly
reduce the number of pairs that must be compared by the
crowd. We can create new paths from this one by applying
the secondary filter before the join, either before or after the
pre-join filter.

3.2 Determining Path Cost
In order to be able to choose the best path for a given

query, we must characterize each path’s cost. The item-wise
base path must find all pairs for each item in the primary
list and then run the secondary filter on each secondary-list
item that is joined to a primary-list item. The cost of the
item-wise base path can be expressed as

Cp1 = CfpNpr + Csf (NsecSjp),

where Cfp is the average cost of finding all pairs for one item,
Npr is the number of primary-list items, Csf is the average
cost of applying the secondary filter to a single item, Nsec is
the number of secondary-list items, and Sjp is the fraction of
secondary-list items that have a match in the primary list.
The cost of the pre-filter base path is

Cp2 = Cpj(Npr+Nsec)+(Npr×Nsec)SpjCjp+Csf (NsecSjp),

where Cpj is the average cost of applying the pre-join filter
to one item, Spj is the likelihood that a pair shares the same
pre-join filter category, and Cjp is the cost of evaluating the
join condition on a pair.

3.3 Estimating Cost to Choose a Path
In our setting these costs will not be known at query time,

so the query processing algorithm will need to form esti-
mates while the query is running. To do so, it can start with
an initial path and form cost estimates as it observes some
cost information in real time. Notably, only a few terms in
the two path cost expressions differ: Cfp, Cjp, Cpj , and Spj .
With sufficient estimates of these values, the algorithm can
learn which path is optimal by running either path.

Our current approach is to begin with an exploratory pe-
riod that establishes an estimate of some of the relevant
costs by running paths equally; the algorithm then switches
to a strategy in which it just uses the path with the lowest
estimated cost. We aim to shorten the exploratory period
by noting when observations made for one path’s cost in-
form the other’s cost, beyond the shared terms in their cost
expressions. For example, the cost of finding pairs is related
to the number of pairs and the cost of applying the join
condition to a pair. Future work includes further exploring
these relationships.

4. CONCLUSION AND FUTURE WORK
Transforming filters to crowd-powered joins can improve

the efficiency, and thus the utility, of crowd-powered query
processing systems. We have shown two approaches to crowd-
powered joins, discussed their costs, and described a way to
adaptively choose the best path for a given query.

Next steps include identifying additional join paths, as
well as different approaches to estimating cost. For example,
we will explore adding a step that asks crowd workers to
estimate the relative size of the two lists. Finally, we plan
to test our approach using Amazon’s Mechanical Turk.

5. ACKNOWLEDGMENTS
This work was supported by the National Science Foun-

dation under Grant No. 1657259.

6. REFERENCES
[1] A. Deshpande, Z. Ives, and V. Raman. Adaptive query

processing. Foundations and Trends in Databases,
1(1):1–140, 2007.

[2] J. Fan et al. Crowdop: Query optimization for
declarative crowdsourcing systems. IEEE TKDE,
27(8):2078–2092, 2015.

[3] D. Lan, K. Reed, A. Shin, and B. Trushkowsky.
Dynamic filter: Adaptive query processing with the
crowd. In HCOMP, 2017.

[4] A. Marcus, E. Wu, D. Karger, S. Madden, and
R. Miller. Human-powered sorts and joins. Proc. VLDB
Endow., 5(1):13–24, Sept. 2011.

[5] T. Mitsuishi, A. Morishima, N. Shinagawa, and
H. Aoki. Efficient evaluation of human-powered joins
with crowdsourced join pre-filters. In ICUIMC, pages
7:1–7:6, New York, NY, USA, 2013. ACM.


