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Abstract

Although MIDI is often used for computer-based interactive
music applications, its real-time performance is difficult to
generally quantify because of its dependence on the charac-
teristics of the given application and the system on which it is
running. We extend existing proposals for MIDI performance
benchmarking so that they are useful in more realistic inter-
active scenarios, including those with high MIDI traffic and
heavy CPU load. Our work has resulted in a cross-platform
freely-available testing suite that requires minimal effort to
use. We use this suite to survey the interactive performance
of several commonly-used computer/MIDI setups, and extend
the typical data analysis with an in-depth discussion of the
benefits and downsides of various performance metrics.

1 Introduction

MIDI is a widely used standard for interconnecting elec-
tronic music devices and has both a communications proto-
col and a physical layer. It was originally designed to pro-
vide low-latency transmission of musical messages between
devices, although arguments questioning its appropriateness
in highly interactive real-time settings have been made (Wes-
sel and Wright 2000; Moore 1988). Quantifying MIDI’s la-
tency is crucial because even small timing variations can be
musically perceptible, especially when grace notes or other
short ornaments are present. Researchers have proposed val-
ues as low as 1 to 1.5 milliseconds as an acceptable range
of latency variation (Moore 1988; Wessel and Wright 2000),
and around 10 milliseconds as an acceptable upper bound on
absolute latency (Wessel and Wright 2000; Brandt and Dan-
nenberg 1998).

Given MIDI’s fixed 31.25 kHz baud rate, when connect-
ing stand-alone synthesizers and sending messages of fixed
size, associated communication delays are trivial to calculate,
consistent, and relatively small. Our concern in this paper is
with latencies that arise when MIDI communicates with soft-
ware running on a general-purpose computer. Toward this
end, we use system to refer to a general-purpose computer and
all of its relevant interconnected parts: the MIDI interface and
related drivers; the physical bus to which the interface is con-
nected (USB, PCI, etc.); the operating system (including its

scheduler, its MIDI API, and so on); and a specific run-time
configuration (system priorities, power options, etc.). These
system parts introduce additional latencies that are typically
greater and less consistent than those associated with MIDI’s
physical layer. Nonetheless, MIDI’s low cost and ready avail-
ability make it a frequent choice of researchers building in-
teractive music systems (Biles 1998; Franklin 2001; Dannen-
berg et al. 2003).

Quantifying a system’s latency is heavily dependent on
the particular application. For example, as music researchers
increasingly rely on more computationally expensive artifi-
cial intelligence techniques to proceduralize “musically rea-
sonable” behavior, it becomes increasingly important to un-
derstand how processor load impacts latency. The amount
of MIDI traffic is also likely to impact performance. For in-
stance, an application’s ability to accurately time-stamp in-
coming MIDI data could very well degrade when simultane-
ously sending out a steady stream of chordal accompaniment
(our empirical data indicates that this is in fact a problem).

Our interest in quantifying system performance in such
realistic settings was sparked by our desire to develop rhythm
quantizers that could transform short segments of improvised
notes into “appropriate” rhythmic notations in real time. One
thing that sets our task apart is that we want to develop tech-
nologies that customize their mappings so as to “best no-
tate” spontaneously generated rhythms in musician-specific
ways. Recent advances in probabilistic modeling provide fer-
tile ground for such user customization (Cemgil and Kappen
2001, 2003), but the iterative and approximate nature of these
methods leads to their heavily loading the processor. Prob-
abilistic models also provide disciplined ways for reasoning
about uncertainty, and it was in thinking about this that we re-
alized it was not at all clear what “error bars” we should use to
model the accuracy of the time stamps that the computer as-
signs to incoming MIDI data during live performance. It was
at this point that we took a step back and became interested
in real-time MIDI performance testing.

Clearly, benchmarks for quantifying latency in realistic
interactive music situations would be enormously valuable.
Unfortunately, MIDI performance in realistic systems is typ-
ically poorly documented, and when it is empirically mea-
sured, the environment in which it is tested is often quite re-
stricted. For example, Wright and Brandt (2001, 1999) pro-



vide a method for measuring a system’s latency that is no-
tably independent, by which we mean that quantification de-
pends on an independent piece of hardware (as opposed to
the system-under-test’s clock). These tests, however, were
performed using single active sense messages, no processor
load, and with proprietary software generating the response.1

A more complete (albeit dated) analysis of latency in off-the-
shelf operating systems under various loads and configura-
tions was done by Brandt and Dannenberg (Brandt and Dan-
nenberg 1998), but their measurements rely on the system-
under-test’s notion of time. To address these deficiencies,
we have developed a freely-available cross-platform software
package that, when used in conjunction with the inexpensive
and easy-to-build MIDI-Wave transcoder circuit proposed by
Wright and Brandt, can be used to independently test the per-
formance of a particular system in-place. The software and
accompanying documentation are available online.2

The work presented here is important in part because a
myriad of factors can influence real-time system performance.
Thus it becomes desirable, and in some cases essential, for
researchers—particularly those developing interactive MIDI
applications—to be able to quantify performance for their
particular application and system. To increase the odds that
our test package will be applicable to the general public, we
significantly extended upon the methodologies used by Brandt,
Dannenberg, and Wright. For example, in addition to ac-
tive sense data, we developed more realistic burst and load
tests. Burst tests are interesting because multiple MIDI note
messages are periodically transmitted in groups, producing
the type of situation that arises when playing real-time back-
ground accompaniment. Load tests do the same thing under
extensive CPU load, a likely scenario when generating inter-
active accompaniment on-the-fly. In important selling point
of our tests is that they are based on PortMidi, a free, light-
weight, cross-platform MIDI library,3 which means that users
who run our tests can easily migrate from testing to writing
their own PortMidi-based applications.

We have used our methodology to survey the performance
of several popular MIDI interfaces on three major consumer
operating systems (Linux, Mac OS X, and Windows). While
these tests are certainly not exhaustive, they illustrate the many
issues involved in quantifying and analyzing real-time MIDI
performance and serve as useful points of reference. An over-
view of these performance results has already been published
(Nelson and Thom 2004). The purpose of this paper is to sig-
nificantly extend upon this prior work, exploring in detail the
benefits and pitfalls of our testing methodology, analysis tech-
niques, and statistical measures. Our hope is that this work
will enable more members of the community to rigorously
quantify and tune their systems’ performance. As ad hoc per-

1Details from Jim Wright, personal communication.
2http://www.cs.hmc.edu/∼bthom/downloads/midi/
3http://www.cs.cmu.edu/∼music/portmusic/

Figure 1: Overview of our MIDI performance test setup.

formance tweaks are replaced by systematic benchmarking
methods, everyone benefits, for the methods themselves can
evolve and adapt, becoming even more useful.

2 Methodology

Our empirical testing extends the MIDI-Wave transcoder
methodology proposed by Wright and Brandt (2001, 1999),
adding many more types of tests and real-time data analysis.
A schematic overview of the test setup is shown in Figure 1.

2.1 The Midi-Wave Method

Each test involves two systems: The reference system
(REF) generates a stream of MIDI messages that are pre-
sented to the system whose performance is being tested (TEST).
TEST, running a simple PortMidi application, forwards the
REF stream MIDI messages back out, producing the TEST
stream. The Midi-Wave device sits between the two systems,
transcoding a copy of each stream into audio. The TEST and
REF audio signals are recorded in stereo via the REF system’s
sound-card line-in. Latency is measured by our analysis soft-
ware, which runs on the REF system and compares the delay
between the two audio streams in real time. The transcoder
allows us to use the sound-card as a cheap, readily-available
two-channel voltage sampler, as transcoded audio is nothing
but a raw MIDI signal, converted into an appropriate voltage
range. Sample audio is shown in Figures 2 and 3.

Recording a 31.25 kHz MIDI signal at the standard 44.1
kHz audio sampling rate suffices because we are merely inter-
ested in locating the positions of MIDI messages in a stream.
In particular, the Nyquist Theorem, which would recommend
sampling at 62.5 kHz, does not apply because we are not in-
terested in reproducing the signal digitally. Rather, our sam-
pling rate must simply be fast enough to not miss bit flips.
With a 31.25 kHz MIDI data rate, a MIDI bit spans approx-
imately 31 µs. 44.1 kHz, which provides a 23 µs sampling
period, ensures that no bit flip will be dropped. As detailed
elsewhere (Wright and Brandt 1999), latency measurements
accurate to within 0.1 to 0.2 ms are easily obtained.



Figure 2: Sample transcoder audio (from a G4 OSX 2x2 burst
test). The variables in this figure are defined in Section 3.

2.2 Modifications and Proposed Benchmarks

Since the proprietary Cubase sequencing software was
crafted at a very low level to provide improved performance,
Wright and Brandt’s tests ran this software on their TEST
systems.4 In contrast, we are more interested in testing un-
der conditions similar to those that an application-level soft-
ware developer might encounter. This goal led us to develop a
light-weight PortMidi application for our TEST systems that,
in a high-priority background thread, simply checks for MIDI
input once per millisecond, forwarding messages on via MIDI
out. In the foreground, a main thread runs that either periodi-
cally loads the CPU or sleeps, depending on what type of test
is being run.

We have also significantly extended the tests that can be
run. Wright and Brandt’s original tests only sent one-byte
active sensing messages at fixed intervals. Active sense mes-
sages do bring a consistency to testing because they are not
typically treated in special ways by drivers or operating sys-
tems. Alone, however, the MIDI traffic patterns they generate
are unrealistic. Thus, in addition to active sensing, we added a
number of other ways for users to vary MIDI traffic patterns.
For example, note-on and note-off messages can be gener-
ated; messages may be sent either individually or in bursts
of varying size; and messages or bursts of messages may be
output at user-specified frequencies. There is also an option
to run a test under simulated load (arbitrary arithmetic on a 1-
megabyte matrix), producing approximately 100% CPU uti-
lization and memory usage sufficient for clearing the CPU
cache.

From the many possible combinations of these options,
we chose three tests as benchmarks:

• sense: one active sensing message every 35 ms.
• burst: bursts of ten note-on/off messages every 100 ms.
• load burst: same as burst, but loaded TEST system.

We ran each test for an hour, a duration arrived at through
4This and many other details were confirmed with Jim Wright in personal

communication.

some empirical testing. Short (e.g. 15-second) tests can char-
acterize average performance reasonably well, so are useful
as quick indications, but performance problems on some sys-
tems show up only occasionally. For example, in some of our
tests worst-case performance over an hour was 5–7 ms worse
than worst-case performance over 15 seconds. Although even
longer tests may indicate still more rare instances of perfor-
mance degradation, we did not see such degradation in the
few 10-hour experiments we ran.

2.3 Real-Time Analysis

A key feature of our test suite is its real-time analysis.
Without real-time analysis, an hour-long test would require
recording and analyzing 600 MB of audio data. For those
users whose interest in highly reliable determination of worst-
case latency makes tests on the order of 10 hours desirable,
the prospect of recording and analyzing 6 GB of data is even
less appealing!

Our real-time analysis uses a relatively simple threshold-
ing algorithm to locate message “groups”—either single ac-
tive sense messages or bursts of multiple messages—in each
stream. Groups in the REF stream are matched up with their
corresponding groups in the TEST stream and corresponding
groups are compared to calculate latency and width.

Our thresholding method requires that message groups be
well-separated. That is, the frequency with which groups are
sent must be low enough so that the end of one does not get
too close to the beginning of another; otherwise, it is difficult
to determine where one ends and another begins.5 Wright
and Brandt must have used a more complex signal analysis
scheme (perhaps autocorrelating over the entire stream), for
they analyzed audio data collected for active sensing mes-
sages sent every 4 ms (yet their reported maximum delays
ranged from 4.2 to 17.9 ms). We played with various periods
for active sensing, settling on 35 ms because it robustly sep-
arated message groups on all of our test systems. Although
our simple threshold scheme is restrictive—e.g. 35 ms event
spacing is about 2% of MIDI 1.0 DIN capacity, whereas 4
ms is 25%—the benefit is real-time analysis, which allows us
to run tests of arbitrary length. Another benefit of our algo-
rithm is that analysis errors are very unlikely to occur because
we require that each REF and TEST group match and that
no detected latency be larger than the generating period. As
a result, errors in detecting thresholds will almost certainly
produce failed tests as opposed to faulty data.

Real-time audio analysis is implemented using the cross-
platform PortAudio toolkit.6 In fact, both PortAudio and

5To help debug in cases where bursts “stack up,” our software dumps an
audio file containing audio recorded over the past few problematic periods.
Since analysis is done in real-time, this kind of dump is required if problem-
atic data is to be accessed.

6PortAudio (Bencina and Burk 2001) performs a similar func-
tion for audio that PortMidi does for MIDI; it is freely available at



PortMidi libraries contribute to the REF system’s main pro-
gram.

2.4 System Configurations Tested

We tested a selection of systems composed of the commonly-
used components listed below. Italicized abbreviations will
be used when reporting results for particular systems.

Interfaces:

• Midiman MidiSport (2x2), USB
• MOTU Fastlane (Motu), USB
• EgoSys Miditerminal 4140 (4140), parallel port
• Creative Labs SoundBlaster Live! 5.1 (SB or SBLive), PCI

sound-card with integrated MPU-401 compatible interface

Operating systems (and their MIDI APIs):

• Linux with 2.4-series kernel (Linux 2.4) using the Debian
GNU/Linux distribution with ALSA 0.9.4, kernel 2.4.20, and
some low-latency patches.7

• Linux with 2.6-series kernel (Linux 2.6), as above but with
ALSA 0.9.7, kernel 2.6.0, and no special patches.

• Mac OS X (OSX) 10.3.2 (Panther) with CoreMIDI.
• Windows 2000 (Win2k) SP4 with WinMME.
• Windows XP (WinXP) SP1 with WinMME.

Computers:

• HP Pavilion 751n desktop (HP) with 1.8 GHz Intel Pentium
4 processor and 256 MB RAM.

• Apple Mac G4 desktop (G4) with dual 500 MHz G4 proces-
sors and 320 MB RAM.

• IBM Thinkpad T23 laptop (T23) with 1.2 GHz Intel Pen-
tium II processor and 512 MB RAM.

A few notes on configuration: We made an effort to ensure
that the systems were configured reasonably, but given the
range of possible configurations, there is likely still room for
improvement (in fact, our tests can be used to help guide the
search through this configuration space!). Under Windows,
MIDI was handled by a multimedia thread, with system pri-
orities set as recommended on the PortAudio website.8 Under
Linux, the MIDI-handling thread ran with nice value -19.9

With OS X, the MIDI-handling thread ran as a fixed-priority,
non-time-sharing thread with precedence 30. Under all op-
erating systems, when load tests were run, the main loading
thread had default priorities. We also took other reasonable
steps to enhance performance: turning off virus scanners, dis-
abling network access, disabling power saving features (hard
drive spin down, screen-savers), and so on.

http://www.portaudio.com.
7Robert M. Love’s variable-Hz (Hz=1000) and pre-emptible kernel

patches and Andrew Morton’s low-latency patch.
8http://www.portaudio.com/docs/latency.html
9The software must be run as root for this heightened priority.

Previous tests (Wright and Brandt 2001) suggested that
USB interfaces, which are newer but quickly becoming the de
facto standard, perform more poorly than “legacy” interfaces
(parallel or serial port, PCI), so we tested both types. We did
not test FireWire because of their steep prices (over US$500
as of this writing).

Not all interfaces could be tested on all operating sys-
tems. OS X’s CoreMIDI only supports USB. With Linux,
no 4140 drivers could be found. We made numerous attempts
to get the Motu to work on Linux but were never success-
ful. Additionally, the early revisions of Linux 2.6 available
at the time of testing display USB problems on some hard-
ware. For this reason, the 2x2 was only tested on Linux 2.4.
For OS X and Windows tests, we used the newest drivers
available as of November 2003 on their manufacturers’ web-
sites. As no manufacturers provide Linux drivers, reverse-
engineered open-source drivers were used.10 Finally, since
the Motu would not forward active sense messages on OS X,
note-on/off messages were used for both USB interfaces on
Mac machines.

3 Terminology and Statistics

Typically, two terms are used when characterizing system-
induced MIDI delay. Latency is usually defined as the delay
introduced by a system when transmitting a MIDI message,
whereas jitter is how much this delay varies over time.

It is easy to use these terms ambiguously because both in-
timately depend on the way in which delays are distributed.
For instance, although each count stored in a latency his-
togram refers to a specific event’s delay, aggregate statistics
that summarize a collection of events are often used (Wright
and Brandt 2001; Brandt and Dannenberg 1998) to quantify
results: e.g. average latency; worst-case latency; peak jit-
ter, which is the difference between minimum and maximum
observed latency values; etc. In another “latency” definition
(Brandt and Dannenberg 1998), measurements were calcu-
lated by first taking the difference in time between adjacent
timer call-backs and then subtracting off the constant period
in which the timer was scheduled to run.11 We will soon pro-
vide a framework that shows the relationship between this use
and the prior latency definition. Fortunately, regardless of the
individual nuances in terms, everyone seems to agree that the
distribution that describes system delays is the primary quan-
tity of interest.

In Figure 2, transcoder data for two bursts of MIDI, i and
i + 1, is displayed. REF burst start times, ri and ri+1, cor-
respond to TEST start times ti and ti+1. Two latency mea-
surements result: Li = ti − ri and Li+1 = ti+1 − ri+1. In

10The emu10k1 ALSA driver for the SBLive, and the usb-midi driver
for the 2x2.

11WinMME timer resolution cannot exceed 1 ms. Microsoft used a similar
scheme for measuring latency in sample code shipped with Visual C.



our tests, each burst i contributes one latency measurement
to a Transcoder Latency histogram. An example histogram
is displayed in Figure 4). This histogram’s main power is
its quantification—in absolute terms—of system responsive-
ness. In terms of aggregates, worst- and average-case Li es-
timates are probably the most useful. In the spirit of Brandt
and Dannenberg (1998), transcoder data can also be used to
collect period-based measurements; for example, REF period
Ri = ri+1−ri and TEST period Ti = ti+1−ti. Period-based
quantities become more useful when the goal is to recreate a
stream of periodic inter-onset intervals (IOIs) as closely as
possible. As we will show below, a better measure of peri-
odic fidelity is a Transcoder δ Latency histogram, which is
constructed from δLi = Li+1 − Li, the difference between
adjacent latencies. Again, see Figure 4 for an example. Note
that a δLi histogram cannot be calculated after the fact from
an Li histogram alone as the compressing act of binning data
throws away crucial temporal information.

By definition:

Li + Ti = Ri + Li+1. (1)

Since ri < ti and ri+1 < ti+1, this relationship directly fol-
lows (see Figure 2). If Li was normally distributed with stan-
dard deviation σ, Equation 1 would predict δL is also nor-
mally distributed with standard deviation

√
2·σ. This increase

makes sense: Adding two identically distributed random vari-
ables increases the overall sum’s uncertainty.12 In our experi-
ments, including the results shown in Figure 4, δL’s empirical
distribution is much less spread out than L’s. Although a nor-
mal distribution is inadequate for modeling system delays—
for example, latencies are strictly non-negative, distributions
tend to be bimodal, and so on—the most likely reason for this
unexpected decrease is that system latencies exhibit temporal
dependence.

An important insight results by combining Equation 1 with
δLi’s definition:

Ti = Ri − δLi. (2)

In Equation 2, we see that when IOI fidelity is most important,
the performance measure of interest is the δ Latency distribu-
tion. Another implication of this fact is that peak jitter will
provide an overly pessimistic view when IOI fidelity is the
main concern because it does not require that only adjacent
latencies be considered. In contrast, when quick responsive-
ness to onsets is the key, maximum latency, in conjunction
with peak jitter, are quite relevant. Equation 2 also links the
“latency” measure that Dannenberg and Brandt used with our
definition. In their case, the timer’s ideal period was fixed,
which amounts to setting each Ri to this constant value. Un-
der the reasonable assumption that call-backs execute almost
instantaneously (within a few µs), what is measured in this
scheme is the δLi distribution.

12The square root is a result of the fact that additive normal errors propa-
gate via adding in quadrature.

REF

TEST

Figure 3: A REF burst is “stretched” as the TEST system is
falls behind.

To quantify bursty real-time behavior, we record the widths
of the audio transcoded for a burst of messages. Width, as
shown in Figure 2, is the time between the beginning and end
of a burst message. The distribution over width quantifies a
TEST system’s ability to receive and process bursts of MIDI
messages in a timely manner. Figure 3 provides an example
of how a bursty message can be “stretched” because the test
system is unable to keep up with sending out the signal as
soon as it comes in.

4 Results

A single test run produces a set of histograms like those
shown in Figure 4. We focus here on this 4140-based sys-
tem because its poor performance makes for interesting dis-
cussion.13 Together, the Transcoder Latency and Test Width
histograms provide a reasonable characterization of the sys-
tem’s absolute responsiveness and the Transcoder δ Latency
histogram reasonably characterizes IOI fidelity. The much
smaller values in the δ Latency histogram suggest a high de-
gree of adjacent temporal dependence—while many Lis are
around 20 ms, only two δLis lie above the 4 ms range.

The TEST Periodic Timer histogram displays data col-
lected by the TEST system entirely in software. This his-
togram captures the variability that the TEST system observed
in servicing its 1 ms periodic MIDI-thru timer call-back. As
opposed to an independent measure, this histogram’s data is
referenced with respect to the TEST system’s internal clock.
It makes sense that this histogram should correlate somewhat
with the transcoder’s, as obvious sources of MIDI latency
include the operating system’s ability to schedule things on
time. Having said this, one might conclude that a purely
software-based approach to performance testing would suf-
fice; indeed, Brandt and Dannenberg used this method. How-
ever, as the plots in Figure 4 illustrate, the software histogram
gives a much less accurate view of latency behavior than does
the transcoder histogram, so we always recommend spending
the extra effort needed to build such a device.

It is worth drawing attention to the difference in variabil-
ity between the TEST and REF width histograms. The REF
system (Linux 2.4, HP, SBLive) was only producing periodic
bursts of output, and it was able to realize this behavior very

13Histograms and log files for all of the systems we tested are available on
our website.
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Figure 4: A sample selection of histograms (load burst on T23, Win2k, 4140), except for the lower-right-hand figure, which
displays data taken from a load burst test on G4, OSX, Motu (see text for details).

consistently. The TEST system, which had to not only pro-
cess asynchronous MIDI input but also send it back out, had
a much more difficult time. We saw this kind of behavior on
virtually every system we tested—including one in which the
TEST and REF systems were identical. These results sug-
gests that MIDI input is inherently more difficult to process
in real-time. We thus recommend that bi-directional commu-
nication be a primary focus in performance benchmarking.

Various summary statistics that quantify the results of our
performance survey are shown in Table 1. For brevity, only
best-case (sense) and worst-case (load burst) tests are reported.
For unloaded burst test results, and additional statistics and
discussion, see our NIME paper (Nelson and Thom 2004).
Realize that, while the summary statistics in this table are
useful, they do obscure valuable information about the un-
derlying distributions. For example, the Transcoder Latency
histogram in Figure 4 is clearly bimodal; simple aggregate
measures will never adequately characterize this fact. At the
same time, histograms are not the end-all and be-all; they treat
each count that is recorded as independent of all the others
and so any kind of time dependence is thrown away. While
it is true that the Transcoder δ Latency histogram contains
temporal information regarding adjacent events, higher-order
temporal effects are again lost.

Temporal latency dependence is substantiated in Table 1:
δ latency aggregates are all less than their absolute latency
counterparts. This observation motivates in-depth investiga-
tions of performance-related temporal issues. Our cursory
investigation of this topic, however, has not borne much fruit,

even though simple modifications to our tools support fairly
open-ended exploration in this area. For example, by saving
5- to 10-minute streams of time-stamped latencies, we were
able to generate the lower-right-hand plot in Figure 4.

This plot displays how problematic latencies—which we
defined to be latencies greater than or equal to 7 ms—dis-
tribute over time. Test time in seconds proceeds along the
x-axis. Each data point (asterisk) corresponds to a problem-
atic latency. The y-axis simply reformats the information pro-
vided on the x-axis, making it easier to interpret: A data
point’s vertical location indicates how far away it was (in
time) from the previous problematic event. Recall that bursts
are sent out every 100 ms. Thus, data points with 100 ms
y-axis values indicate two (or more) adjacent bursts serviced
behind schedule. Clusters of such points indicate contiguous
spans in which the system was having trouble keeping up.
Another large population of problematic latencies are sepa-
rated by 3 to 5 second spans. Unfortunately, the temporal
distribution of problematic latencies in this figure does not
display any “trivially systematic” structure. In short, we be-
lieve it would be very difficult to predict in advance exactly
when such events will occur.

The good news for interactive MIDI applications is that
the best-performing systems in our tests exhibit performance
very close to the absolute targets of 10-ms latency and 1-
to 1.5-ms jitter that we discussed in the introduction. The
best overall performer in our particular setup—the SBLive
on the HP desktop running WinXP—has in its worst-case re-
sults (the load burst test) a maximum latency of 2.8 ms, peak



System Sense Load Burst
msec msec

µL σL pL mL µδL σδL mδL µL σL pL mL µδL σδL mδL pw mw

HP Linux2.6 SBLive 0.8 0.3 2.1 2.3 0.0 0.1 1.4 1.2 0.3 7.0 7.6 0.0 0.1 6.6 2.4 8.6
HP Linux SBLive 0.8 0.4 25.4 25.6 0.0 0.1 24.7 1.2 0.4 26.0 26.6 0.0 0.1 25.9 17.7 23.9
HP Linux 2x2 2.2 0.5 24.7 25.7 0.0 0.2 24.0 3.7 0.5 34.4 36.4 0.0 0.2 32.8 21.6 29.0
G4 OSX 2x2 3.5 0.4 2.2 4.6 0.5 0.1 1.7 3.6 0.4 3.2 5.8 0.4 0.3 2.2 8.7 18.1
G4 OSX Motu 5.4 0.6 3.4 7.0 0.4 0.5 3.0 5.7 0.7 5.6 9.2 0.3 0.5 3.0 7.2 10.6
HP WinXP SBLive 0.9 0.3 2.0 2.4 0.1 0.2 1.3 1.3 0.3 2.0 2.8 0.6 0.2 1.7 1.2 10.6
HP WinXP 2x2 3.5 0.5 3.2 5.4 0.3 0.4 2.2 5.8 0.6 5.4 7.8 0.9 0.5 3.6 3.9 12.5
HP WinXP Motu 7.5 1.5 8.0 12.2 1.8 1.4 3.2 7.9 1.5 8.0 12.6 1.0 1.2 4.0 6.8 13.2
T23 Win2k 2x2 4.3 0.6 3.9 6.3 0.1 0.4 2.1 6.8 0.5 7.8 10.6 0.1 0.4 4.0 4.2 13.6
T23 Win2k Motu 7.7 1.3 5.1 10.3 1.0 0.5 2.2 7.7 1.2 5.0 10.6 0.1 0.3 4.9 8.4 14.8
T23 Win2k 4140 2.1 0.8 3.6 4.4 0.5 0.8 3.3 3.7 0.3 18.3 20.7 0.3 0.2 16.6 5.7 19.5

Table 1: Summary statistics for various tests. The empirical transcoder latency distribution is characterized by: mean (µL),
standard deviation (σL), peak jitter (pL), and maximum (mL). The transcoder δ latency distributions are characterized by the
same statistics, except that peak jitter is omitted (the minimum δL is zero in all cases, so peak jitter and the maximum are
identical). For load burst tests, width is characterized by peak jitter (pw) and maximum width (mw).

jitter of 2.0 ms, and peak jitter in the burst widths of 1.2 ms,
all very respectable figures.

The bad news is that none of the other configurations we
tested exhibited performance at quite this level, at least when
running the load burst tests. A common problem, exhibited
by the otherwise admirably-performing 2x2 on the G4 run-
ning OSX, is fairly large width jitter in the load burst tests.
Since all messages take some time to send, the peak jitter in
width provides the most useful measure: 8 to 10 ms differ-
ences can be expected when delivering bursts of messages on
a G4 under load. Note that the G4’s absolute latency values
are on par in both the sense and load burst tests, suggesting
that the most problematic aspect of load is that it significantly
delays notes occurring later on in the burst.14 Perceptually,
this behavior might lead to chords sounding slightly arpeg-
giated.

One pleasant result is that the performance of Linux 2.6
is vastly improved over that of Linux 2.4, especially in terms
of maximum latency and peak jitter. Linux’s performance for
real-time tasks had previously been rather poor; the substan-
tial efforts made by kernel and ALSA developers in address-
ing that criticism have obviously been successful. For our
purposes, the new version of Linux is an ideal option, since it
nicely complements the open-source model of PortMidi/Port-
Audio, and we can tolerate a 7-ms jitter. Similarly, those who
can accept jitter in the 5- to 7-ms range can consider using
the USB interfaces on OSX. This will be particularly useful
if the G4 laptops perform similarly to the desktops (we’re op-
timistic, given the similarity of the hardware).

The worst victim of system load is the 4140, which, while
it outperforms the USB interfaces on a lightly-loaded sys-

14Recall that for our Mac sense tests, note-on/off messages were sent be-
cause the Motu would not forward sense messages on.

tem,15 degrades very badly when tested under load, possibly
a result of the way the low-level parallel port’s hardware in-
terrupts interact with the operating system. In the sense tests,
on the other hand—where messages are kept relatively sparse
without large bursts and there is minimal system load—about
half the interfaces perform reasonably well, with peak jitter
under 4 ms. The impact of this result is that we have yet to
find a good solution for PC laptops, which do not support PCI
sound-cards like the SBLive. We had originally purchased
the 4140 in the hopes that a low-level parallel port interface
would perform better than the USB alternative, but its poor
performance under load makes it impractical. We emphasize
this particular example because it powerfully illustrates the
need to replace ad hoc guesses about performance with a rig-
orous set of tests.

It is worth emphasizing that the results reported here ap-
ply to specific systems. For example, because OSX only sup-
ports USB one could argue that it is unfair to directly compare
results obtained for such a system with those obtained for an
“equivalent” PCI WinXP alternative. At the same time, when
building interactive music applications, the primary concern
is often deliverable real-time performance. As long as the
interfaces themselves tend to impact performance, what in-
terfaces a given platform supports will remain an important
consideration.

5 Future Work

Further modifications to our testing tools are worth ex-
ploring in order to simplify their use and increase the range
of situations they can test. In particular, the constraint men-
tioned in Section 2.3—that message groups be well-separated—

15Including in the unloaded burst tests not reported here.



would be nice to do away with. It has been suggested to us16

that integrating a UART into the transcoder might allow us
to convert each MIDI byte into a well-separated single spike.
An extension like this would allow us to test periodic MIDI
traffic at higher frequencies.

It is also worth exploring the “scheduled output” MIDI
APIs found on some operating systems (e.g. the WinMME
stream interface, which PortMidi supports). This technology
allows a MIDI message to be scheduled for output at some
point in the future, instead of being sent out immediately. By
scheduling messages to be output in, say, 1 to 5 ms, high-
priority scheduling might be passed of into the operating sys-
tem kernel, where it may is more likely to be serviced con-
sistently. This kind of behavior would allow applications to
trade off an increase in latency for a decrease in jitter.

Finally, we would like to investigate how repeatable our
tests are, for example, running the same test on a given system
multiple times. One thing that such an investigation could ex-
plore, for example, is to what extent repeatable results require
a freshly booted machine.

6 Conclusion

Although it turns out that MIDI can indeed perform close
to the threshold of perceptible timing error, it is clear that
performance can differ significantly, both due to the configu-
ration of the system and due to the nature of the MIDI traffic.
Furthermore, it is not at all obvious how to best quantify per-
formance generally, given the different constraints present in
different contexts. Previous performance testing did not bring
all of these facts to light. We hope that our discussion and
analysis will, in addition to illustrating some common sources
of latency and jitter, encourage researchers using MIDI for in-
teractive computer applications to use independent, in-place
tools to test and tune the performance of their systems.

One of our hopes in developing this more realistic MIDI
test suite is that it will foster active community participation.
Certainly we are not the only ones who share this interest—
existing resources such as Jim Wright’s OpenMuse17 have
similar goals. Imagine, for example, the benefits of a resource
where individual researchers could report and discuss empiri-
cal performance measures for their particular applications on
specific systems. Such interaction would likely lead to a ro-
bust and generally accepted set of useful benchmarks for in-
teractive music applications, as well as an extensive survey
of system performance. This would be tremendously use-
ful to those designing their own interactive music systems,
as currently it is not at all clear which interfaces, operating
systems, and configurations one ought to choose for various
applications. In addition, it would provide a rigorous basis

16Roger Dannenberg, personal communication.
17http://www.openmuse.org

from which to evaluate the relative merits of various proto-
cols that have been proposed as replacements for traditional
MIDI, such as Ethernet MIDI and Open Sound Control.
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