
PIQL: A Performance Insightful Query Language

Michael Armbrust, Stephen Tu, Armando Fox, Michael J. Franklin, David A. Patterson
Nick Lanham, Beth Trushkowsky, Jesse Trutna

EECS Department
University of California, Berkeley

{marmbrus, sltu, fox, franklin, pattrsn, nickl, trush, jtrutna}@cs.berkeley.edu

ABSTRACT
Large-scale websites are increasingly moving from relational
databases to distributed key-value stores for high request
rate, low latency workloads. Often this move is motivated
not only by key-value stores’ ability to scale simply by adding
more hardware, but also by the easy to understand pre-
dictable performance they provide for all operations. While
this data model works well, lookups are only done by pri-
mary key. More complex queries require onerous, explicit
index management and imperative data lookups by the de-
veloper. We demonstrate PIQL, a Performance Insightful
Query Language that allows developers to express many
of the queries found on these websites, while still provid-
ing strict bounds on the number of I/O operations for any
query.

Categories and Subject Descriptors
H.3.5 [Online Information Services]: Web-based services

General Terms
Languages, Performance

1. INTRODUCTION
Key-value stores have gained traction in both academia

and industry as more developers transition to them from a
traditional RDBMS. Of the five companies who run the top
ten websites on the internet, three have announced publicly
that they use or plan to use a key-value store for some por-
tion of their site [1, 2, 9, 10, 13]. Additionally, many com-
panies who still use traditional RDBMSs have implemented
their own application-specific storage layers on top of them
and use the database for simple operations [12].

One of the driving factors in this transition is the lack of
performance transparency developers encounter when using
a traditional RDBMS. It is easy for developers to write SQL
statements that look simple but are actually very computa-
tionally intensive. In contrast, when developers are forced

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’10, June 6–11, 2010, Indianapolis, Indiana, USA.
Copyright 2010 ACM 978-1-4503-0032-2/10/06 ...$10.00.

to write their own imperative code consisting of many sim-
ple get/put operations, it is more apparent when queries’
performance will not scale as the site becomes more pop-
ular. Unfortunately, forcing developers to access data im-
peratively introduces its own set of problems. In addition
to giving up physical data independence, developers must
worry about optimization, index management, session guar-
antees and intra-query parallelization.

The known problems and additional complexity that comes
with imperative programming of data-intensive applications
has not deterred a growing community of developers who are
rejecting query languages in favor of lower-level imperative
interfaces [4]. We believe that this choice is an unfortunate
one and is a classic case of “throwing the baby out with
the bathwater” – depriving developers of the many benefits
of high-level query languages. To address this problem, we
have developed PIQL, a Performance Insightful Query Lan-
guage1. PIQL is designed specifically for the development
of large-scale data-intensive web sites and applications and
is based on the following principles:

• It is based on a subset of SQL that enables accurate
performance predication

• All queries must specified ahead of time and validated
against a developer-specified service level objective (SLO)

• It has direct support for manipulating the entities and
relationships that are commonly used in web applica-
tions

• Its implementation is based on automatically selected
indexes

• It can be adapted to run on many existing key-value
stores

In our demo we will show how PIQL enables the creation
of compelling applications without requiring developers to
worry about scaling considerations. We will demonstrate a
sample application called SCADr, a clone of the popular in-
ternet site www.twitter.com. SCADr was built using PIQL
in only a few days. We will show the site running on hun-
dreds of machines on Amazon’s EC2 under artificial load.

Attendees will be able to interact with the site a few dif-
ferent ways: First, as end users they can visit the public site
at http://scadr.knowsql.org either from the provided com-
puters or through their own mobile devices. We will have
1A more detailed description of the PIQL language can be
found in the proceedings of the ACM Symposium on Cloud
Computing (SOCC) 2010 [7].

a screen that shows metrics from the actual running sys-
tem such as the current latency for queries in the system.
Second, they can inspect provided code snippets, in order
to get a feel for how developers actually write programs us-
ing the PIQL language. Finally, attendees will be able to
experiment with the system through the interactive devel-
oper console by adding data, running existing queries, and
proposing additional queries for new functionality.

2. PIQL ENTITIES AND RELATIONSHIPS
Much like the popular Active Record, an object relational

mapper (ORM) from the RubyOnRails web framework, the
DDL of PIQL is focused on the specification of entities and
relationships [5].

ENTITY user
{
string name,
string password,
string hometown,
string profileData
PRIMARY(name)

}

ENTITY thought
{
int timestamp,
string thought,
FOREIGN KEY owner REF user
PRIMARY(owner, timestamp)

}

ENTITY subscription
{
bool approved,
FOREIGN KEY owner REF user MAX 5000,
FOREIGN KEY target REF user,
PRIMARY(owner, target)

}

Figure 1: The entites and relationships for the

SCADr Web application.

Entity Sets are typed collections of attributes, analogous
to relations in a traditional relational database. An im-
portant distinction, however, is that PIQL allows only the
atomic update of a single entity, instead of the general up-
date mechanism present in SQL. Figure 1 shows an example
of the syntax for entities of the sample application described
in Section 5.

Relationships are defined by specifying a foreign key that
points to another entity type. This is different from SQL,
where the join predicates can be defined at query time. The
reason for requiring this explicit specification is to allow the
user to place cardinality constraints on specific relationships.
These constraints can be specified in the form of a integer
constant, 5000 in the above example. If no bound is stated
then the relationship is assumed to be unbounded. Figure 1
shows the relationships of the SCADr application.

3. QUERIES IN PIQL 1.0
PIQL queries are similar to SQL, but have a few notable

differences chosen to allow the calculations of strict bounds
on the number of operations performed by each query: First,
since all queries are specified ahead of time, they must be
named and can take parameters, much like stored proce-
dures in an RDBMS. These parameters come in the form
[ordinal:name], where the ordinal is used for placement in
the argument list of the generated function. Second, each
query returns only a collection of a single type of entity. Fi-
nally, joins can only be done on pre-specified relationships.
The general syntax for all queries is as follows:

QUERY name
FETCH entity
[OF joined-entity alias BY relationship] ...

WHERE predicates
[{PAGINATE perpage | LIMIT count}]

The following are examples of this syntax from the SCADr
application. The first query looks up a user by the primary
key, username, while the second looks up a set of users with
a given hometown, returning a variable number of results
with a maximum of ten.
QUERY userByName
FETCH user
WHERE user.name = [1:name]

QUERY userByHometown
FETCH user
WHERE user.hometown = [1:hometown]
LIMIT [2:count] MAX 10

A third, more complicated query returns a paginated list,
10 at a time, of the most recent thoughts of all the approved
subscriptions owned by the current user.

QUERY thoughtstream
FETCH thought
OF user friend BY owner
OF subscription BY target
OF user me BY owner

WHERE me.username=[1:username] AND approved = true
ORDER BY timestamp
PAGINATE 10

This query first locates the current user by the primary
key me.username=[1:username]. Then, it finds all the sub-
scriptions of the current user by using the owner relation-
ship between user and subscription, subscription OF user
BY owner. It then locates all of the targets of these sub-
scriptions, user OF subscription BY target. These sub-
scriptions are filtered to only include those which have been
approved, approved = true. Next, we find the target user
of the approved subscriptions, user OF subscription BY
target Finally, all of the thoughts of these users are lo-
cated (thought OF user BY owner), sorted by time (ORDER
BY timestamp), and returned ten at a time (PAGINATE 10).

As was mentioned before, many of the deviations from
traditional SQL result from our desire to provide guaran-
teed performance bounds for all queries. This is similar to
a related language GQL, which is Google AppEngine’s in-
terface to the underlying BigTable storage system. GQL is
very similar to SQL and has a number of performance-based
restrictions [3]. PIQL extends this model by allowing joins of

limited cardinality, providing performance estimates based
on machine learning models, and allowing use on systems
other than those internal to Google. As a result, the system
will analyze all of the queries in a given application spec
and reject any query either has an unbounded intermediate
step or an unbounded final result. An example of a query
that would have an unbounded final result would be the
userByHometown query from the previous subsection if there
were no LIMIT clause. This is due to the fact that hometown
is not a primary key, and as such any number of users could
have the same town listed. An example of an unbounded
intermediate step would be the thoughtstream query, if we
had not created the cardinality limitation of 5000 but had
instead chosen MANY. In either of these cases the compiler de-
scribed in the next section would have thrown a compilation
error.

4. IMPLEMENTATION

4.1 Compiler
The PIQL compiler takes in an application spec and pro-

duces a library jar that can be used from any JVM based
language to interact with a cluster of SCADS Storage Nodes
[6]. This jar could be used from any one of the many popu-
lar web frameworks that run on the JVM. For example, the
SCADr demo was written using the Play Framework [8]. For
each entity, a class is created that allows the creation and
updating of the values for one specific instance of an entity
type. Getter and setter methods allow users to modify at-
tributes, and a save method attempts to update the entity
along with reliably updating any asynchronously maintained
indexes needed to correctly answer queries efficiently. Each
query is compiled into a function with arguments for each
of the parameters of the query.

While we currently only support bytecode generation, it
should be relatively easy to output code for another popular
web development language. In fact, there is currently an
effort led by some undergraduates at Berkeley to add sup-
port for PIQL to RubyOnRails. Additionally, the underlying
storage system could be swapped our for any key-value store
that supports a few simple operations (get, put, test and set,
get by key prefix, etc.) with only minor code changes.

The compiler uses a simple heuristic-based optimizer to
choose indexes that will need to be created, and generate
execution plans for all of the queries. Queries that use the
paginate operator will return a special object that can be
used to retrieve a list of the current results, as well as to
access the next page. This object is easy to serialize and
deserialize so that it can either be placed in the web frame-
work’s session store or used as arguments to the next URL
invocation. It acts as a client-side cursor allowing the sys-
tem to retrieve the next round of results starting exactly
where the last page off and not back at the beginning. This
feature allows us to not only retrieve an arbitrary number
of “next pages” with constant performance, but also to pro-
vide a more consistent user interface in the case of insertions
while paging.

4.2 Performance guarantees
Another important feature of the compiler is to ensure

that the queries will perform within the user specified SLO
even in the worst case and in spite of user-base growth. Two
key factors make such guarantees possible. First, we rely on

TopK(10) => 10
Sort(descending:timestamp) => 10 * 5000
IndexJoin("ent_thought",

thought:owner == subscription:owner,
descending: timestamp) => 10 * 5000

Select("approved" == true) => 5000
IndexLookup("ent_subscription",

subscription:owner == [username]) => 5000

Total Reads = 5000 + 10 * 5000
Other Work = 5000 +
(10 * 5000) * log(10 * 5000) + 10

Figure 2: Example performance information from

the interactive query console about the thought-

stream query.

the fact that the underlying data store is designed to provide
predictable performance by scaling both up and down based
on machine learning models of expected load, as described in
[6]. Combining this predictability with the required bounds
imposed by the query language, we can derive the maximum
number of simple operations that will need to be performed
by any query. This allows developers to avoid the type of
unexpected scaling catastrophes that plague and sometimes
destroy sites as they become more popular [11].

4.3 ORM Convenience Features
The compiler also contains some syntactic sugar to make

the query interface more usable. One example is the implicit
this parameter. While all of the example queries use named
parameters, a query can optionally contain a single [this]
parameter, which has the value of the primary key of the
object that the query was called on. Any query that contains
[this] will be compiled as an instance method of an entity
class instead of as a static method. This would, for instance,
make it possible to call the thoughtstream query using the
syntax user1.thoughtstream instead of the more verbose
Queries.thoughtstream(user1.username)

Figure 3: A screen shot of the SCADr Application.

5. DEMO
Our demo will consist of a real application, SCADr, run-

ning on hundreds of nodes on Amazon’s Elastic Compute

Cloud. Users of SCADr add tidbits of information in the
form of thoughts to the system. These thoughts are broad-
cast to all users who have subscribed to that user’s thought-
stream and have been approved.

Artificial load will be applied by a number of clients to
simulate many users on the system, and a local client will
show that the response time of the system stays within the
accepted SLO. Conference attendees will be able to access
the site from a provided laptop, or from their own mobile
devices. In the event of limited connectivity (both internet
and cellular) we will run a scaled down version of the site
on a local laptop.

Attendees will also be able to propose new ad-hoc queries
to the system running on EC2. If the query is bounded,
the system will provide an annotated query plan explaining
the maximum number of operations that will be performed
during execution. Figure 2 shows an example annotated
query plan. Additionally, if all of the indexes needed to
answer the query are available the system will return the
answer.

Finally, we will also provide attendees with the ability
to experiment with the query language by modifying the
existing spec with new entities, added queries, or changed
relationships. The system will provide updated performance
expectations based on the specified changes.

6. REFERENCES
[1] Alexa top 500 global sites. Available from:

http://www.alexa.com/topsites.
[2] Baidu sponsors hypertable [online]. Available from:

http://www.hypertable.org/sponsors.html.
[3] GQL. http://code.google.com/appengine/docs/

python/datastore/gqlreference.htm%l.
[4] Nosqleast conference [online]. Available from:

https://nosqleast.com/2009/.
[5] Ruby on rails api: Activerecord. Available from:

http://api.rubyonrails.org/classes/
ActiveRecord/Base.html.

[6] Armbrust, M., et al. Scads: Scale-independent
storage for social computing applications. In CIDR
(2009), www.cidrdb.org.

[7] Armbrust, M., Lanham, N., Tu, S., Fox, A.,
Franklin, M., and Patterson, D. A. Piql: A
performance insightful query language for interactive
applications. First Annual ACM Symposium on Cloud
Computing (SOCC).

[8] Bort, G. The play web framework. Available from:
http://www.playframework.org/.

[9] Chang, F., Dean, J., et al. Bigtable: A distributed
storage system for structured data. ACM Trans.
Comput. Syst. 26, 2 (2008), 1–26.

[10] Lakshman, A., and Malik, P. Cassandra: A
structured storage system on a p2p network.
Presented at SIGMOD 2008.

[11] Rivlin, G. Wallflower at the web party. The New
York Times (October 15 2006).

[12] Sobel, J. High performance at massive scale. Talk at
HPTS 2009.

[13] Srivastava, U. Pnuts - platform for nimble universal
table storage. Talk, October 2007.

